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What is the Muon g-2?
One of the most compelling results in modern particle physics.

• According to the Dirac equation,  for fundamental leptons, with 
any discrepancy due to quantum corrections.
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5 loop order 2 loop order NNLO NLO

What is the Muon g-2?
One of the most compelling results in modern particle physics.
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• Abs. uncertainty:

    HVP > HLbL

• Rel. uncertainty:    

    HLbL > HVP

General Motivation



Pseudoscalar-pole contribution to the g-2
And its main and light character
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• Dispersive approaches apply different cuts to the amplitude.

G. Colangelo et al ., JHEP 1509 (2015) 074 Transition form 
factor

γ

γ

γ γ

π0, η, η′￼

• Systematic way to avoid double counting.

Mμν(q1, q2) = ϵμναβqα
1 qβ

2 Fπ0γ*γ*(−q2
1 , − q2

2) Describe the interaction between a 
pseudoscalar meson (e.g., the pion) and two 
(virtual) photons

• Pion-pole contribution



Transition form factor of the pion (  TFF)π0

5

Bridging the gap between theory and experiment.

• Experimental data for the single-virtual TFF 
from CELLO, CLEO, BABAR, Belle and recently 
from BESIII

π

• Lattice QCD data.
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• CELLO

• CLEO

• BABAR

• Belle 

• BESIII.

• How the  TFF is obtained?π0

C. Redmer. 8th plenary Workshop of the muon g-2 Theo. Initiative

• New BES-III data: 20 data points in 
the region of 0.2 to 3.5 GeV^2
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Lattice QCD (LQCD)
And how to be left with squared eyes.

Id   a     N
J303 0.0498095 0.0494863 5197

N300 0.132283 2694

D200 0.0642606 0.0295507 7514

N200 0.0597152 3248

N203 0.088836 3196

N202 0.125027 3075

N401 0.0763401 0.0606218 7014

S400 0.0905882 2847

C101 0.0863609 0.037344 3335

N101 0.0580176 7513

H102 0.0930381 3200

H101 0.128415 1670

ỹ = m2
π /(16π2f2

π)

• Finite lattice spacing “a”.

• Different masses for the pion. Not the 
physical real mass. 

• Non-perturbative method for solving 
QCD

A. Gérardin, H. Meyer, A. Nyffeler 1903.09471



Transition form factor of the pion (  TFF)π0
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Lattice QCD vs everyone else?

White paper on the  2505.21476 aμ• Our motivation
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A Unified Approach: Combining Data Sets
What works better in each region?

• Combine LQCD and experimental data to reduce the systematic and 
extrapolation uncertainty.

Asymptotic constraints on the TFF:

• Our motivation

• Lattice gives smaller uncertainty in a double-virtual region.

• Experimental data works great in the single-virtual region.



Constraints from the TFF
From virtual to real photons.
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Asymptotic constraints on the TFF:

• Chiral anomaly: Fπ0γγ(0,0) ⟶
1

4π2fπ

• Double-virtual form factor from operator product 
expansion (OPE): lim

Q2→∞
Fπ0γ*γ*(Q2, Q2) =

2fπ
3 [ 1

Q2 ]
• The single-virtual form factor exhibits the Brodsky–

Lepage behavior: lim
Q2→∞

Fπ0γ*γ(Q2,0) =
2fπ
Q2



Ansatz to the πTFF in Lattice QCD
From lattice simulations to phenomenological insights.

• The LMD+V model refines the LMD model by adding an extra vector resonance.
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• It fulfils the Brodsky-Lepage constraint when  and the OPE constraint.h̃1 = 0

• All free parameters can be fitted considering .h̃0 = − Fπ /3
A. Nyffeler 0203243 

• For extrapolate to the physical point one uses a  model.hi(y, a)
• In the single-virtual the parameters to fit are h5, α, MV1
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Fit methodology and results: Method A
And how to go from a model to measurement.

• Fit individual ensembles and all of them together
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•  h̃0, h̃2, h̃5, α, MV1
• MV2

(y, a) = MV1
(y, a) + 1.465 GeV − 0.775 GeV

• Fit individual ensembles and all of them together

Knech and Nyffeler, PRD 65 (2002) 073034
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1. Fit each ensemble separately  


2. Fit experimental data separately  

→ hi(a, y), α(a, y), MV1
(a, y)

→ h5(0,yphys), α(0,yphys), MV1
(0,yphys)

Fit methodology and results: Methods A and B



Fit methodology and results: Method A.
And how to go from a model to measurement.

• Fit individual ensembles and all of them together
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PRELIMINARY

• Parameter  extrapolated to 
physical point.

α

PRELIMINARY



Fit methodology and results: Method A.
And how to go from a model to measurement.

13

0.000 0.002 0.004 0.006 0.008
-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

a2 [fm2]

h 5
[G
eV

]

LQCD Extrapolation

LQCD Extrapolation excl. S400 & H102

Exp. & LQCD extrapolation excl. S400 & H102

C101 D200 H101 H102 J303

N101 N200 N202 N203 N300

N401 S400 Exp. fit

0.00 0.02 0.04 0.06 0.08 0.10 0.12

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

y-yphys

h 5
[G
eV

]

LQCD Extrapolation

LQCD Extrapolation excl. S400 & H102

Exp. & LQCD extrapolation excl. S400 & H102

C101 D200 H101 H102 J303

N101 N200 N202 N203 N300

N401 S400 Exp. fit

• Parameter  extrapolated to 
physical point.

h5

• Fit individual ensembles and all of them togetherPRELIMINARY

PRELIMINARY



Fit methodology and results: Method B
And how to go from a model to measurement.

• Fit individual ensembles and all of them together
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⃗p(ỹ, a) = ⃗p(0, 0) + ⃗C y(y, yphys) + ⃗C a ( a
aβ=5.3 )

2• Extrapolation to the physical 
point. 

A. Nyffeler 0203243 

• 15 - 2 parameters = 13 left as free parameters.*

 and MV1
h̃0

ℱLMD+V
π0γ*γ* (Q2

1 , Q2
2) =

−h̃0Q2
1Q2

2(Q2
1 + Q2

2) + h̃2Q2
1Q2

2 − h̃5M2
V1

M2
V2

(Q2
1 + Q2

2) + αM4
V1

M4
V2

(M2
V1

+ Q2
1)(M2

V2
+ Q2

1)(M2
V1

+ Q2
2)(M2

V2
+ Q2

2)

• Fit all ensembles (and experimental data) together. → ⃗p(0,yphys), ⃗C a , ⃗C y

* Could not subtract the parameters, it is a choice



Fit methodology and results: Method B.
And how to go from a model to measurement.

• Fit individual ensembles and all of them together
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• Lattice QCD and experimental 
data agree, so this approach is 
feasible.

PRELIMINARY
♥



Fit methodology and results: Uncertainties
And how to go from a model to measurement.

• Fit individual ensembles and all of them together.

16

• One has statistical and systematic uncertainty.

• Having LQCD and experimental data one can 
fit them simultaneously and reduce the 
systematical and extrapolation uncertainty 
from the .aμ



aHLbL;π0

μ = ( α
π )

3

∫
∞

0
dq1 ∫

∞

0
dq2 ∫

1

−1
dτ (w1(q1, q2, τ) ℱπ0γ*γ*(q2

1 , q2
3) ℱπ0γ*γ(q2

2 ,0) + w2(q1, q2, τ) ℱπ0γ*γ*(q2
1 , q2

2) ℱπ0γ*γ(q2
3 ,0))

Pseudoscalar-pole contribution to aμ
And how mesons influence high-precision tests of the SM.
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γ

μ

π, η, η′￼

• Pion-pole contribution to HLbL.

q1q2

q3

White paper on the  2505.21476 aμ

P. Masjuan, P. Sanchez Puertas 1701.05829



What’s next?
How might this research be taken further?
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• Combined fit of lattice and experimental data (Method B)


• Study impact of TFF improvements on 


• Consider ansatz with more parameters in singly-virtual kinematics: conformal fit 
or Canterbury approximants.


• NNLO ChPT fit (Bickert et al, PhysRevD.102.074019)


• Extension to  with existing experimental data for doubly-virtual kinematics

aμ

η, η′￼



Thank you!
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Questions are happily received(:



Backupslides
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Lattice QCD: kinematical reach
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And how to be left with squared eyes.

• Kinematical reach is definite.



Lattice QCD: correlation functions
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How the operator is discretised on the lattice?

• Ensembles ll (local local): needs a renormalization constant. 


• Straightforward discretisation of the continuum operator at a lattice site. 

• Ensembles lc (local conserved): No renormalization needed since is 
conserved on the lattice. 


• Involves links connecting neighbouring sites.



Uncertainties everywhere
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Nothing is certain in life.



PSEUDOSCALAR-POLE CONTRIBUTION

aP−pole
μ = ( α

π )
3

∫ dQ1dQ2dτ [w1(Q1, Q2, τ) FPγ*γ*(−Q2
1 , − Q2

3)FPγ*γ(−Q2
2 ,0)

+w2(Q1, Q2, τ) FPγ*γ*(−Q2
1 , − Q2

2)FPγ*γ(−Q2
3 ,0)]

Figure 58: Weight function w1(Q1,Q2, 0) for ⇡0 (left) and ⌘0 (right); cf. Eq. (4.19). Reprinted from Ref. [19].

where a = 0, . . . , 8 is the corresponding flavor index associated to the Gell-Mann matrices �a, extended to include
�0 ⌘

p
2/3 diag(1, 1, 1), and h0| ja5µ|Pi ⌘ ipµFa

P with ja5µ = q̄�µ�5
�a

2 q. Away from the chiral limit, corrections arise
and ⌘–⌘0 mixing must be accounted for, see Refs. [575, 576] and references therein. The high-energy behavior can be
obtained by expanding the product of electromagnetic currents on the light-cone, obtaining at leading order in pQCD
and at leading-twist [577, 578]

FP�⇤�⇤ (�Q2
1,�Q2

2) =
X

a

2 Tr(Q2�a)Fa
P

Z 1

0
dx

�a
P(x)

xQ2
1 + (1 � x)Q2

2
. (4.22)

Higher-order corrections in pQCD have been derived as well [579, 580]. Since for large momenta �a
P(x) ! 6x(1 �

x) [578, 581], the following limits can be inferred

lim
Q2!1

Q2FP�⇤�⇤ (�Q2, 0) =
X

a

6 Tr(Q2�a)Fa
P

"
1 � �a0 2Nf

⇡�0
↵s(µ0)

#
, (4.23)

lim
Q2!1

Q2FP�⇤�⇤ (�Q2,�Q2) =
X

a

2 Tr(Q2�a)Fa
P

"
1 � �a0 2Nf

⇡�0
↵s(µ0)

#
, (4.24)

where we include �0 ⌘ 11Nc/3 � 2Nf /3, with Nf the number of e↵ective active flavors. The first limit is commonly
known as the Brodsky–Lepage (BL) limit [577, 578], while the latter can be rigorously obtained from the operator
product expansion (OPE) [582–585]. The ⌘ and ⌘0 cases receive important ↵s corrections due to the anomalous
dimension of the singlet axial current [586], which have been accounted for by the last factor [576, 587, 588]. Finally,
higher-order corrections have been calculated using the OPE, which, for the ⇡0, multiply Eq. (4.24) by (1 � 8

9
�2

Q2 ),
with the estimate �2 = 0.20(2) GeV2 determined from sum rules [583] already used in Refs. [18, 472, 573] and also
supported by lattice results [22, 589].

4.4.2. The pion pole in a dispersive approach
The central idea behind the dispersive analysis of the ⇡0 TFF [21, 493, 590] is to reconstruct this object from

its dominant low-energy singularities. As Fig. 58 (left) demonstrates, the main weight for the HLbL integration
in Eq. (4.19) lies in the region of Qi < 1 GeV; in this range, where a precise and reliable theoretical description is
therefore of prime importance, the intermediate states dominating the discontinuities in the two form factor virtualities
are given by two- and three-pion intermediate states. In particular, these discontinuities can be reconstructed from data
on e+e� ! 2⇡, 3⇡ and automatically contain the e↵ects of the lowest-lying resonances in these channels, the ⇢(770),
!(782), and �(1020), in a model-independent way. Beyond this dominant part constructed rigorously from dispersion
theory, two further pieces are added in order to fulfill all asymptotic constraints described in the previous section: an
e↵ective pole that parameterizes heavier intermediate states; and an asymptotic contribution constructed on the basis

110

kernel functions 
are peaked at 
low energies

on-shell 
pseudoscalar 
transition form 
factors (TFFs)

π0, η, η′￼ =

SLIDE COURTESY OF F. HAGELSTEIN.



ETA & ETA’ TFF

SLIDE COURTESY OF F. HAGELSTEIN.


