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Motivation

* Moller scattering (e e~ — e e ) provides a clean probe of the weak mixing angle at low energies

higher-order perturbative corrections needed

compute electroweak two-loop corrections

* Most complicated Feynman integrals at the two-loop level relevant to this process are planar and non-
planar double-box integrals

» 3 massless bosons Smirnov '99, Tausk '99
exchanged between fermion lines

N\

integrals with
challenging geometries

» 1 or 2 massless bosons Schwanemann, Weinzierl '25




Geometry of Feynman Integrals

e Take an integral I and write it in Baikov representation: [ = / P.zi,...,2,) dzy...dz,
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Planar Double Box

rescale away
D=4-2¢ m2, 1, s * 35 master integrals - 20 sectors
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Non Planar Double Box

rescale away
D=4-2¢ m2, 1, s * 67 master integrals - 27 sectors
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Differential Equations and e-factorization

e By applying integration-by-parts, one obtains a differential equation of the form

d = A(gx)l
) find transformation | = RK

e-factorized DEQ dK eA(x) K

(

e |f we sort the integrals from least to most complicated, the matrix A has a lower block-triangular structure:

- 0 O 0 the maximal cut Is the

. . 0 challenging bit
masters fixed on the maximal A = (especially for “complicated” geometries)

cut extend naturally beyond it 0 \_/

solve this DEQ with appropriate boundary conditions in terms of iterated integrals




How to e-factorize differential equations A few minutes ago

[arXiv:2506.09124] D. Melnichenko

Goal: pick a set of master integrals that e-factorizes the differential equation without explicitly exploiting
the geometry

2-Step Procedure:

1 Pick a basis of integrands W using ordering criteria based on pole order and residue.

Translate into a basis of integrals J. The differential equation for J is in Laurent polynomial
form:
1

dJ = ek ALK (x)J
K

= min

2 Construct a matrix R, such that the differential equation for K = R~ 'J is in e-factorized
form




Sector 127
Non Planar Double Box Fl side: 5 Mls

* \We can find a one-dimensional Baikov representation. The homogenised twist reads:

U(z) = [po(2)1* [p1(2)] % [P2(2)] 2 [pa(2)] 2 [pa(2)] 2

po(z) = zo p1(2) = ( U._o(21) ~
p2(2) = (M° — s — )29 — z4 ‘ZO=1 \/P6(Z1)
p3(2) = (9m* — 5m* 8)z§ —
p4(2) = 4m* (s + 1)z§ + sz5 — Genus 2




Sector 127

Non Planar Double Box

Fl side: 5 MIs
e Running the full IBP reduction, we find 5 basis forms:
hl | O ho’ 1 - O } r=1 o= 1 ]
0=0 o=1 l | ="
=0 o=1 [
Q=(—3m2+t)(Zo+Z1)Zo J
\_/




Sector 127

Non Planar Double Box

* Now, we must translate the master forms into Feynman integrals.

# master integrals # master integrands

, , Vi
dmV = dim Hg W
W3

straightforward translation v,
Vs

Fl side: 5 Mls
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Sector 127 | < >
Non Planar Double Box .
Fl side: 5 Mls

e Using the basis found by the algorithm, we find the DEQ is indeed a Laurent polynomial in €:
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e The rotation to an e-factorized DEQ can be achieved by the matrix R,

-1

R = ¢ + gl

solution to e-independent £
differential equations




Sector 123

Non Planar Double Box

Fl side: 8 Mls
* We can find a two-dimensional Baikov representation. The homogenised twist reads:
1 1
U(2) = [po(2)1* [P1(2)]° [p2(2)]° [Ps(2)]7 2 [pa(2)] 72 T\
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p2(2) = 22
K3 4>




Sector 123

Non Planar Double Box |
Fl side: 8 Mls

* Running the full IBP reduction, we find 12 basis forms. 7 numper Feynman integrals

e Atr=2, we find 6 forms:
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Sector 123

Non Planar Double Box Fl side: 8 Mls

e Running the full IBP reduction, we find 12 basis forms.

e Atr=1, we find O forms.

2
h r— 2 if either even polynomial is in the denominator, taking a residue
will make one of the odd polynomials a perfect square
2,1 1,2 ™.
H2,0 . pl, 1. 10,2 can take second residue

O:OE 0:1E 0:2:




Sector 123

Non Planar Double Box Fl side: 8 Mls

e Running the full IBP reduction, we find 12 basis forms.

e At r=0, we find, once again, 6 forms:
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Sector 123

n Planar D le Box
No anar Double Bo Kira: 8 Mls

e In translating the basis back into V', we must be mindful of the vanishing integrands.

e Using the basis found by the algorithm, we find the DEQ is indeed a Laurent polynomial in €:
o |

| IR |

R =¢e1|}: + €0




Closing Remarks

* \We considered the planar and non-planar double-box integrals with three massive propagators.

* [he non-planar double-box Is a particularly challenging integral, as it is associated to trickier
geometries: K3 and genus 2.

* \We showed how these integrals can be computed systematically with no prior
knowledge of the geometries, using the general algorithm of [arXiv:2506.09124] .
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