Al/ML for
Collider Physics




New directions in science
are launched by new tools
much more often than by
new concepts.

- Freeman Dyson




The HEP Data Challenge

The fact that we can measure anything is, to me, remarkable

Theory
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Bridging the Gap

Our current approach is a triumph of domain knowledge
— we know a lot about how to go from QFT to Voltages

data-generating process: x ~ p(x|0)p(0)



Bridging the Gap

gur currenjc approach is a triumph of domain knowledge
we use It to “go backwards” from Voltages to Lagrangian
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inference process: p(0| x)



Bridging the Gap

This approach works so well it generated a Nobel Prize
Frixione yesterday: We know what we’re doing!
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What’s not to like? What are we missing?



p
Good but, not good enough Much too Slow
Will our analysis techniques enable Only scratched the surface of the BSM

discovery in e.qg. fully hadronic states? because a single analysis takes O(years)



What we need

Two complementary - equally valid - methods for
fundamentally Change the field

How much more is there
to gain in terms of analysis
techniques?

Can we accelerate the time 10

it takes to assess e.q. a BSM

theory to days or hours?

e.q. by rapidly re-optimizing

faster

existing analyses to new signals?

better

Al might be the tool to get us there (— Dyson)



It’s not necessarily a pipe dream

Alphalold’s breakthrough was
not discovery of something new.

It was the massive acceleration
of a extremely labor- and compute-

iIntensive process from ~thesis
David Demis John M. to ~seconas.

Baker Hassabis Jumper

“for computational “for protein structure prediction”

protein design” Analogy:

THE ROYAL SWEDISH ACADEMY OF SCIENCFS Structure predictiOn — Single BSM model
faster “drug discovery” = “landscape scan”




It’s not necessarily a pipe dream

Hinton is most famous for proving ST
that neural networks can be trained
efficiently in high (now trillions!) dimensions

— Key: efficient gradient estimation
(Automatic Differentiation / Backpropagation)
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John J. Hopfield Geoffrey E. Hinton

Tral n I ng — “for foundational discoveries and inventions
. that enable machine learning
A|gOr|th m Search with artificial neural networks”

THE ROYAL SWEDISH ACADEMY OF SCIENCES

better
The key to find algorithms that surpass human performance

10



Fundamental Physics = Al Utopia

We are well equipped to capitalize on massive Al progress

Exabytes of Experimental Data High Quality Simulators allow us to explore
from Large-Scale Experiments new hypothetical models of the universe
— much more than used to train ChatGPT — perfect training data for Al
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High-Dimensional Inference

{(x1,01,), (x5,0,), ...} = p(@|x)
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Low-Level Data
(here: Experiment Sensors)




Al and HEP

street style photo of a woman selling pho This is a picture of Barack Obama.
at a Viethamese street market, His foot is positioned on the right side of the scale.
sunset, shot on fujifilm High-Level Concept The scale will show a higher weight.

(here: Language)

e L -

Low-Level Data
(here: Pixels)




How should we analyze data

The science we can extract from data depends
cruclally on what language we use to describe It

Raw Reconstruction Interpre Analysis Result
Data tatlon

Particles & Jets

Tracks & Vertices

‘ Energy Clusters Missing Energy

100 M sensor readouts Our Vocabulary: O(1k-10k) physics objects O(1) Analysis Observable

Muon System

HAD Cal

Are we sure that we - humans - can find the best vocabulary?



Deep Learning shows: Not always

We know that Al with access to the Raw Data can learn its
own vocabulary and outperform human-designed algorithms

Labrador!

Low-level (Edges) Medium-level (Textures) High-Level (Animals)

To detect dogs in images, nobody writes a flappy-ear algorithm by hand!



The Bitter Lesson

Rich Sutton

March 13, 2019

The biggest lesson that can be read from 70 years of Al research is that general methods that leverage computation are ultimately the
most effective, and by a large margin. The ultimate reason for this is Moore's law, or rather its generalization of continued
exponentially falling cost per unit of computation. Most Al research has been conducted as if the computation available to the agent
were constant (in which case leveraging human knowledge would be one of the only ways to improve performance) but, over a
slightly longer time than a typical research project, massively more computation inevitably becomes available. Seeking an
improvement that makes a difference in the shorter term, researchers seek to leverage their human knowledge of the domain, but the
only thing that matters in the long run is the leveraging of computation. These two need not run counter to each other, but in practice
they tend to. Time spent on one is time not spent on the other. There are psychological commitments to investment in one approach

or the other And the human-knowledge approach tends to complicate methods in ways that make them less suited to taking

[here were many examples of Al researchers' belated learning of this bitter
ominent.

Researchers seek to leverage their human

knowledge [ ] _], but the only thing that matters ampion, Kasparov, in 1997, were based on massive, deep search. At the

. . . . f ter-¢
in the long run is the leveraging of computation hgﬁfgﬁl@l‘le

sed chess red -+ Many examples of Al researchers’ belated

. T T rerSrTeTTTE medtrategy, and learning of this bitter lesson
wanted methods based on human input to win and were disappointed



http://www.incompleteideas.net/IncIdeas/BitterLesson.html

How much can we gain if we embrace it?

It’'s now happening in HEP. Improvements e.g. in Flavor
Tagging are equivalent to years(!) of LHC data

— “hands- off” approach let the network see low-level data

' | | [ —
80 ATLAS Prellmlnary

70: Vs =13 TeV. pr €[85, 110] GeV GN2
- (et = 74%) |
= 60 n C-jet rejection in simulated (Pythia8) top-pair events -
\LJJ [ W C-jet rejection in top-pair data events .
— . light-jet rejection in simulated (MadGraph) Z + jets events :
“C“ 50 :_ ¥ light-jet rejection in Z + jets data events + .
5 - N
b T x6.4 :
3 40F Reco Software Update + B
o - )
% 30 - Reference: DL1r ) da?angso/ 1o ]
20 o DL1 (Egata — 750/0) ( b = o) X4, _:

F (g9ata _ 779 - 2.0, 4
0F 4 x1.4x1.7 x1.5 r

oS L) S L R B B B
2017 2018 2019 2020 2021 2022 2023

Year of tagger deployment

14000
: 3500 IrAack rputs
. — s
3000 = : .3
.li{‘) ©oe— S :g
- 4 -
2500 \_:l Nuonns X Ny
",_J A et inouts
2000 S / \ d
‘i)
1500 |
Pcw irputs ¢
.:_ @
v R S
500
Noto
Courtesy: Michele C'Andrea

A O(100 M$) Impact already, can we even more?



How much can we gain if we embrace it?

Recent Insight: we are nowhere close to the detector limit
— we can predict performance of scaling up (“Scaling Laws”)

Larger models require fewer samples I'he optimal model size grows smoothly
T T T T T T T T 4000 — to reach the same performance with the loss target and compute budget
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[ATLAS FTAG Group]



Too Few Jets at a Hadron Collider?

Standard Model Production Cross Section Measurementis
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For modern Al this Is
now the required scale

— Fast Simulation?!



The Problem with Deep Learning

end2end DL has a cost: both computational and conceptual

Training compute (FLOPs) of milestone Machine Learning systems over time

n= 121

AP ﬁ‘ ’ﬂ\mﬁ%'ﬁ | | ..
c i “L b
Throws away everything we know Solving for a single task is brittle

every task learned from scratch. expensive & slow! — prone to non-sensical shortcuts



Foundation Model Embedding Task-Network
Tasks
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Foundation Models

Train Al to learn its own, multi-purpose, pattern vocabulary
— Goal: make it useful for not one, but many tasks

Raw . Interpretati .
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Language

Actually very similar to the human two-step strategy we know so well
— but combine with precision and autonomy of Al



Foundation Models

Train Al to learn its own, multi-purpose, pattern vocabulary
— Goal: make it useful for not one, but many tasks

@ Pretraining @ Downstream Use
Raw Foundation JRGIfel(E Puzzle Raw Foundation Interpre | WaYe]elilez=11le])
Data Model tation Solution Data Model tation Model
2B Large-Scale Datasets Small-scale Data
(General Purpose) (Application Specific)

Mirror the human two-step strategy that we know so well
— but combine with precision and autonomy of Al



How do you build Knowledge?

Idea: find a way to synthesize many mini-tasks that require
(hopefully) developing a general “understanding” of the domain

Data

Bormio is the annual meeting
of nuclear physicists in ltaly

Puzzles

is the annual meeting

of nuclear physicists in

Bormio is an annual

of physicists in Italy

Fill in the Blank Association Games



Foundation Models in HEP

We can do the same “fill in the blank™ idea in particle physics

Idea: our data Is like a “narrative”, we can treat it like text

Kakat, Hasher, Kagan, L1 o e L e i e

— “fill In the blank” on this “text”
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4M: Massively multi-modal
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Foundation Models in HEP

When trained, we can do many things out of the box
— one big general model vs. many small dedicated ones
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Foundation Models in HEP

The best vocabulary to use depends on the question you ask.
— Enables Rapid Adaptation / Reoptimization to a new task

Raw Foundation Interpre | WaYe]oliler=1ile]g Result
Data Model tation Model

l finetuning
Raw Finetuned Interpre | WaYeJoli[ex=\i[e]g Result
Data Model tation Model

Possible thanks to differentiable (optimizable) nature of neural networks
— key advantage over fixed human “Foundation Model”



Foundation Models in HEP

The best vocabulary to use depends on the question you ask.
— Enables Rapid Adaptation / Reoptimization to a new task

10-Class Jet Classification w/ Linear Classifier 90% signal efficiency
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Exciting Topics I’d love to Have Time for

10°

_ Entropies
Entropies

absorber thuckness @ in mm

o
squared distance to target edep profile
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000 025 050 075 100 125 150

Al-driven Theory Exploration Al-driven Detector Design

0.08 80
— p-value (with uncert)

- p-value (without uncert)
00641 @ current value

step 85

yield

1

0.0 2.5 5.0 7.5 10.0
analysis config ¢

Al-enhanced general-purpose simulation Uncertainty-aware Al



“We are at the cusp of something
exhilarating and terrifying”

- David Bowie on the rise of the Internets (1999)

“ChatGPT doesn’t have a clue”
“The Power of Automation”

- Stafano Frixione, yesterday




Resummation of the C-Parameter Sudakov Shoulder
Using Eftective Field Theory

Matthew D. Schwartz!?

L Department of Physics, Harvard University, Cambridge, MA 02138, USA
2 Institute for Artificial Intelligence and Fundamental Interactions (IAIFI)

schwartz@g.harvard.edu

January 7, 2026

Abstract

The C-parameter distribution in et e~ annihilation exhibits a kinematic shoulder at C = 3/4,
where three-parton final states reach their maximum and a fourth parton is required to
exceed it. This boundary generates large logarithms that must be resummed. Using soft-
collinear effective theory. we derive a factorization theorem involving new jet and soft func-
tions specific to the C-parameter measurement, in which soft radiation contributes quadrat-
ically in transverse momentum. This quadratic structure explains the step discontinuity at
leading order. We compute all ingredients at one loop, validate against Monte Carlo, and
present matched NLL-+NLO results. Unlike thrust and heavy jet mass, the C-parameter
has no Sudakov-lLandau pole, making momentum-space resummation straightforward.
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Resummation of the C-Parameter Sudakov Shoulder
Using Effective Field Theory

Matthew D. Schwartz!:?

L Department of Physics, Harvard University, Cambridge, MA 02138, USA
*Institute for Artificial Intelligence and Fundamental Interactions (IAIFI)

schwartzQg.harvard.edu
AT RESEARCH ASSISTANT: Claude Opus 4.5 (Anthropic)

January 7, 2026

Abstract

The C-parameter distribution in e*e™ annihilation exhibits a kinematic shoulder at C' = 3/4,
where three-parton final states reach their maximum and a fourth parton is required to
exceed it. This boundary generates large logarithms that must be resummed. Using soft-
collinear effective theory, we derive a factorization theorem involving new jet and soft func-
tions specific to the C-parameter measurement, in which soft radiation contributes quadrat-
ically in transverse momentum. This quadratic structure explains the step discontinuity at
leading order. We compute all ingredients at one loop, validate against Monte Carlo, and
present matched NLL-+NLO results. Unlike thrust and heavy jet mass, the C-parameter
has no Sudakov-Landau pole, making momentum-space resummation straightforward. All
calculations, numerical analysis, and manuscript preparation were performed by Claude, an
Al assistant developed by Anthropic, working under physicist supervision.
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Fast Simulation

We might be entering an era of unprecedented automation
— must try If you haven’t. A bit of an unsettling experience

can we compare a few options 5x5, 10x10, 15x15, 20x20
. Terence Tao

® Write(som_size_comparison.py)
<@La<ﬂ@rnathstock)n.xyz | Wrote 113 lines to som_size_comparison.py

1mport numpy as np

. . import d as pd
Recently, the application of Al tools to Erdos problems passed a T (R L (O

from sklearn.preprocessing import StandardScaler

milestone: an Erdos problem (#728 erdosproblems.com/728) was from minisom import MiniSom
solved more or less autonomously by Al (after some feedback from an of = pd.read._cev(classified emitters. reduced.cev')

e . - features = ['antibunching_ns', 'bunching_ns', 'min_g2', 'HBTEventsPerSecond', 'num_peaks',
initial attempt), in the spirit of the problem (as reconstructed by the . +103 lines (ctrl+o to expand)
Erdos problem website community), with the result (to the best of our e Bash(pixi run python som_size_comparison.py) timeout: 3m 0s
- . o . o | Training 5x5 SOM...
knowledge) not replicated in existing literature (although similar Training 10x18 SOM...
= Training 15x15 SOM...
results proven by similar methods were located).

® Done. som_size_comparison.png shows 4 columns (5x5, 10x10, 15x15, 20x20) with 4 rows each:

This is a demonstration of the genuine increase in capability of these What you'll see:

tools in recent months, and is largely consistent with other recent m
demonstrations of Al using existing methods to resolve Erdos [sxs  [25  [-13 [ very coarse - clusters forced together, hard to see boundaries
problems, although in most previous cases a solution to these problems Moderate - main structure visible, some cluster overlap

was later located in the literature, as discussed in Good balance - clear cluster separation, visible U-matrix ridges
mathstodon.xyz/deck/@tao/11578... . This particular case was Fine detail - may start overfitting, sparse hit map

unusual in that the problem as stated by Erdos was misformulated, Tradeoffs:

- Too small (5x5): Multiple clusters collapse into same neurons, lose resolution

Wlth d reconstruction Of the problem in the intended Spll’lt Only - Too large (20x20): Many empty neurons, U-matrix becomes noisy, harder to interpret
- Sweet spot (10x10 to 15x15): Clear topology with meaningful density patterns

Al to solve open Al to analyze data
number theory problems In near-autonomous fashion



Al Agents

Frontier Al Labs estimate e.g. O(month) long human tasks can
be done autonomously by Al in a few years (/7 month doubling)

The time-horizon of software engineering tasks different LLMs
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Takeaways

We know what we’re doing, but it’'s not enough. We must
find ways to massively improve and accelerate our research

— find the AlphaFold moment for HEP

We found out, that we can still be
w orders of magnitude better at the LHC

— requires 100-1000x in scaling models/data

faster

100
Al Tooling as the infrastructure

10
h for extreme automation

1 : :
1 100 - enable a new paradigm of data/theory exploration
better
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