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Motivation of QUARTET

● Accuracy gap in charge radii for 2<Z<11
● Improvements to σr/r < 1e-3 :

● Benchmark theories of nuclear 
structure

● Test QED from measuring
transition energies

● Recalibration of whole isotope 
chains

● Study isospin effects from mirror 
nuclei

B. Ohayon, “Critical evaluation of reference charge radii and applications in mirror nuclei”, At. Data Nucl. Data Tables, 10.1016/j.adt.2025.101732, 2025.
B. Ohayon et al., “Towards precision muonic X-ray measurements of charge radii of light nuclei”, Physics 6, 10.3390/physics6010015, 2024.
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Relative to 18.7keV

● Detection range from 1keV to 400keV
● Energy resolution in the order ~10eV

● Not commercially available

detector development for 
experiment specific purposes
needed

MaXs100-56-14
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Metallic Magnetic Calorimeter based 
high-precision spectroscopy of 

muonic Oxygen
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The extraction of absolute nuclear charge 
radii is essential for benchmarking nuclear 
structure theories [1,2]. For light nuclei with 2 
< Z < 11, the relative uncertainties of the 
nuclear charge radii are comparatively large. 

1) Muonic atom spectroscopy

The muonic 2p–1s transition energies lie between 15 and 200 keV (for 2 < Z < 11). At these 
energies, metallic magnetic calorimeters provide an energy resolution about two orders of 
magnitude better than classical HPGe detectors, enabling an improvement in charge radius 
extraction with uncertainties improved by one order of magnitude. 

2) Metallic Magnetic Calorimeters

Deposition of photon energy EPh

Heating of absorber &
paramagnetic sensor (                )

Screening currents in 
superconducting coil 

compensate B-field change

Magnetisation of sensor changes

Thermalisation to ≈10mK
SQUID measures a voltage 

change (          )

3) µO spectroscopy – Beamtime 2025

Schematic MMC working principle adapted from [5]

Target ladder

H2
17O

(90.4%)

H2
18O

(98.1%)

H2
16O

(>99%)

Source Calibration line MMC rate per 
pixel [mHz]

µO (2-1) 133.544(4)keV 0.9-1.4

57Co 136.47374(29)keV ≈7.8

122.06025(12)keV ≈80

14.41295(31)eV ≈1.3

µO (3-2) 24.85keV ≈2.5

Sn
(XRF)

25.04404(23)keV
25.27136(23)keV

≈13
≈19

28.44443(33)keV
28.48626(33)keV

≈7

28.7102(3)keV
28.7162(3)keV

≈1.5

6-9× calibration
statistics

6-8× calibration
statistics

Calibration strategy

● Made from Polypropylene
● Stopping efficiency of 60% 

at Pµ = 32.5MeV/c

Metallic Magnetic Calorimeter properties

Target injection holes

Electron Scintillators
● Identify Michel-electron trajectories

µ beam

Cryostat sidearm Veto & entrance
scintillator

Copper
collimator tube

He buffer
gas

10× higher calibration accuracy to µO 2p-1s transition

Preliminary

P
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● Microcalorimeter array consists of 56 pixels and
14mm2 active area & 4 temperature channels

● Operating temperature at ≈10mK
● Pulse trace read out by 16-bit ADCs (1bit = 7.9eV)
● Absorber thickness increased to 100µm: 

Absorption efficiency ≈20% @ 133keV (µO 2p-1s)
● Energy resolution: EFWHM ≈ 50eV @ 122keV

MaXs100-56-14

4) Preliminary results on µO

• Center-of-gravity 2p-1s energy extraction with 0.5-0.7eV stat. uncertainty

order-of-magnitude accuracy improvement in charge radii

• Asymmetric 17O lineshape

sensitive to hyperfine structure

ΔT=
EPh
C tot

ΔM∝
EPh
C tot

ΔT∝EPh

∝EPh

Energy Input EPh
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Applied cuts: Holdoff cut · Michel e- holdoff cut · Amplitude cut · 
           chi2 cut · Temperature correction · µ-coincidence cut

Combined muonic X-ray spectrum of all oxygen
isotopes with ≈5.5d of data production

Plot based on radii from [3,4]

Muonic systems s-states are ideal to extract 
nuclear properties due to the reduced mass 
of mµ/me≈207 and therefore ≈107 increased 
sensitivity compared to electronic systems.

piE1 Beamline
@ PSI
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