
Stefano Frixione

A few thoughts on ISR at lepton colliders
(in 11 easy messages – look for #i)

62nd Bormio winter conference, 21/1/2026



Strategist:[noun] someone with a lot of skill and experience in planning,
especially in military, political, or business matters



The European Strategy for particle physics

cannot be accused of being modest



◮ The tall guy is FCC-hh

◮ The not-that-tall-but-still-tall lad in front of it is FCC-ee

(aka we’ll-collect-the-same-stat-as-LEP-in-a-millisec-but-then-we’ll-keep-going)

◮ The slightly-smaller-but-still-sizable chap in the back is the amount of

theoretical work necessary to make any sense of it

◮ The afterthought in the foreground is a muon collider



A tad intimidated by the sheer scale of the project?

We need not to be, since:

a) we’ll be long dead

b) we stand on the shoulders of giants −→



The LHC has been/is/(inshallah)will be an astonishing success
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Executive summary for the LHC:

Experiments agree, within (generally small) uncertainties,

with the SM⋆ across 12 orders of magnitude, and counting

Some of us didn’t necessarily expect this: −→

⋆ Predictions being the result of hard labour by a vast community



“I was shocked when SUSY particles were not discovered in
the early days of the LHC” (M. Peskin in Symmetry, 12/1/21)⋆

Part of the surprise stems from the fact that in ∼2007 we did not

understand the SM (ie mostly QCD) as we now do

⋆ The fact that a publication with title “Symmetry” has been issued on a date which

is a palindrome does NOT necessarily imply that I’ve made this up



Perturbative QCD computations are extremely challenging –
nowadays, NLO results are routine, but already NNLO ones
require an immense amount of work, and NNNLO borders on
the esoteric (NkLO/LO=α

k
S)

They are also unphysical, unless supplemented with
non-perturbative quantities (the PDFs) through the
factorisation theorem



Collinear factorisation

=

dσ = PDF ⋆ PDF ⋆ dσ̂

dσ(H1H2)(P1, P2) =
∑

ab

∫

dz1dz2f
(H1)
a (z1, µ

2)f
(H2)
b (z2, µ

2)dσ̂ab(z1P1, z2P2, µ



In simpler words:

◮ Factorisation is crucial

◮ We know what we’re doing



Enters the future (∼ 2050 or thereabouts):

Somewhere, someone will build an e+e− collider

(linear or circular; most likely FCCee)



(wearing a theory hat) That’s an easy one, isn’t it? We know how to calculate

things from LEP, and most of the codes are still around (!)

Not quite: the (projected) immense precision of the experimental

measurements will require comparable theoretical results, which

the LEP-era ones are most definitely not

Hence, my first four take-home messages:



#1:

EW is the new QCD.

Unfortunately, there are fundamental differences between the two theories, and having

learned (the hard way) to carry out QCD computations will not necessarily and/or

completely help with EW ones



#2:

Forget ElectroWeakPseudoObservables

(vehemently contested by some – too long to explain why I am right,

but I am right nonetheless)



#3:

Roughly speaking, mechanisms which are relevant to a ultra-high
precision e+e− collider are so for a less-precise but more-energetic
muon collider as well

Which must be kept in mind when considering the next item:



#4:

Treating W and Z as partons is leads to immense uncertainties, unless the
(muon) collider c.m. energy is in the ballpark of a 100 TeV



Barring the unthinkable, discoveries at e+e− machines are the

outcomes of careful comparisons between theoretical

predictions and experimental data

Therefore, let’s dissect one such generic prediction



Consider a generic cross section, sufficiently inclusive:

σ = αb
∞
∑

n=0

αn
n
∑

i=0

n
∑

j=0

ςn,i,jL
iℓj

This is symbolic, and only useful to expose the presence of:

ℓ = log
Q2

〈Eγ〉2
, L = log

Q2

m2

Numerology: consider the production of Z → ll at:

•
√

Q2 = mZ

L = 24.18 =⇒
α

π
L = 0.06

0 ≤ mll ≤ mZ , ℓ = 6.89 =⇒
α

π
ℓ = 0.017

mZ − 1 GeV ≤ mll ≤ mZ , ℓ = 10.60 =⇒
α

π
ℓ = 0.026



Consider a generic cross section, sufficiently inclusive:

σ = αb
∞
∑

n=0

αn
n
∑

i=0

n
∑

j=0

ςn,i,jL
iℓj

This is symbolic, and only useful to expose the presence of:

ℓ = log
Q2

〈Eγ〉2
, L = log

Q2

m2

Numerology: consider the production of Z → ll at:

•
√

Q2 = 500 GeV

L = 27.59 =⇒
α

π
L = 0.069

0 ≤ mll ≤ mZ , ℓ = 1.449 =⇒
α

π
ℓ = 0.0036

mZ − 1 GeV ≤ mll ≤ mZ , ℓ = 1.453 =⇒
α

π
ℓ = 0.0036



It takes a lot of brute force (i.e. fixed-order results to some O(αn)) to overcome

the enhancements due to L and ℓ.

It is always convenient to first improve by means of factorisation formulae:

dσ(L, ℓ) = Ksoft(ℓ;L)β(L)dµ (1)

= Kcoll(L; ℓ) ⊗ dσ̂(ℓ) (2)

Use of:

(1) YFS (resummation of ℓ)

(2) collinear factorisation (resummation of L)

Common features: K is an all-order universal factor; β and dσ̂ are
process-specific and computed order by order
(still brute force, but to a lesser extent)



YFS

Aim: soft resummation for:
{

e+(p1) + e−(p2) −→ X(pX) +
n
∑

i=0

γ(kn)

}∞

n=0

Achieved with:

dσ(L, ℓ) = Ksoft(ℓ;L)β(L)dµ

= eY (p1,p2,pX)
∞
∑

n=0

βn (Rp1,Rp2,RpX ; {ki}
n
i=0) dµX+nγ

This is symbolic, and stands for both the EEX and CEEX approaches
[hep-ph/0006359 Jadach, Ward, Was] that build upon the original YFS work [Ann.Phys.13(61)379]

EEX: exclusive (in the photons) exponentiation, matrix element level

CEEX: coherent exclusive (in the photons) exponentiation, amplitude level,

including interference



YFS

Aim: soft resummation for:
{

e+(p1) + e−(p2) −→ X(pX) +
n
∑

i=0

γ(kn)

}∞

n=0

Achieved with:

dσ(L, ℓ) = eY (p1,p2,pX)
∞
∑

n=0

βn (Rp1,Rp2,RpX ; {ki}
n
i=0) dµX+nγ

• Y essentially universal (process dependence only through kinematics); resums ℓ

• The soft-finite βn are process-specific, and are constructed by means of local

subtractions involving matrix elements and eikonals (i.e. not BN)

βn = αb
n
∑

i=0

αi
i
∑

j=0

cn,i,jL
j

• For a given n, matrix elements have different multiplicities, hence the need for

the kinematic mapping R



Collinear factorisation

Aim: collinear resummation for:
{

k(pk) + l(pl) −→ X(pX) +

n
∑

i=0

ai(kn)

}∞

n=0

ai = e± , γ . . .

with initial-state particles stemming from beams:

(k, l) = (e+, e−) , (k, l) = (e+, γ) , (k, l) = (γ, e−) , (k, l) = (γ, γ) , . . .

Master formula:

dσ(L, ℓ) = Kcoll(L; ℓ) ⊗ dσ̂(ℓ)

−→ dσkl =
∑

ij

∫

dz+dz− Γi/k(z+, µ
2,m2) Γj/l(z−, µ

2,m2)

× dσ̂ij(z+pk, z−pl, µ
2; pX , {ki}

n
i=0)

• Γα/β universal (the PDF); resums L

• The collinear-finite dσ̂ij are process-specific, and are the standard short-distance

matrix elements, constructed order by order (with BN). May or may not include

resummation of other large logs (including ℓ)



YFS vs collinear factorisation

Both are systematically improvable in perturbation theory:

in YFS the βn’s (fixed-order), in collinear factorisation both the PDFs

(logarithmic accuracy) and the dσ̂’s (fixed-order, resummation)

+ YFS: very little room for systematics. Exceptions are the kinematic mapping R, and

the quark masses (when the quarks are radiators). Renormalisation schemes??

– Collinear factorisation: systematic variations much larger. At the LL (used in

phenomenology so far) a rigorous definition of uncertainties is impossible

(parameters are arbitrary), and comparisons with YFS are largely fine tuned

– YFS: the computations of βn are not standard (EEX) and highly non-trivial (CEEX)

+ Collinear factorisation: the computations of dσ̂ij are standard



#5:

YFS is naturally suited to describing threshold production of narrow objects

(such as the Z); collinear factorisation is appropriate for anything else

(but one can consider threshold processes as well)

Collinear factorisation has many analogies with its hadronic counterpart:
what has been learned at the LHC will not be wasted



#6:

If the message was lost in the technicalities, it is this: the factorisation

theorem I am speaking about has the same functional form as its QCD

counterpart (for all practical purposes, the incoming leptons behave as hadrons)

The crucial difference: the PDFs can entirely be computed perturbatively



Hence, let’s stick to

COLLINEAR FACTORISATION



Collinear factorisation

=

dσ = PDF ⋆ PDF ⋆ dσ̂

dσ(e+e−)(P1, P2) =
∑

ab

∫

dz1dz2f
(e+)
a (z1, µ

2)f
(e−)
b (z2, µ

2)dσ̂ab(z1P1, z2P2, µ
2



All physics simulations based on collinear factorisation done so far are based

on a LL-accurate picture

This is not tenable at high energies/high statistics:

� accuracy is insufficient (see e.g. W+W− production)

� systematics not well defined

Step 0 was to upgrade PDFs from LL to NLL accuracy: increase of
precision, and meaningful systematics, in particular factorisation-scheme
dependence



z-space LO+LL PDFs (α log(Q2/m2))
k
:

∼ 1992

◮ 0 ≤ k ≤ ∞ for z ≃ 1 (Gribov, Lipatov)

◮ 0 ≤ k ≤ 3 for z < 1 (Skrzypek, Jadach; Cacciari, Deandrea, Montagna, Nicrosini; Skrzypek)

◮ matching between these two regimes

◮ for e−

z-space NLO+NLL PDFs (α log(Q2/m2))
k

+ α (α log(Q2/m2))
k−1

:
−→ 1909.03886, 1911.12040, 2105.06688, 2207.03265 (Bertone, Cacciari, Frixione, Stagnitto, Zaro, Zhao)

◮ 0 ≤ k ≤ ∞ for z ≃ 1

◮ 0 ≤ k ≤ 3 for z < 1 ⇐⇒ O(α3)

◮ matching between these two regimes

◮ for e+, e−, γ, and light quarks

◮ both numerical and analytical

◮ factorisation schemes: MS and ∆ (that has DIS-like features)



Bear in mind that PDFs are fully defined only after adopting a definite

factorisation scheme, which is the choice of the finite terms associated

with the subtraction of the collinear poles

� 1911.12040 −→ MS

� 2105.06688 −→ a DIS-like scheme (called ∆)

At variance with the QCD case, there is also an interesting

renormalisation-scheme dependence of QED PDFs



Asymptotic MS solution

Non-singlet ≡ singlet; photon is more complicated

ΓNLL(z, µ2)
z→1
−→

e−γEξ1eξ̂1

Γ(1 + ξ1)
ξ1(1 − z)−1+ξ1

×

{

1 +
α(µ0)

π

[

(

L0 − 1
)

(

A(ξ1) +
3

4

)

− 2B(ξ1) +
7

4

+
(

L0 − 1 − 2A(ξ1)
)

log(1 − z) − log2(1 − z)

]}

where L0 = log µ2
0/m

2, and:

A(κ) = −γE − ψ0(κ)

B(κ) =
1

2
γ2

E
+
π2

12
+ γE ψ0(κ) +

1

2
ψ0(κ)

2 −
1

2
ψ1(κ)

with:



ξ1 = 2t−
α(µ)

4π2b0

(

1 − e−2πb0t
)

(

20

9
nF +

4πb1
b0

)

= 2t+ O(αt) = η0 + . . .

ξ̂1 =
3

2
t+

α(µ)

4π2b0

(

1 − e−2πb0t
)

(

λ1 −
3πb1
b0

)

=
3

2
t+ O(αt) = λ0η0 + . . .

λ1 =
3

8
−
π2

2
+ 6ζ3 −

nF

18
(3 + 4π2)

and:

t =
1

2πb0
log

α(µ)

α(µ0)

=
α(µ)

2π
L−

α2(µ)

4π

(

b0L
2 −

2b1
b0
L

)

+ O(α3) , L = log
µ2

µ2
0

.



Asymptotic ∆ solution

Non-singlet ≡ singlet; photon is trivial

ΓNLL(z, µ2)
z→1
−→

e−γEξ1eξ̂1

Γ(1 + ξ1)
ξ1(1 − z)−1+ξ1

×

[

(

1 +
3α(µ0)

4π
L0

) ∞
∑

p=0

S1,p(z) −
α(µ0)

π
L0

∞
∑

p=0

S2,p(z)

]

The Si,p(z) functions are increasingly suppressed at z → 1 with growing p.
The dominant behaviour is:

ΓNLL(z, µ2)
z→1
−→

e−γEξ1eξ̂1

Γ(1 + ξ1)
ξ1(1 − z)−1+ξ1

×

[

α(µ)

α(µ0)
+
α(µ)

π
L0

(

A(ξ1) + log(1 − z) +
3

4

)]

A vastly different logarithmic behaviour w.r.t. the MS case

However, Γ
(MS)
NLL − Γ

(∆)
NLL = O(α2)



Key facts

� Both MS and ∆ results feature an integrable singularity at z → 1,

basically identical to the LL one
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Key facts

� Both MS and ∆ results feature an integrable singularity at z → 1,

basically identical to the LL one

� In addition to that, in MS there are single and double logarithmic terms

� We believe that the ∆ scheme resums also soft logs

(to some unknown accuracy)

� Owing to the integrable singularity, it is essential to have large-z

analytical results: the PDFs convoluted with cross sections are obtained

by matching the small- and intermediate-z numerical solution with the

large-z analytical one



#7:

Use NLL PDFs and the ∆ scheme rather than LL ones and MS

∆ is so useful owing to everything being perturbatively computable:

its hadronic counterpart has been all but forgotten



On top of increased precision, for sensible phenomenology we need:

[2207.03265; Bertone, Cacciari, Frixione, Stagnitto, Zaro, Zhao]

◮ evolution with all fermion families (leptons and quarks), including their respective

mass thresholds

◮ renormalisation schemes other than MS: α(mZ) and Gµ

◮ assess implications by studying realistic observables in physical processes



Sample results for:

e+e− −→ qq̄

e+e− −→ tt̄

e+e− −→ W+W−

with qq̄ production (massless quarks) restricted to ISR QED radiation.

The other two are in the SM

NLO accuracy, automated generation with MG5 aMC@NLO

(this version is now public, v3.5.0) [2108.10261; Frixione, Mattelaer, Zaro, Zhao]

What is plotted:

σ(τmin) =

∫

dσΘ

(

τmin ≤
M2

pp̄

s

)

, p = q , t ,W+

τmin ∼ 1 is sensitive to soft emissions (not resummed)



Dependence of PDFs on factorisation scheme

z < 1 z ≃ 1

Very large dependence at the NLL at z → 1 (O(1)); this is particularly significant

(but unphysical!) since the electron has an integrable divergence there

Electron at NLL in the Delta scheme close to the LL result (differences of O(5%))



Dependence of observables on factorisation scheme

qq̄ tt̄ W+W−

O(1) differences for PDFs down to O(10−4 − 10−3) for observables

In the MS scheme, huge cancellations between PDFs and short-distance cross sections

Behaviour qualitatively similar for different renormalisation schemes



Factorisation vs renormalisation scheme dependence

qq̄ tt̄ W+W−

Renormalisation-scheme dependence much larger than factorisation-scheme dependence,

with process-dependent pattern

Depending on the precision, renormalisation scheme is an informed choice; factorisation

scheme always induces a systematic



NLL vs LL

qq̄ tt̄ W+W−

Effects are non trivial

Pattern dependent on the process (and on the observable) as well as on the

renormalisation scheme



Impact of γγ channel

tt̄ W+W−

Essentially independent of factorisation and renormalisation schemes: a genuine physical

effect

Utterly negligible for tt̄, significant for W+W− – process dependence is not surprising



Thus:

◮ The inclusion of NLL contributions into the electron PDF has an impact

of O(1%) (precise figures are observable and renormalisation-scheme dependent)

◮ This estimate does not include the effects of the photon PDF

◮ The comparison between MS- and ∆-based results shows differences

compatible with non-zero O(α2) effects, as expected

(but: these are potentially large in the soft region)

◮ Renormalisation-scheme dependence is of O(0.5%)

#8: If the target is a 10−some large number relative precision,

these effects must all be taken into account



The power of automation

MG5 aMC@NLO, EW(+QCD) NLO accurate results, NLL PDFs

A few days of work (Selvaggi, Zaro)



The power of automation

MG5 aMC@NLO, EW(+QCD) NLO accurate results, NLL PDFs

A few days of work (Selvaggi, Zaro)



#9:

Automation has allowed an exponential growth of data-theory comparisons

at the LHC (and freed a few PhD slaves in the process).

There is no reason why its success cannot be replicated in e+e− physics



Are we done?

Not quite

� What was done at the NLL gives one a blueprint to go to NNLL, if need

be. Most of the ingredients are available from QCD, but one still has to

figure out the z → 1 behaviour analytically

� In an orthogonal direction, one must achieve an exclusive generation,

at the desired logarithmic accuracy



Exclusive means the ability to retain the information on the dof’s of the

particles stemming from the (ISR) branchings that do not enter the

hard process

� Well established within YFS; not so much within collinear factorisation

� We cannot blindly apply MC@NLO or Powheg: hadron and lepton

PDFs have dramatically different behaviours

� Besides, there is currently no NLL-accurate ISR hadronic shower



#10:

Sooner or later, progress will rely almost solely on the availability of
matched predictions – it has happened in hadronic collisions, and it will
happen in e+e− collisions as well



Finally...

At a certain level of precision, the impact of the strongly-interacting

partonic content of the incoming leptons cannot be ignored

In YFS, the corresponding contributions enter the βn terms; in collinear

factorisation, they entail the presence of quarks and gluon PDFs

� I’m not aware of attempts to address this issue in YFS

� In collinear factorisation there are now two different approaches,

applied so far to the PDFs of the muon (the case of the electron is

conceptually identical)



The quark and gluon PDFs force one to consider αS in the infrared

◮ 2103.09844 (Han, Ma, Xie) and 2303.16964 (Garosi, Marzocca, Trifinopoulos) bypass the problem

by setting αS(µ) = 0 for µ < Q0, with Qo = O(0.5 GeV)

(“truncated” approach)

◮ 2309.07516 (SF, Stagnitto) adopts a parametrisation of αS in the infrared

motivated by dispersion relations (Webber; Dokshitzer, Marchesini, Webber)

(“analytical” approach)



In the case of the muon PDFs, there are significant differences between the

truncated and the analytical approaches

I expect these to be potentially even larger for electron PDFs

PDFs ratios and their uncertainties



In the case of the muon PDFs, there are significant differences between the

truncated and the analytical approaches

I expect these to be potentially even larger for electron PDFs

Dijet cross sections at 10 TeV



In the case of the muon PDFs, there are significant differences between the

truncated and the analytical approaches

I expect these to be potentially even larger for electron PDFs

There are several issues with the truncated approach, and they all boil

down to the logarithmically-divergent sensitivity to an arbitrary cutoff

But in any case, here’s the final message:



#11:

He who waits long enough will see colours in leptons



Conclusions

If you are a PhD student sort of risk-averse (e.g. no wingsuit flights), by taking

into account progress in medicine and with some luck, you’ll be able to see

the next hadron collider (maybe even to work on it: especially since there will be no money for your pension)

For the rest of us, it will be a lepton collider. The good news: there is
plenty to do, and so far chatGPT does not seem to have a clue


