Al as Infrastructure

Foundation Models and LLM Agents
in Physics
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* Task specific, supervised, one model per analysis
* High performance, but low reuse beyond task
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. Traditional statistical tools are great for independent and identically distributed (IID) variables
. Rarely the case in raw data; besides, data sometimes comes in infeasible to compute quantities
. Equivariant models such as CNNs excel in pattern recognition



Labels are scarce and biased,
discovery is not just classification

Domain shift and reusability
Workfllow complexity |

outlier
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What is a Foundation Model
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Foundation Models in HEP
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Representation Learning
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Jet tokenization - @ Hammchical Untanging
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OmnilJet-Alpha (2024) RS3L (2024) HEP-JEPA (2025)

The first cross-task foundation model for particle physics Contrastive Pretraining via Resimulation Joint Embedding Predictive Architecture for
collider physics
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Figure 3, Properties of the training set. The op lefl pane] displays a Kiel Giagram of APOGEE T,
shows the on-sky distribution of the sample colored
of stars for which their 2™ BP and RP XP coefficients are rele
s ). and the bottom right panel shows distribution of Gaia apparent G-band magnitude, which together with the parallax is used to calculate the stellar
Tuminosity. The bottom-left relevancy fraction starts at = )¢, because = 10% of stars in the training set do not have XP spectra
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Astronomical Foundation Model for Stars (H. Leung, 2023)



Physics-Aware Deep Learning

Lorentz Invariance, detector geometry...

symmetry-aware models in cosmology
physically constrained time-series models in GW

Same physics,
different ordering

Same physics,
different ordering

No permutation invariance -
. unstable representation

Generic Neural
Network )

—

Feature Space

;» e

Permutation-invariant +
Lorentz-equivariant
- consistent features

O(1,3)

Set/GNN
+ Lorentz-equivariant
;"v = g

Feature Space

Inductive bias reduces sample complexity and improves generalization.



Whitened Strain
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WaveFormer, DeepClean, Physics-informed ML for non-linear and non-stationary noise ( slowxfast CNNs...)
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&Simulation-Based Inference

e Orders of magnitude speed-up

e

*Surrogate: 8 — x
(fast detector
response)

*SBI: x — p(BIx)
(posterior,
calibrated)

CaloFlow etc., but also e.g. GW (BBH NR) surrogates... Simulation-based inference with consistency models for neural posterior est. (CMPE),
Typically GANs, VAEs, NFs Contrastive Normalizing Flows (CNFs)...



How to find rare/unexpected
events without signal labels?

Input: events / embeddings

Output: anomaly score + ranked
candidates (+ neighbors)

Discovery-oriented ML

outlier
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Google clinches milest

ma.th Competition, whi
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» OpenAl self-published results before official verification

July 21 (Reuters) - Alphabet's (GOOGL.O) (% Google and OpenAl said their artificial-inte
won gold medals at a global mathematics competition, signaling a breakthrough in math cap:

the race to build systems that can rival human intelligence.

The results marked the first time that Al systems crossed the gold-medal scoring threshold at the

International Mathematical Olympiad (IMO) for high-school students.




What about large language models?

LLMs are NOT physics inference engines
* They are really bad at:
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From LLMs to Al Agents

® Agent=LLM + tools + state + checks

® LLM chooses .steps — tools produce numbers
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eROSITA DR1 tile 056126 band 024 (Fornax)

wGC 1399




‘Download the H1 and L1 detector strain data for GW150914 over a 12 sec window centered on the merger
using TimeSeries fetch, then plot the g-transform spectroscopyplot with a normalized energy bar, whiten the
data, do a lowpass filter at 250 hz and high pass at 30 hz and plot it, with both strain data on the same graph’

Cl B




LLM Agents: cosmology

simulation-based inference
emulating dark matter halo
mass functions or non-linear
matter power spectra in varied
cosmologies learning from
N-body dark matter simulations.

Develop specific Al-agent for
each major step.
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Provenance: dataset version « config hash * code commit « random seed * environment

Rule: if a verification check fails = stop and ask for human input




Multi-band photometry
(IWST bands)
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‘ Hypothesis proposal

¥ Verifier +
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| (SED fitting

LLM Agents: Mephisto

|

Interpreting Multi-band Galaxy Observations
with Large Language Model-Based Agents” (arXiv:2409.14807)

Interpretation quality

Baseline Single- Mephisto Human expert
auto SED-step LLM  agent ;

k2

Qualitative benchmark: Mephisto achieves near-human reasoning proficiency [Sun et al, 2024]



Limitations

Works well

v/ Tool-driven, verifiable workflows

v/ Known pipelines (retrieve - transform - -
plot —.log) :

V/ Literature - code - figures (bounded tasks)

"/ Reproducible artifacts (scripts + configs 3
+ provenance : ; P

Still fragile

A Wrong assumptions (units, frames, convention
A Missing metadata (calibration, selection, masks)

A Silent errors (plots look right, numbers are wrong)

" A\ Long-horizon drift (skips checks, loops, tool misuse)

g A Not uncertairity-aware (no éalibfated confidence

e . - L -
A 4 o= pASE:
. R s < d

.

Direction: constrained agehts + evaluation + hybrid LLM + code



~¢ Verifiable science agents

Agents should route uncertainty — NOT invent it

@

.
Schema Checks . Physics Checks Tool Evidence
e Expected columns present e Coordinate sanity . | e Validates parameter claims
e Units properly declared e Dimensional analysis e Attaches output artifacts
e Headers match requirements e Time window validation e Executes code/tools :
: .2




iscovery Flow

Foundation Model ( Archive Agent Compute Agent | Human Evaluation
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flag anomaly /insight | | query literature & run simulations / interpret results
'« detects unexpected databases SBI / models - e validate physics &
} pattern « retrieve data + papers « test hypotheses & steer next steps
| ‘ + metadata generate predictions - ;
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Denario-style modular agents streamline discovery steps while keeping humans in the loop.

2

https://astropilot-ai.github.io/DenarioPaperPage/



Take-aways

.
Foundation models

Reusable representations — data efficiency

¥
( Physics-aware ML

Inductive bias = robustness + structure

¥

( LLM agents

Coordination = tools + provenance
. J
¥
~
Verification

Evidence-based outputs — fail-closed

#

Agents don’t replace inference — they coordinate inference.
Science stays physics-first, but becomes hopefully faster,
more reproducible and easier to verify.
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Backup Slides




We have observed a new Semantic Encrgy: Detecting LLM Hallucination Beyond Entropy
boson with a mass of
125.3 + 0.6 GeV
at
4.9 o significance !

Resporse Sampling & Semantic Cluster

Queatiost: What was the list US state to reintreduce alcohel
peonibition?

CMS slides on Higgs, CERN, Dec 2012 Questios2 - How many secends are there In an hour?

It took Al engineers a decade
to adopt a physics mindset...

| This situation acoounts

CALIBRATING TRANSFORMERS VIA SPARSE GAUS- for a large proportion

SIAN PROCESSES

Aleatoric Uncertainty Epistemic Uncertainty

Uncertainty Estimation
\ Can

Figure 2: Examples of aleatoric and epistemic uncertainty in natural language.

“hen & Yingzhen Li

odon

ArXiV CS.Al, 10 Sept2025 https://arxiv.org/pdf/2303.02444 Kang et al. ,ArXiV CS.Al, 14 Oct 2025 https://arxiv.org/pdf/2510.12040 ArXiV CS.Al, 27 Aug 2025 https://arxiv.org/pdf/2508.14496



Al Agents

What agents already do:
* Reading: ingesting literature, extracting
equations & assumptions.

* Coding: generating analysis scripts and
simulation code.

y e Simulating: running models, scanning

Bl Cdbtasks [ ENGTNEER parameters, validating outputs.
W 1 - -
e ; e Comparing: confronting predictions with
| = data.
* Logging: tracking provenance, assumptions,
EXECUTOR metadata.

Terminates.

https://github.com/CMBAgents/
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Input text
We have data from a recent gravitational wave event: GW231123. The data is located in five files:

- /mnt/ceph/users/fvillaescusa/AstroPilot/GW/Iterationl/data/GW231123\_NRSur7dq4.csv

- /mnt/ceph/users/fvillaescusa/AstroPilot/GW/Iterationl/data/GW231123\_IMRPhenomX04a.csv
/mnt/ceph/users/fvillaescusa/AstroPilot/GW/Iterationl/data/GW231123\_SEOBNRvSPHM.csv
/mnt/ceph/users/fvillaescusa/AstroPilot/GW/Iterationl/data/GW231123\_IMRPhenomXPHM. cev
/mnt/ceph/users/fvillaescusa/AstroPilot/GW/Iterationl/data/GW231123\_IMRPhenomTPHM. csv

These files contain samples from the posterior distribution corresponding to five different
gravitational-wave waveform models which are detailed below. The meaning of each column can
be found in the file header, but is also provided below for reference.

We are interested in understanding which ways the different models agree or differ in their
prediction for GW231123. There are complex degeneracies in the high-dimensional posterior
space which make this problem challenging. Analyze the datasets in detail and tell us what you
have learned from them. Mention also any interesting astrophysical insights that you learn from
this analysis, and what can be robustly concluded about statistical properties of the high-mass
black hole merger GW231123. Make sure there is no repetition in plots in the paper. For
reference, the event was reported in https://arxiv.org/pdf/2507.08219

Figure 3. UMAP 2D embedding of the full posterior distri-
butions for GW231123, colored by waveform model. The
models cluster into three distinct groups: a core cluster
(NRSur7dq4, SEOENRvSPHM, IMRPhenomTPHM) and two isolated
clusters (IMRPhenomX04a, IMRPhenomXPHM)., This structured
separation highlights significant discrepancies in the high-
dimensional parameter space, indicating that the core clus-

ter models capture more congruent physical dynamics for

this high-mass, precessing system.

https://arxiv.org/pdf/2




Paper ID: 2023ARA&A..61..131F

Question: The properties of the circumgalactic
medium (CGM) primarily depend on the compe-
tition between:

) Star formation rate and supernova feedback.
B) Gas cooling and stellar winds.
C) Gravity-driven infall and gas cooling.
D) Magnetic fields and thermal conduction.

(
(
(
(

Correct Answer: C

Explanation: The article explicitly states that
the defining characteristic of the CGM is the
balance between gravity pulling gas inwards and
cooling processes that allow gas to lose pressure
and condense. This balance dictates whether the
CGM is predominantly hot (slow cooling) or cold
(rapid cooling).

Paper ID: 2023ARA&A.61.473C

Question: What is the primary goal of calibrat-
ing subgrid feedback models in ccsmological sim-
ulations?
(A) To ensure that simulations accurately repro-
duce the ohserved properties of the interstellar
medium,

eate a diverse range of galaxy morpholo-

nulations,

(C) To achieve convergence in simulation results
across different resolutions and box sizes.
(D) To steer simulations towards producing
a broadly realistic galaxy population that is
consistent with key observational constraints,

Correct Answer: D

Explanation: The calibration of subgrid feed-
back models is primarily done to ensure that
simulations proeduce a galaxy population that
broadly aligns with key observational constraints.
This is crucial because the microphysics gov-
erning feedback processes occur on scales much
smaller than the resolution of cosmological simu-
lations. By calibrating these models, simulations
can better reproduce properties like the galaxy
stellar mass function and the relationship be-
tween galaxy stellar mass and central supermas-
sive black hole mass. This is discussed in section
2.4 of the article.

“Baidu/ERNIE (A —

AstroSage, AstroBench https://arxiv.org/pdf/2407.11194, https://www.kaggle.com/competitions/tracs-wasp-2
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the quality of reasoning.

Reasoning Errors in LLMSs

Math Derivation Errors
. LLMs introduce algebraic steps that don’t follow, ignores subscript
. Drop terms or misapply integration rules.

. Produce plausible-looking but invalid solutions.

HEP and Astro Reasoning Hallucinations

. LLMs invent detector constraints and wrong kinematic formulas.

. Produce non-existent ROOT functions, incorrect code, explanations physically false.
. mixing up redshift evolution and cosmic time,

. applying Newtonian approximations where relativistic ones are neede

. misinterpreting “magnitude” changes as linear rather than logarithmic,

. treating correlation as causation in exoplanet datasets

Error-Based Failures

. treat statistical + systematic errors as additive when they should be quadrature-
combined,

. propagate uncertainties incorrectly,

. or interpret confidence intervals as standard deviations.



Compare these two plots. In which task is the 03 better?

GPTS5 release report vl: GPTS release report v2: After comparing Plot 1 and Plot 2, we see they both represent the same task—SWE-bench Verified:

SWE-bench Verified
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Table Understanding and (Multimodal) LLMs:
A Cross-Domain Case Study on Scientific vs. Non-Scientific Data

Ekaterina Borisova'~, Fabio Barth', Nils Feldhus'**,
Raia Abu Ahmad'?, Malte Ostendorff*, Pedro Ortiz Suarez’,
Georg Rehm'*®, Sebastian Moller'*

"Deutsches Forschungszentrum fiir Kiinstliche Intelligenz GmbH (DFKI),
*Technische Universitit Berlin, *BIFOLD, “Deutsche Telekom,
SCommon Crawl Foundation, ®Humboldt-Universitiit zu Berlin

Can LLMs Generate Tabular Summaries of Science Papers?
Rethinking the Evaluation Protocol

Weiqi Wang*#, Jiefu Ou®, Yangqiu Song®, Benjamin Van Durme®, Daniel Khashabi*
*Center for Speech and Language Processing, Johns Hopkins University, Baltimore, MD, USA
#Department of Computer Science and Engineering, HKUST, Hong Kong SAR, China

Years Ended December 31,
2014 vs. 2013 2013 vs. 2012
_ SChange _ %Change _ $Change =~ %Chamge
Routing 1223, 23180 8 2,037, (94.1) 4% § 2804 14%
Switching 21. 638.0 554.8 83.2 13% 832 15%
Security 463. 563.9 (100.3) (18)% (1058)  (16)%
Total Product A408. 35199 3262.1 (111.2) (3)%

Percentage of net revenues 73.7% 754 % 74.7%

Total Service 218.4 1,149.2 ; 6%

Percentage of net revenues

Total net revenues § 4669.1 S 43654 ] (1)%

Figure 22: Table image corresponding to the ComTQA (FinTabNet) example in Figure 5.



