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Simple patterns emerge in nuclear structure.

Calculating all pair-wise
interactions is hard.
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Simple patterns emerge in nuclear structure.

Calculating all pair-wise Approximate with non-interacting
interactions is hard. nucleons in a mean-field..
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Simple patterns emerge in nuclear structure.
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Pauli-exclusion leads to “Fermi momentum.’

Nucleons in 12C
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Evidence for short-range correlations (SRCs)

Reproduced based on (Lapikas, 1993)
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Evidence for short-range correlations (SRCs)

m Depletion of shell-model orbitals

m Quasi-elastic electron scattering

Cross Section

Electron scattering from a proton

Delta Resonance

Elastic Scattering

Scattered Electron Energy
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Evidence for short-range correlations (SRCs)

Electron scattering from a
nucleus
Elastic Scattering

m Depletion of shell-model orbitals

Delta Resonance

m Quasi-elastic electron scattering
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Evidence for short-range correlations (SRCs)
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Evidence for short-range correlations (SRCs)
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Evidence for short-range correlations

m Depletion of shell-model orbitals

m Quasi-elastic electron scattering

m High-momentum tails
m Scaling

m Correlated emission

(SRCs)
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Evidence for short-range correlations (SRCs)

2005 56
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m Depletion of shell-model orbitals

m Quasi-elastic electron scattering

m High-momentum tails
m Scaling

m Correlated emission
Hen et al., Science (2014)
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Evidence for short-range correlations (SRCs)

m Depletion of shell-model orbitals

m Quasi-elastic electron scattering

m High-momentum tails
m Scaling

m Correlated emission
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SRC pairs are predominantly T =0,5 =1,
l.e., np-dominance
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SRC pairs are predominantly T =0,5 =1,
l.e., np-dominance
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There is still much we do not know about SRCs

What are the mechanisms by which correlations form?
m Which nucleons are correlating?

How do correlations depend on nuclear mass, p/n asymmetry?
m Do np pairs still predominate in very neutron-rich nuclei?

What about 3N correlations?
m Or 4N?

How universal are our findings?
m Can they be corroborated in other scattering reactions?
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SRCs affect double beta decay matrix elements.

2vBB decay OvBP decay
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See e.g. M. Agostini et al., RMP 95, 025002 (2023)
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https://doi.org/10.1103/RevModPhys.95.025002

SRCs affect double beta decay matrix elements
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SRCs may be driving the EMC Effect.
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SRCs may be driving the EMC Effect.
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http://dx.doi.org/10.1103/PhysRevLett.106.052301

SRCs may be driving the EMC Effect.
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SRCs may be driving the EMC Effect.

Modification Per SRC Pair
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SRCs affect nuclear matter equation of state.
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https://arxiv.org/abs/2512.04206

Answering these questions requires a team effort.

Some of my collaborators

m Or Hen, MIT

m Tyler Kutz, Mainz
Dien Nguyen, Tennessee
Eli Piasetzky, Tel Aviv

Holly Szumila-Vance, Florida Intl.

Larry Weinstein, Old Dominion
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Additional JLab experiments led by:
m John Arrington, LBL
m Nadia Fomin, Tennessee

m Burcu Duran, New Mexico State
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My group at George Washington University
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In my talk today:

Preliminary Results from the CaFe Experiment

m Cross-shell pairing appears suppressed.
m Evidence for quantum number selectivity.

Recently conducted experiments

m Hall D SRC/CT Experiment tests universality
m CLAS12 Run Group M expands available nuclei and stats.
m BAND/LAD test the SRC-EMC connection
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There are two general approaches
for studying SRCs in e~ scattering.

Inclusive measurements
Detector

Pros: Cons:
m Higher rates m Little information about struck nucleon.
® Minimal FSls m Interpretation is not 100% straightforward.
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There are two general approaches
for studying SRCs in e~ scattering.

Exclusive measurements \
Detector
... 5 -

0 Detector
% Detector

Pros: Cons:

m Isospin information m Need large acceptance

m More info about momentum m Final-state interactions.



Exclusive measurements are always affected by
final state interactions.
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To reduce the impact of FSls,

measure in anti-parallel kinematics.

" Lead nucleon
Initial mom.

P1 , N P1

P2
recoiling spectator

Missing momentum

5miss = 5/1 - Ei

is a proxy for the initial momentum.

39



To reduce the impact of FSls,
measure in anti-parallel kinematics.

" Lead nucleon
Initial mom.

P1 , N P1

In practice:
a@© >
recoiling spectator B Pmiss > KF
o Exg>1
Missing momentum 5
m Large Q
Prmiss = 5/1 - q B Dmiss 11 G

is a proxy for the initial momentum.
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Which nucleons are forming pairs?
Can we tell from C.o0.M. momentum?

measured (corrected)
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Which nucleons are forming pairs?
Can we tell from C.o0.M. momentum?

-500

measured (corrected)

0,=195 %21 (173 % 22) MeV/c
0,=163+17 (148 + 18) MeV/c
0:=176 +13 (157 + 14) MeV/c

0,=178%7 (156 + 9) MeVic
0,=185+9 (163 +9)MeVic
0;=181%6 (159 + 6) MeV/c

0, =180 =14 (162 + 15) MeV/c
0,=166 =13 (150 * 13) MeV/c
0;=1729 (155 * 10) MeV/c

0,=157 7 (141 +7)MeVic
0,=160%7 (146 +7) MeV/c
0,=159+5 (143 +5) MeVic

500

-250 0 250
Pé.m. [MeVic]

200
150 -
g 0
) L
= 100 -
£ L
e
50 |- @ This Work ¥ Ciofi and Simula
| = BNL (p,2pn) -- Colle et al. (All Pairs)
F v Hall-A (e,elpp) —Colle et al. (‘S0 pairs)
[ a Hall-A (e,e'pn) -.- Fermi-Gas (All Pairs)
0 L :

10

E. O. Cohen et al. (CLAS),

2
10 A

PRL 2018

42



We have lacked a way to disentangle size
and asymmetry effects.

Nuclei studied prior to 2019:

— T
®  Semi-inclusive
o Inclusive only
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The XEM2 experiment has measured a swath

of light and heavy targets.

| X=m)
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The CaFe Experiment studied 4°Ca, *8Ca,
to test pn pairing across the 1d/1f gap.

17, shell
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The CaFe Experiment studied 4°Ca, *8Ca, >*Fe,
to test pn pairing across the 1d/1f gap.
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The CaFe Experiment

Jefferson Lab E12-17-005
m Spokespeople: O. Hen,
L. B. Weinstein,
D. Higinbotham, F. Hauenstein
Collected data in 2022-23
Experimental Hall C
10.5 GeV e~ beam
40Ca, 48Ca, >*Fe targets
m +others for calibration

(e, €'p) coincidence
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The CaFe Experiment

Jefferson Lab E12-17-005

Spokespeople: O. Hen,
L. B. Weinstein,
D. Higinbotham, F. Hauenstein

Collected data in 2022—23
Experimental Hall C
10.5 GeV e~ beam

40Ca, 48Ca, >*Fe targets
m +others for calibration

(e, €'p) coincidence

Electron detector

m Super High-Momentum
Spectrometer

m 0. =28.3°

m p. =8.55 GeV/c

m Q2 =1.88 GeV?/c?
m 0, ~31°

Proton detector
m High-Momentum Spectrometer
m 0. = 66.4°
m po = 1.325 GeV/c
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By detecting the proton, Ca-Fe Is sensitive
specifically to proton pairing.

High Momentum
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¥y Correlated
Electron nucleon o
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High Momentum
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CaFe Kinematics
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Cross-section ratios scale,
indicating SRC-dominated sample
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We see very little cross-shell pairing.
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In my talk today:

Preliminary Results from the CaFe Experiment

m Cross-shell pairing appears suppressed.
m Evidence for quantum number selectivity.

Recently conducted experiments

m Hall D SRC/CT Experiment tests universality
m CLAS12 Run Group M expands available nuclei and stats.
m BAND/LAD test the SRC-EMC connection
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Hall D SRC/Color-Transparency Experiment:
probing SRCs with photoproduction reactions

GLue X v

Nov.—Dec., 2021

> 90 billion triggers
Targets: D, “He, 12C
Peak flux at 8.5 GeV
GlueX Spectrometer

m Axion-like particle search: J. R. Pybus et al., Phys. Lett. B 855, 138790 (2024)
m Subthreshold J/4 production: J. R. Pybus et al., Phys. Rev. Lett. 134, 201903 (2025)
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https://doi.org/10.1016/j.physletb.2024.138790
https://doi.org/10.1103/PhysRevLett.134.201903

Does the probe-nucleon interaction factorize
from the nuclear ground state?

Plane wave QE scattering Plane-wave photo-production
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We see angular correlations in multiple reaction
channels.

yn(p) — p~pp vp(p) — 0°pp
Cly. p~pp) w00 ‘ el x| A
20077 i
0 I
-10° -09 -08 -07 -06 -05 4 —
cosy cos(7)
Credit: Jackson Pybus, MIT Credit: Phoebe Sharp, GW
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CLAS12 Run Group M is a dedicated
high-statistics SRC experiment.

Nov. 2021—-Feb. 2022
300 fb~1!
m 10x more than CLAS

Targets: H, D, “He, 12C,
4048, 120G,

2, 4,6, GeV beams
CLAS12 Spectrometer
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We can isolate SRC nucleons by
“tagging’ a correlated partner.

fragments of
N struck nucleon
recoiling spectator nucleon

Mom. of the scattered e~ — determine quark momentum

Mom. of the spectator — determine if correlated
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“Backward Angle Neutron Detector”

was built to detect recoliling spectator neutrons.

scattered
electron

CLAS12
BAND

Spectator
neutron

11 GeV e

I Deuterium

JLab Hall B

jet from
struck quark
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LAD collected data this past summer
tagging spectator protons.

LAD//

spectator
proton

scattered
electron

11 GeV e

JLab Hall C

jet from
struck quark
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We see coincident protons in LAD!
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To recap:

m SRCs are pairs of

high-momentum strongly Nucleons in 12C
interacting nucleons. == —Fermions in a box |
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To recap:

60
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To recap:

m SRCs are pairs of
high-momentum strongly
interacting nucleons.

m Relevant for key problems in
nuclear physics

m Disentangling size/asymmetry
has been a challenge
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To recap:

SRCs are pairs of
high-momentum strongly
interacting nucleons.

Relevant for key problems in
nuclear physics

Disentangling size/asymmetry
has been a challenge

CaFe shows minimal cross-shell
pairing

Cross Section Ratios

=
)

=
HA

=
o

e\ﬁf"' '
i g

Momentum
O spatial

A 1=0, n=0 pairs
¥V 1=0, L=0 pairs

0Ca
0Ca

SFe
43Ca

67



To recap:

SRCs are pairs of
high-momentum strongly
interacting nucleons.

Relevant for key problems in
nuclear physics

Disentangling size/asymmetry
has been a challenge

CaFe shows minimal cross-shell
pairing

Lots of new data being
analyzed!
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__ Thank you!

- especially for the intellectual
4~ A short-range correlations!



Recent Documents by the SRC Community

Ihe European Physical Journal Topical Collection

m EPJA Topical Issue on SRCs
= May 21, 2025
m Guest editors: Or Hen, Douglas
Higinbotham, Eli Piasetzky, Axel
Schmidt

m Long-range outlook for short-range
correlations
m January 14, 2026
m arXiv:2601.09568
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https://link.springer.com/collections/agejehhhic
https://arxiv.org/abs/2601.09568

Back-Up
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Mining CLAS data

CLAS eg2 Experiment (2004)
m 5 GeV beam
m d, C, Al Fe, Pb targets

m large acceptance
spectrometer

electron

Scintillators (timing)

Drift chambers
(tracking)

e bean,

S\ roton
neutron X proto
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Until 2020, most SRC studies were

conducted by data mining.

Publications:

m Hen et al,, PLB 722, p. 63 (2013)
Hen et al., Science 346 p. 614 (2014)
Duer et al., Nature 560, p. 617 (2018)
Cohen et al., PRL 121, 092501 (2018)
Duer et al., PLB 797, 134792 (2019)
Schmookler et al., Nature 566, p. 354 (2019)
Duer et al., PRL 122, 172502 (2019)
Schmidt et al., Nature 578, p. 540 (2020)
Korover et al., PLB 820, 136523 (2021)
Korover et al.,, PRC 107, L061301 (2023)
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Sub-threshold J/1 photoproduction on nuclei

J. R. Pybus et al., PRL 134, 201903 (2025)
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