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Introduction : a bit of history
Where do we come from ?
Where was produced the matter that surrounds us ?

The answer came from astrophysics. . .

In 1920 A. Eddington : stars are nuclear powered
In 1929 R. Atkinson and F. Houtermans :

fusion of light elements produces energy
e.g. fusion of 4 protons into “He

4p — “*He +2e" + 2v, + 26.73 MeV

In 1938-39, H. Bethe and C. Critchfield : pp chain and CNO cycles
(H. Bethe got NP in 1967)

In 1957, seminal paper of Burbidge, Burbidge, Fowler and Hoyle
on nucleosynthesis in stars [Rev. Mod. Phys. 29, 257]



Introduction : nucleosynthesis in a nutshell
By fusion of light elements we can reach the Fe-Ni region
because reactions are exoenergetic and Coulomb repulsion is small
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Beyond, processes based on n or p capture lead to heavy nuclei :
S, Iy p, rp Processes. ..



Abundances of elements
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@ pp chain and CNO cycle

@ Reaction rate and Gamow window
© Life and death of a star

@ Equation of State for nuclear matter

© 5.7, p, rp processes

@ Summary



pp chain and CNO cycle

pp chain p+p— H+e +v. or p+e +p— H+v
I
H+p— He+y

(85%) | l | (15%)
JHe + JHe — SHe+2p  3He+ 3He — [Be+vy
ppl
(15%) (0.02%)
ZBe+e‘|—>§Li+ve ZBe+pI—> B+y
JLi+p — jHe+ jHe B — IBe+e' +v,
ppll I

8 4 4
.Be — SHe + JHe

Summary : 4p — 4He + 2e* + 2v, +25MeV PPl



CNO cycle(s)

If the star contains C, N or O
they can be used as catalyst
to synthesise “He from 4 p
e.g. CNO C cycle :

2C+p - PN+y

BN - BC+e" +v,
BC+p - “N+y P
14N +p — 150 +vy @ neuron V Neutino
150 - 15N + e+ + Ve o
BN+p - "C+a CNO C cycle

Summary : 4p — SHe + 2e* + 2v, + 25MeV
Other cycles : CNO N cycle (N as catalyst), NeNaMg cycles
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Reaction rate

We consider the radiative-capture reaction : 1 +2 - 3 +y

The reaction rate is the number of reactions occurring
per unit time and volume

r=NN,ov
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Reaction rate and Gamow window

Reaction rate

We consider the radiative-capture reaction : 1 +2 - 3 +y
The reaction rate is the number of reactions occurring

per unit time and volume

r=NN,ov
The velocity v is distributed according to Maxwell-Boltzmann
¢(V) o e—E/kT

=(oVv) = 4n f dv) c(v) v’ dv

o fe_E/kT o(E) E dE



Reaction rate and Gamow window

o(E) at low energy

Due to Coulomb barrier oo plummets at low E
because reaction takes place only through tunneling

*He + @ — "Be + v also noted *He(«,y) 'Be

He (a,v) 7Be
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Astrophysical S factor

The rapid drop explained

by the Gamow factor e~ 2",
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Reaction rate and Gamow window

Gamow peak

(V) f e M o(E) E dE

e

= f e P e S(E) dE

= § (i.e. o) must be known
only in the Gamow peak
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Example

For the reaction *He(c, y) "Be in the sun
Zl = 2,A1 = 3
Z2 = 2, Az = 4
T =0.015Ty

Gamow peak
at Ey ~ 20 keV
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= difficult to measure due to background.
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= difficult to measure due to background.
Solutions :
e Rely on theory to extrapolate down to astrophysical energies
e Use indirect techniques, e.g. Coulomb breakup
SB+Pb— "Be+p <« Be(p,y)’B
e Go to an underground laboratory to reduce background
e.g. LUNA collaboration [E. Masha'’s talk on Tuesday]




LUNA accelerator facility at the Gran Sasso

Located below the Gran Sasso mountain in the Apennines




Reaction rate and Gamow window

LUNA result for *He(*He, 2p)*He
LUNA can reach the Gamow peak in some cases
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Reaction rate and Gamow window

He and other fusions
When enough “He has built up,

if temperature and pressure are high enough,
He fusion starts
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But 8Be is unbound : 8Be — *He + “He
This A = 8 gap is bridged by the triple-a process

3a — %Be* +a — '’C*

which occurs through the Hoyle state : J* = 0* resonance in '>C
predicted by F. Hoyle and observed by W. Fowler (NP in 1983)



Reaction rate and Gamow window

He and other fusions

When enough *He has built up,

if temperature and pressure are high enough,
He fusion starts

But 8Be is unbound : 8Be — *He + “He
This A = 8 gap is bridged by the triple-a process

3a — %Be* +a — '’C*

which occurs through the Hoyle state : J* = 0* resonance in '>C
predicted by F. Hoyle and observed by W. Fowler (NP in 1983)

At a later stage, C may capture a to form O
or fuse with itself to form Ne, Na or Mg
= Onion structure of star. ..



Life and death of a star

The onion star

\'Massive star near the end
< _ofits lifetime has an
X “onion-like' structure
just prior to exploding
as a supemova

Bed Giant Star,

v

e
Nuclear buming occurs at the B T 2

* boundaries between zones of nuclear reactions

— build neutron-rich isotopes




Life and death of a star

What happens next ?
Depending on the mass of the star :

o M < 10M, :

» ends with C-O core (M < 8M,,)
or O-Ne-Mg core (M ~ 8—10M,,)

> H outer layer is expelled — planetary nebula

» nuclear reactions stop and what remains cools down
— white dwarf (M ~ My and R ~ Rg)
where gravity is compensated by the pressure of

the electrons, which form a Fermi gas



Life and death of a star

Planetary nebula : Cat’s eye nebula




Life and death of a star

What happens next?
e Massive star (M > 10M,,)

» C burning — Fe-Ni core
» Gravity strikes back : gravitational collapse of the core
— neutron star (M ~ My and R ~ 10 km; p ~ py)
where gravity is compensated by
the repulsive core of the NN interaction
[see A. Watts’ talk on Monday
V. Mantovani Sarti’s talk on Wednesday
W. Newton’s talk on Wednesday
J. Lattimer’s talk on Friday]
or black hole...
> outer layers expelled : supernova (type Il)



Life and death of a star

Type Il SN : Crab nebula




Neutron star

CORE:

Homogeneous
Matter

ENVELOPE
CRUST
OUTER CORE
INNER CORE

Polar cap

Néutron Superfluid +
Neutron Vort: Proton Superconduct
Neutron Vortex
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Equation of State
To understand the formation of neutron stars,
need to understand the nuclear matter
[see V. Mantovani Sarti’s talk on Wednesday
& W. Newton’s talk on Wednesday
& J. Lattimer’s talk on Friday]
But no need for microscopic calculations
= (nuclear) Equation of State (EoS)
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Equation of State for nuclear matter

Equation of State
To understand the formation of neutron stars,
need to understand the nuclear matter
[see V. Mantovani Sarti’s talk on Wednesday
& W. Newton’s talk on Wednesday
& J. Lattimer’s talk on Friday]
But no need for microscopic calculations
= (nuclear) Equation of State (EoS)
State of a perfect gas givenby P, V, T,N: PV =NkT

For nuclear matter, the state variables are

Z : proton number

N : neutron number

or in infinite matter « = (N — Z)/A, the n-p asymmetry
o the density

EoS obtained from the energy of the system per nucleon €



Equation of State for nuclear matter

Nuclear EoS
Back to liquid-drop formula (Bethe Weizséacker)

Z(Z-1) (A -22)?
_ 2/3
B(Z, N) = avA - aSA - GCT - asymT
B(Z,N .
€ = — ( ) — —a, + dsym @ withea =(N-2)/A

A A—0o0

Liquid drop assumes constant density p = py ~ 0.16 fm™>



Equation of State for nuclear matter

Nuclear EoS
Back to liquid-drop formula (Bethe Weizséacker)

Z(Z - 1) (A —27)
— 2/3
B(Z, N) = avA - aSA - GCT - asymT

B(Z,N .
- (A )A—>—av+asyma/2 witha = (N -2)/A

€

Liquid drop assumes constant density p = py ~ 0.16 fm™>
We need density dependence

e(p, @) = e(p, @ = 0) + S(p)a* + . ..

where S is the symmetry energy
Clear short review paper : [Horowitz et al. JPG 41, 093001 (2014)]



Equation of State for nuclear matter

Symmetry energy

S characterises the increase in energy from N = Z
Taylor expanded around p = p :
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Equation of State for nuclear matter

Constraints
S can be constrained from nuclear experiments (laboratory) :

e neutron skin thickness (balance between surface tension
and asymmetry term)

e Giant Monopole Resonance (breathing mode)
e Giant Dipole Resonance (n to p oscillations)

@ heavy-ion collisions (n to p ratio in emitted fragments)
[see V. Mantovani Sarti’s talk on Wednesday]



Equation of State for nuclear matter

Constraints

from astrophysical observations [see A. Watts’ talk on Monday

& W. Newton’s talk on Wednesday

& J. Lattimer’s talk on Friday]
e Mass and radii of neutron stars (existing 2 M)

Mass (M)

Radius (km)

[J. Lattimer Ann. Rev. Nucl. Part. Sci. 62, 485 (2012)]



Equation of State for nuclear matter

Constraints
from nuclear physics
e EFT prediction of EoS

A s B
- mm EM 500 MeV, RG evolved + N°LO 3N
20 [ --- EM 500 MeV + N’LO 3N

w
T T

E/N [MeV]
=

oL e PR
0 0.05 0.10 0.15

n [fm?)]

[K. Hebeler et al. Astrophys. J. 773, 11 (2013)]
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© 5.7, p, rp processes



s, r, p, rp processes

How do we get heavier elements ?
Increasing Coulomb barrier suppress fusion
Once Fe synthesised no more fusion

Abundance of Si
oHe is normalized to 10° ]

Log, (Abundance)
o

To explain formation of heavier elements
Burbidge, Burbidge, Fowler and Hoyle (B2FH) suggest in 1957
successive captures of n by seed nuclei : s and r processes



s process

The s process is a slow process of n capture by stable nuclei
slow means slower than g decay, i.e. requires small n flux

e.g. He burning stage of AGB stars

6 Nd

BC+a—- %O+n
“Ne+a — “Mg+n

NUMBER OF PROTONS Z

Py R e
. TR

5

Synthesises elements close to stability = does not explain

e isotopes away from stability
@ heavy elements (U, Th...)



r process

The r process is a rapid process of n capture by stable nuclei

rapid means faster than g decay, i.
e.g. core-collapse supernovae
n-stars mergers

e. requires high n flux
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Synthesises elements far away from stability = requires

e masses of radioactive isotopes
@ location of nuclear shells

[see A. Spyrou’s talk on Monday]



s, r, p, rp processes

Binary neutron star merger (BNS)

August 2017 : gravitational wave measured by LIGO and Virgo
Understood as a Binary neutron star merger (BNS)
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[AJL 848, L12 (2017)]

EM signals (y, UV, optical, IR...) have also been recorded
confirming that BNS mergers are sites for r-process



s, r, p, rp processes

Blnary neutron star merger (BNS)
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o GRB 2 s after GW

= Vgw ~ C
e EM spectrum bears
signature of r-process nuclei
decay
e Multi-messenger astronomy
@ BNS better explains
nucleosynthesis of
heavy elements than SN

- o Phys. Today 2017 12, 19

Phys. Today 2018 01, 300



Blnary neutron star merger (BNS)

o GRB 2 s after GW

B T t-lf’(s) 2 4 es 2‘4‘00‘ Weg;gﬂgzg?n;“)“.éabo = VGW ~ C
W e EM spectrum bears
T e e e signature of r-process nuclei
ST decay
uv —

e Multi-messenger astronomy

w9 BNS better explains
et nycleosynthesis of
EEN N . ,Ln S heavy elements than SN

M2H Swope CEED VISTA \ Chandra o) Phys TOday 2017 12, 19

% % &% .. Phys Today201801,300

@ Add neutrino measurement

10.86h i[11.08h h[11.24n vk ed X-ray

[AJL 848, L12 (2017)]




s, r, p, rp processes

p and rp processes
s and r processes synthesise only n-rich nuclei
How to explain the presence of p-rich nuclei ?

p and rp processes are similar processes
with successive p captures

p process :

Slow capture of protons

Synthesises p-rich nuclei close to stability
Possible site : O-Ne layer in supernova



s, r, p, rp processes

rp process
rapid p-capture reactions

synthesises elements
away from stability
cf r process

Possible sites :

e X-ray burst
accretion by neutron
star of H- and He-rich
material from
companion star

e type la supernova

same accretion on  [Schatz and Rehm NPA 777, 601 (2008)]
white dwarf




s, r, p, rp processes

Type la SN : 21 January 2014

New supernova in MB2

Before 4 Jan. 22,2014




Summary
Nuclei are synthesised in stellar environments during various
processes

@ pp chain, CNO cycles, He burning,. ..

@ s and r processes (n capture)

@ p and rp processes (p capture)

Red Giant Stars
p-process S-pIOCES§ ©

p- 40
X-ray process

— _,.-’
=.n
30 CTEEEH aemes

ap-
process g 60
g Supernovae

Novae
Hot CNO 5] = stable nuclide
Cycle - r arip tine

T g™t - 10 [nhomogeneous

Big Bang

[Smith and Rehm Annu.r Rev. Nucl. Part. Sci. 51, 91

(2001)]



Stardust

Abundances of elements and production mechanisms

Abundance
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