JUNO BEGINS: OPENING A NEW WINDOW INTO NEUTRINO PHYSICS

LIVIA LUDHOVA

GSI DARMSTADT

& JGU MAINZ UNIVERSITY, GERMANY

SEPTEMBER 15-16, 2025, FRAUENINSEL, GERMANY SUMMER SCHOOL - MAINZ PHYSICS ACADEMY

NEUTRINO MASS ORDERING

 $\Delta m_{31,\text{normal}}^2 > \Delta m_{31,\text{inverted}}^2$

 Δm^2_{31} = has opposite signs in the two hierarchies!

DETECTION OF REACTOR ANTI-NEUTRINOS

In liquid scintillator target:

$$\bar{\nu}_e + p \rightarrow e^+ + n$$

- Inverse beta decay (IBD) reaction on a free proton.
- Charge current reaction sensitive to only electron flavor.

Energy threshold = 1.8 MeV

σ @ few MeV: ~10⁻⁴² cm² (~100 x more than scattering)

$$E_{prompt} = E_{visible}$$

$$= T_{e+} + 2 \times 511 \text{ keV}$$

$$\sim E_{antinu} - 0.784 \text{ MeV}$$

Prompt + delayed (~200 μs) space & time coincidence is an exceptional background suppressing tool!

JUNO COLLABORATION

- established in 2014
- 72 institutions
- 750 collaborators
- 17 countries and regions

Country	Institute	Country	Institute	Country	Institute	
Armen ia	Yerevan Physics Institute	China	IMP-CAS	Germany	U. Mainz	
Belgiu m	Universite libre de Bruxelles	China	SYSU	Germany	U. Tuebingen	
Brazil	PUC	China	Tsinghua U.	Italy	INFN Catania	
Brazil	UEL	China	UCAS	Italy	INFN di Frascati	
Chile	PCUC	China	USTC	Italy	INFN-Ferrara	
Chile	SAPHIR	China	U, of South China	Italy	INFN-Milano	
China	BISEE	China	Wu Yi U.	Italy	INFN-Milano Bi cocca	
China	Beijing Normal U.	China	Wuhan U.	Italy	INFN-Padova	
China	CAGS	China	Xi'an JT U.	Italy	INFN-Perugia	
China	ChongQing University	China	Xiamen University	Italy	INFN-Roma 3	
China	CIAE	Chi na	Zhengzhou U.	Latvia	IECS	
China	DGUT	China	NUDT	Pakistan	PINSTECH(PAEC)	
China	ECUST	China	CUG-Beijing	Russia	INR Moscow	
China	Guangxi U.	China	ECUT-Nanchang City	Russia	JINR	
China	Harbin Institute of Technology	Croatia	UZ/RBI	Russia	MSU	
China	IHEP	Czech	Charles U.	Slovakia	FMPICU	
China	Jilin U.	Finland	University of Jyvaskyla	Taiwan-China	National Chiao-Tung U.	
China	Jinan U.	France	IJCLab Orsay	Tai wan-Chi na	National Taiwan U.	
China	Nanjing U.	France	LP2i Bordeaux	Tai wan-Chi na	National United U.	
China	Nankai U.	France	CPPM Marseille	Thailand	NARIT	
China	NCEPU	France	IPHC Strasbourg	Thailand	PPRLCU	
China	Pekin U.	France	Subate ch Nant es	Thailand	SUT	
China	Shandong U.	Germany	RWTH Aachen U.	USA	UMD-G	
China	Shanghai JT U.	Germany	TUM	USA	UC Irvine	
China	IGG-Beijing	Germany	U. Hamburg			
China	IGG-Wuhan	Germany	FZJ-IKP			

JUNO AS A REACTOR ANTINEUTRINO EXPERIMENT

JUNO – **TAO** satellite detector Taishan Antineutrino Observatory

Reactor antineutrino spectral shape uncertainty.

Baseline difference for all cores should be < 500 m.

			rang	gjian			Tais	shan		
Cores	YJ-1	YJ-2	YJ-3	YJ-4	YJ-5	YJ-6	TS-1	TS-2	DYB	HZ
Power (GW)	2.9	2.9	2.9	2.9	2.9	2.9	4.6	4.6	17.4	17.4
Baseline(km)	52.74	52.82	52.41	52.49	52.11	52.19	52.77	52.64	215	265

TAO

- To measure the reactor neutrino spectrum as a reference to JUNO
 - ✓ Better resolution to constrain fine structure and spectral shape.
- Improve nuclear databases, search for sterile neutrinos.
- Novel technology: Gd-loaded LS @ -50°C + SiPM
 - √ 30 m from 4.6 GW_{th} Taishan 1 core unoscillated spectrum
 - ✓ Energy resolution: ~1.5%/√E, 4500 p.e./MeV
 - ✓ 2.8 t (1ton fiducial volume)
- Construction and installation basically completed, data taking soon.

JUNO CIVIL CONSTRUCTION FINISHED IN 12/2021

NEUTRINO MIXING AND OSCILLATIONS

 α = e, μ , τ Flavour eigenstates INTERACTIONS

$$|\nu_{\alpha}\rangle = \sum_{i=1}^{3} U_{\alpha i} |\nu_{i}\rangle$$

i = 1, 2, 3 Mass eigenstates PROPAGATION

3 mixing angles θ_{ii}:

- o $\theta_{23} \sim 45^{\circ}$ (which quadrant?)
- o $\theta_{13} \sim 9^{\circ}$ (non-0 value confirmed in 2012)
- \circ $\theta_{12} \sim 33^{\circ}$
- Majorana phases $\alpha 1$, $\alpha 2$ and CP-violating phase δ unknown.

Neutrino oscillations

- Non-0 rest mass (Nobel prize 2015).
- Survival probability of a certain flavour = f(baseline L, E_v).
- o Different combination (L, E_v) => sensitivity to different (θ_{ii} , Δm_{ii}^2).
- Appearance/disappearance experiments.
- o Oscillations in matter -> effective (θ_{ij} , Δm_{ij}^2) parameters = f(e⁻ density N_e, E_v).

JUNO AMONG REACTOR NEUTRINO EXPERIMENTS AT DIFFERENT BASELINES

Electron survival probability for reactor antineutrinos: $P_{\overline{e}\overline{e}} = 1 - P_{21} - P_{31} - P_{32}$ Slow (solar) $P_{21} = \cos^4\theta_{13}\sin^22\theta_{12}\sin^2\Delta_{21}$ (solar) $P_{31} = \cos^2\theta_{12}\sin^22\theta_{13}\sin^2\Delta_{31}$ Fast (atm.) $P_{32} = \sin^2\theta_{12}\sin^22\theta_{13}\sin^2\Delta_{32}$ Normal ordering: $\Delta m_{31}^2 > 0$ Normal ordering: $\Delta m_{31}^2 < 0$ Inverted ordering: $\Delta m_{31}^2 < 0$

- 52.5 km baseline used only by JUNO.
- Fast oscillation pattern of reactor antineutrinos at this baseline.
- Pattern dependent on NMO (sign of $\Delta m^2_{31/2}$)
- Independent from δ_{CP} and θ_{23} .

REACTOR ANTINEUTRINO SPECTRUM @ JUNO

- Method for the Neutrino Mass Ordering with reactors antineutrinos suggested by Petcov and Piai, PLB 553 (2002) 94.
- Complementarity to the method based on matter effects on long baseline oscillations of atmospheric and accelerator neutrinos that depend also on δ_{CP} and θ_{23} .
- High sensitivity to the oscillation parameters
 - solar mixing angle θ_{12}
 - solar mass splitting ∆m²₂₁
 - atmospheric mass splitting ∆m²₃₁

JUNO PHYSICS CHALLENGES

- ☐ Resolving signature wiggles of the fast oscillation in the energy spectrum:
 - excellent energy resolution ~3% @ 1 MeV,
 - better than 1% understanding of the intrinsically non-linear energy scale of the liquid scintillator (LS),
 - possible micro-structures in the reactor spectrum under control (PRL 114 (2015) 012502).
- ☐ Large antineutrino statistics O(100k) @ 52.5 km baseline: powerful reactors (26.6 GW_{th}) & large target mass (20 kton)
- Backgrounds:
 - cosmogenic background: rock overburden of 650 m,
 - radio-purity of all materials: < 10⁻¹⁵ / 10⁻¹⁷ g of U/Th /g of LS for NMO/solar physics (JHEP 11 (2021) 102).
- Time stability over several years.

Stochastic terms in the energy resolution (photon statistics):

- High light yield (LY ~10⁴ photons/MeV).
- LS transparency: λ_{att} > 20 m @ 430 nm.
- PMT geometrical coverage: 78%.
- PMT collection efficiency x quantum efficiency: ~30%.

Systematic effects in the energy scale / spectra:

- Calibration (JHEP 03 (2021) 004)
 - \checkmark α/β/γ sources, light pulses, UV-laser
 - √ 5 complementary systems
- Double calorimetry concept
 - ✓ large 20" and small 3" PMTs
- TAO Taishan Antineutrino Observatory with an excellent energy resolution <2% (stat) @ 1MeV (arXiv:2005.08745, 2020)

Top Tracker

Water Pool Water Cherenkov μ veto 2400 20" PMTs

Central Detector 20 kton of LS

Linear Alkali Benzene (LAB) + PPO + bis-MSB + BHT

17612 20" PMTs +

25600 3" PMTs

Experiment	Daya Bay	BOREXINO	KamLAND	JUNO
LS mass	8x 20 ton	~300 ton	~1 kton	20 kton
Coverage	~12%	~34%	~34%	78%
Energy resolution	8.5% / √E MeV	∼5%/√E MeV	~6%/√E MeV	~3%/√E MeV
Eff. Light yield	~ 160 p.e. / MeV	~ 500 p.e. / MeV	~ 250 p.e. / MeV	~1600 <u>p.e</u> ./MeV

JUNO & REACTOR NEUTRINO OSCILLATION PHYSICS

NEUTRINO MASS ORDERING

3σ (reactors only) @ ~6 years * 26.6 GWth exposure
Combined reactor + atmospheric neutrino analysis in progress:
further improvement of the NMO sensitivity.

OSCILLATION PARAMETERS

- Precision of $\sin^2\theta_{12}$, Δm^2_{21} , Δm^2_{31} < 0.5% in 6 years.
- Measurement of $\sin^2\theta_{12}(^{+9\%}/_{-8\%})$ and $\Delta m^2_{21}(^{+27\%}/_{-17\%})$ also with 8B solar neutrinos.
- Unique: solar neutrino oscillation parameters with neutrinos and antineutrinos in one detector.

JUNO: A MULTI-PURPOSE OBSERVATORY

Reactor anti-v

Solar v

Supernovae (SN) v

Geoneutrinos

~60 / day

Several / day

⁸B: ~50/day CNO: ~1000/day ⁷Be: ~10000/day

Core Collapse SN

@ 10 kpc:
thousands in few sec.

Diffuse SN signal: few / year

~400 / year

Proton decay

New

physics

Neutrino magnetic moment

Sterile neutrinos

Non-standard interactions

Lorentz invariance violation

Neutrino oscillation & properties

Neutrinos as a probe

MODEL INDEPENDENT MEASUREMENT OF 8B SOLAR NEUTRINOS

Interaction channels of ⁸B-v:

ES:
$$v_x + e^- \rightarrow v_x + e^-$$

- No threshold
- All flavours & $\sigma(v_{\mu,\tau})$ / $\sigma(v_e)$ = 1/6
- Single events continuous spectrum

CC:
$$v_e + {}^{13}C \rightarrow e^- + {}^{13}N$$

- E_{thr} = 2.2 MeV
- Possible only with $v_{\rm e}$
- Prompt: e⁻; Delayed: ¹³N decay

NC:
$$v_x + {}^{13}C \rightarrow v_x + {}^{13}C^*$$

- $E_{thr} = 3.685 \text{ MeV}$
- All flavors & equal σ
- Single events monochromatic γ

ES: Chinese Phys. C 45 (2021) 1 ES+NC+CC: Ap. J. 965 (2024) 122

10 years, single events after cuts

Potential to search for possible discrepancies

10 years, correlated prompt events after cuts

Expected precision in 10 years:

⁸B flux: 5% JUNO & 3% JUNO + SNO

 $\sin^2\theta_{12}$: +9% / -8%

 Δm^2_{21} : +27% / -17%

SENSITIVITY TO ⁷Be, pep, CNO SOLAR NEUTRINOS

ES: $v_x + e^- \rightarrow v_x + e^-$

- Several radio-purity scenarios: from the Borexino level up to the "IBD" one (minimum required for the NMO)
- JUNO has potential to improve the precision of the existing Borexino measurements
 - ⁷Be: in 1-2 years time < 2.7% (current Borexino precision) for all radiopurity scenarios
 - pep: in 1-2 years time < 17% (current Borexino precision), only in IBD scenario after more than 6 years
 - CNO: constraining pep rate is crucial, precision of 20% possible in 2 to 4 years (except for the IBD scenario)
 - constraint of ²¹⁰Bi radioactive background not needed (applied in Borexino analysis Nature 587 (2020) 577–582)
 - Independent measurement of ¹³N and ¹⁵O might be possible for the first time.

GEONEUTRINOS IN JUNO

Big advantage:

✓ Large volume and thus high statistics: 400 geoneutrinos / year.

Main limitation:

✓ Large reactor neutrino background.

- Current (KamLAND and Borexino) precision on measured geoneutrino flux is ~16-18%.
- JUNO can reach this precision in a few years.
- JUNO will provide statistics sufficient to separate with a high statistical significance U and Th.
- Geological study of the local crust important in order to separate the mantle contribution and it is ongoing.

- Expected precision of the total geoneutrino signal: ~8% in 10 years (Th/U mass ratio fixed to 3.9)
- Precision of U and Th individual components in 10 years:

²³²Th ~35%

²³⁸U ~30%

²³²Th + ²³⁸U ~15%

²³²Th/²³⁸U

~55%

SUPERNOVAE (SN)

- Pre-SN neutrinos: emitted in the last hours before the collapse. Never detected. Allert of SN.
- Core-collapse SN: emitted during the SN explosion, burst of few tens of seconds in three phases (shock breakout, accretion, cooling). Observed from SN1987A.
- **SN rate in our Galaxy:** ~3 per century.

Pre-SN interaction channels SN interaction channels

J. Cos. Astro. Phys. 01 (2024) 057.

Dominant detection channel: IBD

<u>Integrated signal for a 30Mo progenitor:</u>

- **Pre-SN @0.2 kpc:** 400 1200 IBDs in a few hours
- **SN @10 kpc:** ~ 5000 IBDs in few seconds

Alert efficiency: probability to identify Pre-SN/SN neutrinos burst Sensitivity: distance at which the alert efficiency is 50%

For an exploding star of **30M**_o **JUNO** is sensitive to:

- Pre-SN up to 1.6 kpc (0.9 kpc) in case of NO (IO)
- SN up to 370 kpc (360 kpc) in case of NO (IO)

Directionality of **IBD** events → Possible to **point** to the **source**, crucial to help telescopes to detect early electromagnetic radiation

DIFFUSE SUPERNOVAE BACKGROUND SIGNAL (DSNB)

- Integrated neutrino flux from the past SN in the visible Universe.
- ~10 core collapse SN/s in the visible Universe.
- Info about the star formation rate.
- Expected signal: few IBD events / year.
- Main background:
 - ✓ reactor anti-v → go above 10 MeV
 - ✓ NC atmospheric v pulse shape discrimination (eff 50% → 80%),

JUNO DSNB discovery potential: 3σ in 3 years with nominal models

J. Cos. Astro. Phys. 10 (2022) 033.

ATMOSPHERIC NEUTRINOS

- Expected ~10/15 events per day before the cuts.
- Will be the first measurement with LS: can play a major role in GeV range, possibly pushing to MeV region.
- CC and NC interactions.

Motivation: boost the sensitivity to NMO:

- Atmospheric neutrinos provide an independent channel exploiting the Earth matter effect on oscillation of ~GeV neutrinos.
- Requirement of the reconstruction of neutrino
 - Direction (Phys. Rev. D 109.052005).
 - Energy and flavour (Eur. Phys. J. C 81 (2021) 887).

CC events

- ✓ Muon/electron flavour discrimination.
- $\checkmark~~v_{\rm e}$ and v_{μ} energy spectra: 25% precision after 5 years
- ✓ θ_{23} with 6 degree precision.

JUNO NMO sensitivity with combined reactor and atmospheric neutrinos is ongoing.

CONSTRUCTION OF THE CENTRAL DETECTOR

Bottom structure

Platform for Acrylic assembly

Top structure

5 layers of Acrylic

20 layers of Acrylic

23 layers of acrylic

CONSTRUCTION OF THE CENTRAL DETECTOR

CD CLEANING AND LS FILLING SCHEME

Water for CD: U/Th< 10^{-15} g/g, 226 Ra<0.1 mBq/m³ Water for VETO: U/Th< 10^{-14} g/g

LIQUID SCINTILLATOR PLANTS ON SITE

Four purification plants for a radio-purity of 10^{-17} g/g (U/Th) and 20 m attenuation length @ 430 nm

SS pipes to underground

ONLINE SCINTILLATOR INTERNAL RADIOACTIVITY INVESTIGATION SYSTEM (OSIRIS)

A 20-t detector to monitor radiopurity of LS before and during filling to the central detector

- ✓ RADON CONTAMINATION
- ✓ OPTICAL PROPERTIES

Eur. Phys. J. C 81 (2021) 11, 973.

KEY CONTRIBUTION OF GERMAN GROUPS WITH LEADERSHIP BY PROF. M. WURM (JGU)

JUNO timeline

JUNO Liquid Level Display

FCCs

2025-08-22 22:22

LS: 46.92 m V_{LS}: 23231.6 m³

WATER POOL FILLED WITH WATER

FIRST MUON EVENT IN THE WATER POOL

GOLDEN ANTINEUTRINO EVENT

Mon, 25 Aug 2025 22:50:45 RecEnergy = 6.3 MeV RecVertex (-9458, -9707, 3820) mm

Prompt e+ signal

Mon, 25 Aug 2025 22:50:45 RecEnergy = 2.4 MeV RecVertex (-10393, -9794, 4333) mm

Delay neutron signal

DETECTOR CALIBRATION

JUNO has multiple calibration systems:

- to cover the whole detector

to cover the whole energy range

to monitor detector stability

Automatic Calibration Unit ROV guide rail Calibration house AURORA

Calibration house

Multiple calibration sources: 68 Ge, 137 Cs, 54 Mn, 60 Co, 40 K, 241 Am-C, and laser

Energy non-linearity known to <1%

DETECTOR UNIFORMITY & LIGHT YIELD

- ◆ For R<16m, residual energy non-uniformity scanned along the Z-axis is <0.5%</p>
- Light yield is >1600 PE/MeV for ⁶⁸Ge, >1800 PE/MeV for neutron, better than expectations (difference due to non-linearity, Chinese Phys. C 49 (2025) 013003)
- Edge effects still exist, more calibration data and software work needed

ENERGY RESOLUTION

- Energy resolution for alpha from ²¹⁴Po is ~3% @0.92MeV
- Energy resolution for 68 Ge is ~3.4% @ 2× 0.511 MeV, already close to but slightly worse than the expectation of 3.1%
- Further improvement are coming: more calibration data, noise/flasher removal, reconstruction and fit, ...

SUMMARY

- After 17 years efforts, from idea to construction, JUNO detector is fully completed.
- Initial testing and performance studies show that key specifications have been mostly met.
- We are excited to have started the physics data taking:
 - Results from reactor neutrinos will come soon
 - Results on astrophysics will come later

STAY TUNED, A LOT OF ADVENTURE AHEAD OF US!

A few days ago underground with Marco and Cristobal working on JUNO commissioning.

Thank you!