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Introduction
Stable nuclei are qualitatively described by “simple” models

@ (semi-empirical) liquid-drop model
e (basic) shell model
New techniques enable ab initio methods (A-body models)
What happens far from stability ?
Experimentally, Radioactive-lon Beams (RIB) available since 80s

= study of structure far from stability
= discovery of exotic structures

@ halo nuclei
@ shell inversions
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Basic features in nuclear structure Liquid-drop model

Charge distributions in (stable) nuclei
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e constant density p, out to the surface (saturation)
@ same skin thickness ¢

(Stable) nuclei look like liquid drops of radius R « A!/?



Basic features in nuclear structure Liquid-drop model

Liquid-drop model
Binding energy per nucleon B(Z, N)/A has smooth behaviour
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Basic features in nuclear structure Liquid-drop model

Liquid-drop model
Binding energy per nucleon B(Z, N)/A has smooth behaviour

Bethe-Weizsacker semi-empirical mass formula

B(Z N) = a,A
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Basic features in nuclear structure Liquid-drop model

Liquid-drop model
Binding energy per nucleon B(Z, N)/A has smooth behaviour
Bethe-Weizsacker semi-empirical mass formula

B(Z,N) = a,A — a,A*?
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Basic features in nuclear structure Liquid-drop model

Liquid-drop model

Binding energy per nucleon B(Z, N)/A has smooth behaviour
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Basic features in nuclear structure Liquid-drop model

Liquid-drop model
Binding energy per nucleon B(Z, N)/A has smooth behaviour

Bethe-Weizsacker semi-empirical mass formula
Z(Z-1) (A-27)?
B(ZN) = a,A = A" = ac=57= = asym————
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Basic features in nuclear structure Liquid-drop model

Variation from the semi-empirical mass formula
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More bound systems at Z or N = 2,8, 20, 28, 50, 82, 126

magic numbers

= shell structure in nuclei as in atoms ?



Basic features in nuclear structure Shell model

Shell model
Developed in 1949 by M. Goeppert Mayer and H. Jensen
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Example
Shell model explains the higher stability at some Z and N

It predicts the spin and parity of ground state of most nuclei
and some of their excited levels, e.g. 'O and '"F
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Basic features in nuclear structure Shell model

Nowadays

Can we go beyond these models ?

Can we build ab initio models ?
i.e. based on first principles

@ nucleons as building blocks
@ realistic N-N interaction



Ab initio nuclear models

@ Ab initio nuclear models



Ab initio nuclear models

A-body Hamiltonian
Nuclear-structure calculations : A nucleons (Z protons+N neutrons)

Relative motion described by the A-body Hamiltonian
A A
H = Z T; + Z V,‘j
i=1 j>i=1
= solve the A-body Schrédinger equation

{E,} is the nucleus spectrum



Realistic N-N interactions

V;; not (yet) deduced from QCD
= phenomenological potentials
fitted on N-N observables :

d binding energy,

N-N phaseshifts



Realistic N-N interactions
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Light nuclei calculations
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Ab initio nuclear models

Three-body force
Need three-body forces to get it right. .

H = ZT+ZV’J+ Z Vi + -

Jj>i=1 k> j>i=1
But there is no such thmg as three-body force. ..



Ab initio nuclear models

Three-body force
Need three-body forces to get it right. .

H= ZT+ZV,J+ Z Vi + -

Jj>i=1 k> j>i=1
But there is no such thlng as three-body force. ..

They simulate the non-elementary character of nucleons
= include virtual A resonances, N...

Phenomenological 3-body interaction fitted on A > 2 levels : IL2
Alternatively, derived from EFT



Ab initio nuclear models

Effective Field Theory

EFT is an effective quantum field theory based on QCD symmetries
with resolution scale A that selects appropriate degrees of freedom :
nuclear physics is not built on quarks and gluons,

but on nucleons and mesons

EFT provides the nuclear force with a systematic expansion in Q/A
@ gives an estimate of theoretical uncertainty



Ab initio nuclear models

Effective Field Theory

EFT is an effective quantum field theory based on QCD symmetries
with resolution scale A that selects appropriate degrees of freedom :
nuclear physics is not built on quarks and gluons,

but on nucleons and mesons

EFT provides the nuclear force with a systematic expansion in Q/A
@ gives an estimate of theoretical uncertainty
e naturally includes many-body forces




Expansmn of the EFT force
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Solving the Schrédinger equation
Y usually developed on a basis {|®y,))} :
W) = D (@ P,) [®p)

[v]



Ab initio nuclear models

Solving the Schrédinger equation
Y usually developed on a basis {|®p,)} :
W) = D (D I¥,) )

]
Solving the Schroédinger equation reduces to matrix diagonalisation

(D HIP,) = ( Dy HIDy YDy [P,
[v]
= E, <(D[;1]|‘Pn>

= need to build an efficient set of basis states {|®y,;)}
Clear short review paper : [Bacca EPJ Plus 131, 107 (2016)]



Example : oxygen isotopes
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[Hebeler et al. Annu. Rev. Nucl. Part. Sci. 65, 457 (2015)]

Different ab initio models predict similar result
All require 3N forces to reproduce the dripline at *O



What happens far from stability ?
Liquid-drop and shell models are fair models of stable nuclei

What happens away from stability ?
In 80s Radioactive-lon Beams were developed
[see A. Spyrou on Monday & T. Nilsson on Thursday]
Enable study of nuclear structure
e are radioactive nuclei compact ?
e are shells conserved far from stability ?
Reactions involving radioactive nuclei useful in astrophysics

[see 2nd part
& A. Spyrou on Monday & E. Lopez Saavedra on Wednesday]



Radioactive-lon Beams

© Radioactive-lon Beams



Radioactive-lon Beams

How ?
Idea : break a heavy nuclei into pieces to produce exotic isotopes



Radioactive-lon Beams

How ?
Idea : break a heavy nuclei into pieces to produce exotic isotopes
e ISOL : Fire a proton at a heavy nucleus




Radioactive-lon Beams

How ?
Idea : break a heavy nuclei into pieces to produce exotic isotopes
e ISOL : Fire a proton at a heavy nucleus




Where ?




Radioactive-lon Beams

In-flight projectile fragmentation
high-energy primary beam

ey o) | ) In-flight  of heavy ions (e.g. '*0, *8Ca, U...)
I‘ F fi on thin target of light element (Be or C)

Thin target

AN

= fragmentation/fission produces
fedoactie - many exotic fragments at & vpeam

4 ionbeam
Sorted in fragment separator



In-flight projectile fragmentation

—— high-energy primary beam
ik In-flight | of heavy ions (e.g. '%0, #*Ca, U...)

Thin target

=

Used for high-energy reactions (KO, breakup. . .)

Examples : FRIB (MSU), RIKEN, GSI/FAIR, GANIL
[see A. Spyrou on Monday & T. Nilsson on Thursday]

Fragment

separator on thin target of light element (Be or C)

= fragmentation/fission produces
Redoactve - many exotic fragments at & Vpeam

.4 ion beam
‘ Sorted in fragment separator



FRIB @ MSU
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Radioactive-lon Beams

ISOL : Isotope Separation On Line
high-energy/intensity primary beam
prim N\ of light nuclei (e.g. protons)
bean L ‘ N ISOL
i‘ TIESRIe ““-F‘__.Vlj on thick target of heavy elements (UC,)
fon source \ = spallation/fragmentation produces
e exotic fragments

‘l rereecssset s Diffuse in the target and
wl! ﬂ—%r effuse to an ion source

Isotope separator

- ‘\\_—& Radioactive

mnsem Selected using dipole magnet (A/Q)



Radioactive-lon Beams

ISOL : Isotope Separation On Line
high-energy/intensity primary beam
ﬂﬁ N\ 1SOL of light nuclei (e.g. protons)

’“MM@\_ on thick target of heavy elements (UC,)
J 1on source \\_ = spallation/fragmentation produces
e -J——\‘x\ %@ exotic fragments

», Post-accelerator

| " Diffuse in the target and
| Qﬂﬂ ~& effuse to an ion source

A Radioactive

e Selected using dipole magnet (A/Q)

Isotope separator

Either used directly (mass measurement, radioactive decay. . .)
or post-accelerated for reactions (e.g. astrophysical energy)

Examples : ISOLDE (CERN), TRIUMF, SPIRAL (GANIL)



Radioactive-lon Beams

ISOLDE @ CERN
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Oddities far from stability

@ Oddities far from stability
@ Halo nuclei



Oddities far from stability Halo nuclei

Halo nuclei
Exotic structure discovered by |. Tanihata [PLB 160, 380 (1985)]

Very large matter radius (R > A!/3)
Seen as core + one or two neutrons at large distance
llLi ZUSPb

e Light, neutron-rich nuclei
e small S, or Sy,

One-neutron halo
1Be = ''Be + n
BC="C+n

Two-neutron halo
He=*He +n+n
Hi=%i+n+n

[R. Garreau’s talk on Tuesday & Q. Bozet’s talk on Thursday]



Oddities far from stability Halo nuclei

Halo nuclei
Exotic structure discovered by |. Tanihata [PLB 160, 380 (1985)]

Very large matter radius (R > A!/3)
Seen as core + one or two neutrons at large distance
llLi ZUSPb

e Light, neutron-rich nuclei
e small S, or Sy,

One-neutron halo
1Be = 'Be + n
BC="C+n
Two-neutron halo
‘He =*He +n +n
Hi=%%i+n+n

[R. Garreau’s talk on Tuesday & Q. Bozet’s talk on Thursday]
Two-neutron halo nuclei are Borromean. ..

c+n+n is bound but not two-body subsystems

e.g. ®°He bound but not °He nor ?n



Oddities far from stability Halo nuclei

Borromean nuclei

Named after the Borromean rings. ..
[M. V. Zhukov et al. Phys. Rep. 231, 151 (1993)]




Oddities far from stability Halo nuclei

Borromean nuclei

Named after the Borromean rings. ..
[M. V. Zhukov et al. Phys. Rep. 231, 151 (1993)]




Summary
Liquid-drop and shell model describe qualitatively stable nuclei
Nowadays ab initio nuclear-structure models from first principles

RIBs enable us to study nuclear structure far from stability
New exotic structure discovered :

e halo nuclei
diffuse halo around a compact core

@ shell inversions or shell collapse
@ nuclei beyond the dripline (resonant ground state)
RIB can be used to study reactions of astrophysical interest. ..



Properties
ISOL
@ Low beam energy
may require post-acceleration
@ Low beam intensity
e Not all elements produced
» Slow
» Chemically limited
e Good beam quality :
can use chemistry and atomic
physics to select fragments



Properties
ISOL
@ Low beam energy
may require post-acceleration
@ Low beam intensity
e Not all elements produced
» Slow
» Chemically limited
e Good beam quality :
can use chemistry and atomic
physics to select fragments

In-flight
e High beam energy
Viragments ~ Vbeam
e High beam intensity

e Efficient production
» Fast
» Chemically independent
e Many fragments in beam
= needion ID



Choose according what you want to measure
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Two-nucleon separation energy

Same magic numbers in S, and S,

= more bound at shell closure
cf. ionisation energies of atoms
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No-Core Shell Model

One should be able to account for the fermion nature of nucleons
= wave function must be antisymmetric

= basis states built as Slater determinants
of 1-body mean-field wave functions ¢,,

<§1‘§:2 cee 'fAl(D[v]> = A ¢v1 (fl) ¢vz(§2) o ¢VA(§A)
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The shell model uses harmonic-oscillator wave functions for ¢,,
The basis size increases with A = limited to light nuclei
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