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New directions in science 
are launched by new tools 
much more often than by 
new concepts.

- Freeman Dyson



The HEP Data Challenge
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θx

p(θ |x) =
p(x |θ)

p(x)
p(θ)

p(θHiggs |x)p(ΛBSM |x)

TheoryData

O(10) dimensional,  
O(10-18 m), O(100 GeV)

O(100M) dimensional, 
O(10m), O(100eV)

The fact that we can measure anything is, to me, remarkable



Bridging the Gap
Our current approach is a triumph of domain knowledge 
→ we know a lot about how to go from QFT to Voltages
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data-generating process: x ∼ p(x |θ)p(θ)

x θ



Bridging the Gap
Our current approach is a triumph of domain knowledge 
→ we use it to “go backwards” from Voltages to Lagrangian
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inference process: p(θ |x)

x θ



This approach works so well it generated a Nobel Prize

6

ℝ108 ℝ1
6

What’s not to like? What are we missing?

Bridging the Gap

Frixione yesterday: We know what we’re doing!
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What’s the Problem

Good but, not good enough
Will our analysis techniques enable 

discovery in e.g. fully hadronic states?

Much too Slow
Only scratched the surface of the BSM 

because a single analysis takes O(years)
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What we need
Two complementary - equally valid - methods for 
fundamentally change the field
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better

100-1000x

>1000x

AI might be the tool to get us there (→ Dyson)

Can we accelerate the time 
it takes to assess e.g. a BSM 
theory to days or hours?

How much more is there 
to gain in terms of analysis 
techniques?

e.g. by rapidly re-optimizing 
existing analyses to new signals?
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It’s not necessarily a pipe dream
AlphaFold’s breakthrough was 
not discovery of something new. 
 
It was the massive acceleration 
of a extremely labor- and compute- 
intensive process from ~thesis 
to ~seconds.

Analogy: 
structure prediction = single BSM model 
“drug discovery” = “landscape scan”faster
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It’s not necessarily a pipe dream
Hinton is most famous for proving 
that neural networks can be trained 
efficiently in high (now trillions!) dimensions

Training =  
Algorithm Search

Start

End

Target
x

space of possible algorithms

The key to find algorithms that surpass human performance
better

→ Key: efficient gradient estimation 
    (Automatic Differentiation / Backpropagation)
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Fundamental Physics = AI Utopia

High Quality Simulators allow us to explore 
new hypothetical models of the universe 

→ perfect training data for AI

Exabytes of Experimental Data 
from Large-Scale Experiments 

→ much more than used to train ChatGPT

We are well equipped to capitalize on massive AI progress



AI and HEP

High-Dimensional Inference 
{(x1, θ1,), (x2, θ2), …} → p(θ |x)

Stochastic Prediction 
(x, θ) ∼ p(x |θ)p(θ)

Low-Level Data 
(here: Experiment Sensors)

High-Level Concept 
(here: Physics Theory)



AI and HEP
street style photo of a woman selling pho 

at a Vietnamese street market, 
sunset, shot on fujifilm

Low-Level Data 
(here: Pixels)

High-Level Concept 
(here: Language)

This is a picture of Barack Obama. 
His foot is positioned on the right side of the scale. 

The scale will show a higher weight.

Sample-based Inference 
{(x1, θ1,), (x2, θ2), …} → p(θ |x)

Stochastic Generation 
(x, θ) ∼ p(x |θ)p(θ)
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How should we analyze data
The science we can extract from data depends 
crucially on what language we use to describe it

Are we sure that we - humans - can find the best vocabulary?

?

Tracks & Vertices Particles & Jets

Missing EnergyEnergy Clusters

Muon System

HAD Cal

EM Cal

Tracker

100 M sensor readouts Our Vocabulary: O(1k-10k) physics objects O(1) Analysis Observable

Raw 
Data Reconstruction Interpre

tation Analysis Result



Deep Learning shows: Not always
We know that AI with access to the Raw Data can learn its 
own vocabulary and outperform human-designed algorithms

To detect dogs in images, nobody writes a flappy-ear algorithm by hand!

Labrador!

Low-level (Edges) Medium-level (Textures) High-Level (Animals)



The Bitter Lesson

http://www.incompleteideas.net/IncIdeas/

Researchers seek to leverage their human 
knowledge […], but the only thing that matters 
in the long run is the leveraging of computation

… many examples of AI researchers’ belated 
learning of this bitter lesson

http://www.incompleteideas.net/IncIdeas/BitterLesson.html


How much can we gain if we embrace it?
It’s now happening in HEP. Improvements e.g. in Flavor 
Tagging are equivalent to years(!) of LHC data

A O(100 M$) Impact already, can we even more?

→ “hands-off” approach, let the network see low-level data



How much can we gain if we embrace it?
Recent Insight: we are nowhere close to the detector limit

State of the Art Flavor-Tagging
tiny(!) 10M parameter model 
trained on 300M jets

State of the Art Language Models
100 Billion(!) parameter model 
trained on trillions(!) of tokens

→ we can predict performance of scaling up (“Scaling Laws”)

10,000x more 
data / parameters

co
m

in
g 

so
on

!

[ATLAS FTAG Group]



Too Few Jets at a Hadron Collider?

1 ab-1 of data gives 
us “only” a O(trillion) jets

For modern AI this is 
now the required scale
→ Fast Simulation?!



The Problem with Deep Learning
end2end DL has a cost: both computational  and conceptual

Throws away everything we know 
every task learned from scratch. expensive & slow!

Solving for a single task is brittle 
→ prone to non-sensical shortcuts

vs

vs



Foundation Models
Train AI to learn its own, multi-purpose, pattern vocabulary 
→ Goal: make it useful for not one, but many tasks

Human Pattern 
Language

Muon System

HAD Cal

EM Cal

Tracker

Actually very similar to the human two-step strategy we know so well 
→ but combine with precision and autonomy of AI

Raw 
Data Reconstruction Interpretati

on Analysis ResultRaw 
Data Foundation Model Embedding Task-Network Result



Foundation Models
Train AI to learn its own, multi-purpose, pattern vocabulary 
→ Goal: make it useful for not one, but many tasks

Mirror the human two-step strategy that we know so well 
→ but combine with precision and autonomy of AI

1 Pretraining 2 Downstream Use

Raw 
Data

Foundation 
Model

Interpre
tation Puzzles Puzzle 

Solution
Raw 
Data

Interpre
tation

Application 
Model

Large-Scale Datasets  
(General Purpose)

Foundation 
Model Result

Small-scale Data 
(Application Specific)



Bormio is an annual meeting 
of nuclear physicists in Italy

Bormio is the annual meeting 
of nuclear physicists in Italy

How do you build Knowledge?
Idea: find a way to synthesize many mini-tasks that require 
(hopefully) developing a general “understanding” of the domain

Bormio is the annual meeting 
of nuclear physicists in Italy

Association GamesFill in the Blank

Data

Puzzles
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?
?

?
?

?

?
?

?
?

?

?

?



Foundation Models in HEP
We can do the same “fill in the blank” idea in particle physics 
Idea: our data is like a “narrative”, we can treat it like text

p e+ e-

trk trk

n γ

jet

calocell clustercalocell calocell

cluster cluster

hit hit hit hit

jet

→ “fill in the blank” on this “text”
p e+ e-

trk trk

n γ

jet

calocell clustercalocell calocell

cluster cluster

hit hit hit hit

jet4M: Massively multi-modal 
masked modelling

[Kakati, Hashemi, Kagan, LH]



Foundation Models in HEP
When trained, we can do many things out of the box 
→ one big general model vs. many small dedicated ones

Detector Simulation 
(given particles generate the rest)

p e+ e-

trk trk

n γ

calocell calocell calocell

p e+ e- trk trkn γ

calocell clustercalocell calocell

Particle Reconstruction 
(given tracks / calo infer particles)



Foundation Models in HEP

Raw 
Data

Interpre
tation

Application 
Model

Foundation 
Model Result

Possible thanks to differentiable (optimizable) nature of neural networks 
→ key advantage over fixed human “Foundation Model”

finetuning

Raw 
Data

Interpre
tation

Application 
Model ResultFinetuned 

Model

The best vocabulary to use depends on the question you ask. 
→ Enables Rapid Adaptation / Reoptimization to a new task



Foundation Models in HEP

The best vocabulary to use depends on the question you ask. 
→ Enables Rapid Adaptation / Reoptimization to a new task

Jet Tagging HH BSM Scenario
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Exciting Topics I’d love to Have Time for

AI-driven Theory Exploration AI-driven Detector Design

AI-enhanced general-purpose simulation Uncertainty-aware AI



“We are at the cusp of something  
exhilarating and terrifying”

- David Bowie on the rise of the Internets (1999)

Credit: Masayoshi Sukita

“ChatGPT doesn’t have a clue”

- Stafano Frixione, yesterday

“The Power of Automation”
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Fast Simulation

AI to solve open 
number theory problems

We might be entering an era of unprecedented automation

AI to analyze data 
in near-autonomous fashion

→ must try if you haven’t. A bit of an unsettling experience
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AI Agents
Frontier AI Labs estimate e.g. O(month) long human tasks can 
be done autonomously by AI in a few years (7 month doubling)

I bet against AI optimists & fairly 
sure I win, but not 100%
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Takeaways
We know what we’re doing, but it’s not enough. We must 
find ways to massively improve and accelerate our research
→ find the AlphaFold moment for HEP
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10-100x1-10x
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better

100-1000x

>1000x

We found out, that we can still be 
orders of magnitude better at the LHC

AI Tooling as the infrastructure 
for extreme automation

→ requires 100-1000x in scaling models/data

→ enable a new paradigm of data/theory exploration
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