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We start from an observation...
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Baryon asymmetry in the Universe
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The neutron electric dipole moment

* Neutron electric dipole moment (hnEDM)
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The nEDM as CP violating probe
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Where are we now?

https://doi.org/10.1103/PhysRevLett.124.081803
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Principle of measurement j PSI

hfrr = 2(upBy + dyE) hfry = 2(upBy — dyE)
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Principle of measurement ff PSI

hfrr = 2(upBy + dyE) hfry = 2(upBy — dyE)
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Measuring frequency: Ramsey
method
of separated oscillatory fields
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Measuring frequency: Ramsey method
of separated oscillatory fields
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Measuring frequency: ramsey method
of separated oscillatory fields
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Ultra-cold neutrons

Energy E, <300nelV

Total reflection

SiNB,er <

Vnuclear

N

e UCN source atthe Paul Scherrer Institute!
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PSI

An overview of the n2EDM experiment

Magnetic
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The B0 and trimcoil system

BO coil

—

B, =1uT- 2

Trim coils

RF coils
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Neutron precession chambers
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180 kV
GND
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Neutron precession chambers
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One challenging aspect: field non-uniformity

* Double chamber setup + B, non-uniformity - systematic

effect |
~ 30Hz for 1 uT \
i h

u d -
fTT=2(7nBo | hnE) d"_4EAf
——

~ 7 nHz

ifd, ~107%° e cm & E ~ 10 kV/cm

e Solution: monitor the field non-uniformities
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Mercury co-magnetometer
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Mercury co-magnetometer
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Another challenging aspect: spin transport

19

20.01.2026



7]
o

10

W # I

=

5

£

W 5

) 2 12
—
re) 4 e b
(&)
et
S K4
@)
o
c A
©
-
b E
=
Q.
0 -
QO o @ .v_ ~ o
h = = = = =
- (N +W)

20.01.2026

25 30

20

15
Applied magnetic field (uT)

05

0a



Present situation: we’re ready for taking data!
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Thanks for your attention
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Gian Luca Caratsch
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The asymmetry y PSI

_ (NT — Nl) 0.75
(Ny + Ny) |
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' PSI

parameter Dec.2025 | RHealistic 1 | Realistic 2 | Design
pulse period (s) 400 350 3a0 300
pulses /day* 200 239 239 281
UCN/ pulse 66" 000 79000 111°000" 121000
storage time (s) 180 180 180 180
high voltage (kV) 110 140 150 180
visibility o 0.54 0.89 0.85 0.8
NLK W1 closed closed closed
data taking efficiency™ 0.80 0.90 1.00
daily sensitivity x107-" e-cm 48 3.5 2.6

Table 2: Parameters used in the sensitivity plot Fig. 16 for the different scenarios:

1) December 2025 - achieved averaged performance of the apparatus and data taking over
21 days in December 2025,

2) Realistic 1: Scenario achieved with all parameters in 20256 and area West served
subsequently. Shortening the proton pulse period will be possible with some optimization.

3) Realistic 2: in addition, UCN performance with all electrodes well coated and O-rings
with higher Fermi potential, as measured in Oct.2025.

4) Design parameters as published in the Technical Design Report |3, 11).

iv) The data taking efficiency was low in Dec.2025, as we had to open the vacuum tank
during that time and replace parts due to high-voltape damage, 3 davs of unplanned proton
accolerator down time, other unusual losses were due to He laser-lock loss and one detector
DAQ problem, and also includes a naive, very conservative accounting for different statistics in
the two E-field polarities, namely taking simply the lower integral number of UCN counts. We

assume that most Il:»f these problems are solved and hence assume better efficiency for 2026. 026
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Ultra-cold neutrons

Properties

<300 neV
5m/s

Reflected off materials: storage
possible!

At PSI: ultra-cold neutron
spallation source -
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Spin transport = high adiabaticity

ool
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STC efficiency calculation

Direct shot into the detectors
(without storage)
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Neutron detectors @n2EDM

Spin dependent neutron detection

2 Detectors per chambe

: 1. Spin Up
Spin flipper e 2. Spin Down
Gaseous detector
Spin analysing foil —gg— Capture neutrons:

n+ °He—-p+ 3H
UCN Counter N Scintillation in CF,

12




Spin-flip rotating field Perform “Ramsé §SI

cycle”

* 2independent coilsin
to produce B inx,y

e Same spin-flip pulse for
TOP and BOT chambers
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Active magnetic shield (AMS)
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* 8independent coils

e 55km of wires

* kW heat dissipated
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) PSI

Optical Detection of fy,

1) spin-polarize the ®°Hg atoms along the
magnetic field axis, spins stay oriented in the

holding B, field

2) release ®®Hg into the precession chambers

3) apply RF pulse in xy-direction to flip spins by 90°
4) spins precess at Larmor frequency

5) Probe with alinearly (1) polarized UV laser

A = 253.7 nm

33
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The Cesium Magnetometer

« Each glass cell is filled with Cesium & coated in paraffin

« Cs atoms are optically pumped into alignment with linearly polarized
laser light (894 nm) on the DI transition (F =4 - F’' = 3)
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The Cesium Magnetometer

« Each glass cell is filled with Cesium & coated in paraffin

« Cs atoms are optically pumped into alignment with linearly polarized
laser light (894 nm) on the DI transition (F =4 - F' = 3)

---—---62P12F’:3
J:'.:‘:J*
S
<
- e s . ----625‘1;2}3:4

Optical pumping: Repeated absorption and spontaneous emission move

atoms into the m; = +4 “dark states” which cannot be excited by = light

Solid caesium

Reservoir

Bulb

Paraffin coating

Capillary



The Cesium Magnetometer

« Each glass cell is filled with Cesium & coated in paraffin

» Cs atoms are optically pumped into alignment with linearly polarized
laser light (894 nm) on the D1 transition (F =4 — F’' = 3)
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Magnetic sensitivity: In an external magnetic field B, Zeeman splitting

(energy levels of Cs atoms split) shifts the my sublevels by AE = mpgpugB
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The Cesium Magnetometer

« Each glass cell is filled with Cesium & coated in paraffin

« Cs atoms are optically pumped into alignment with linearly polarized
laser light (894 nm) on the D1 transition (F =4 — F’' = 3)
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Larmor precession: The collective spin orientation of the ensemble then

precesses around the magnetic field at a frequency
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The Cesium Magnetometer

« Each glass cell is filled with Cesium & coated in paraffin

« Cs atoms are optically pumped into alignment with linearly polarized
laser light (894 nm) on the DI transition (F =4 — F' = 3)
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Detection principle: Probing the transmitted light gives a measure of this -

precession, which directly reflects the magnetic field strength (free -

alignment precession)
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