Electroweak double-box integrals for Møller scattering with three Z bosons

Iris Bree ibredeme@uni-mainz.de

based on work with **Dmytro Melnichenko** and **Stefan Weinzierl**

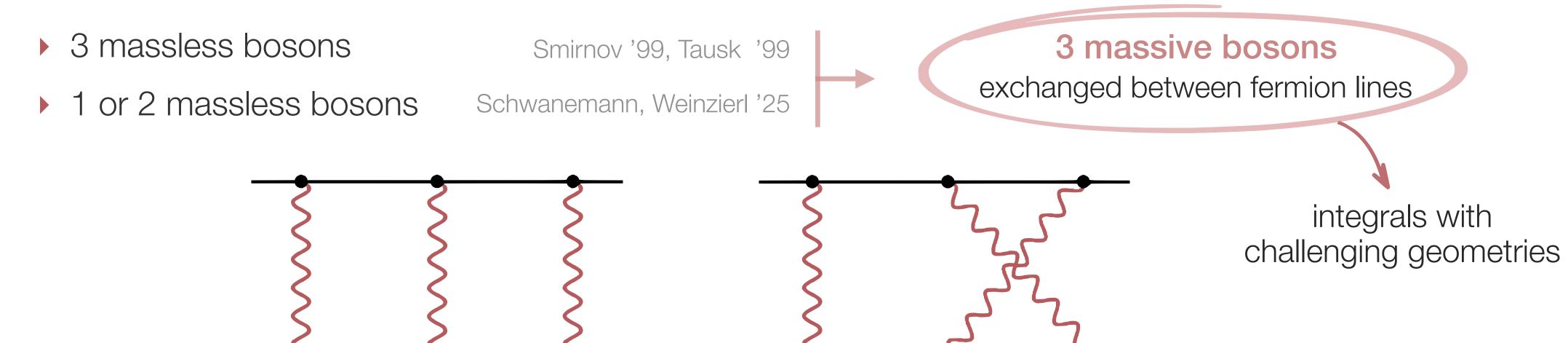
Motivation

• Møller scattering ($e^-e^- o e^-e^-$) provides a clean probe of the weak mixing angle at low energies

higher-order perturbative corrections needed

compute electroweak two-loop corrections

 Most complicated Feynman integrals at the two-loop level relevant to this process are planar and nonplanar double-box integrals



Geometry of Feynman Integrals

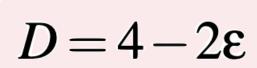
• Take an integral I and write it in Baikov representation: $I = \int P_{\epsilon}(z_1, ..., z_n) dz_1...dz_n$ go on the maximal cut $d = c_1 + c_2 + c_2$

$$I_{\text{Maxcut}} = \int U_{\epsilon}(z_1, ..., z_{N_B}) dz_1...dz_{N_B}$$

• Taking $\varepsilon=0$, we can observe the geometry of the integral:

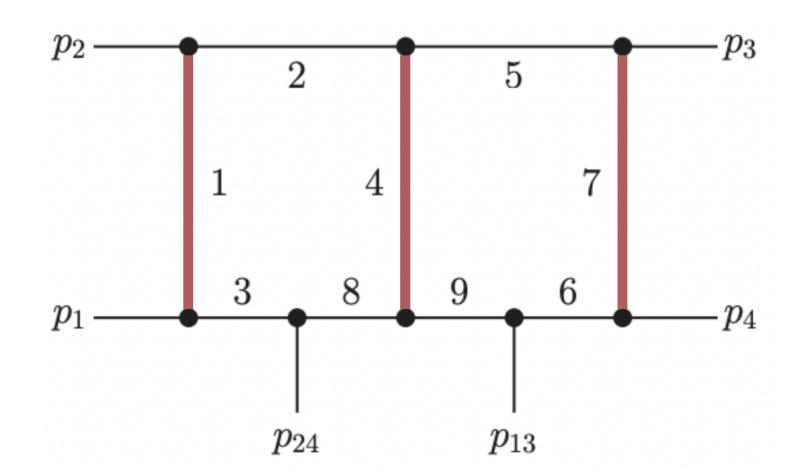
$$U_{\epsilon=0} \sim \frac{1}{\sqrt{(z_1-a)(z_1-b)}} \qquad U_{\epsilon=0} \sim \frac{1}{\sqrt{P_4(z_1)}} \qquad U_{\epsilon=0} \sim \frac{1}{\sqrt{P_6(z_1)}} \qquad U_{\epsilon=0} \sim \frac{1}{\sqrt{P_6(z_1)}} \qquad \dots$$
 genus 0 genus 1 genus 2

Planar Double Box



rescale away

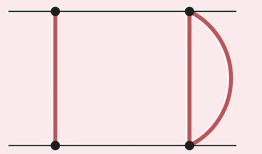
Scales: m², t, s

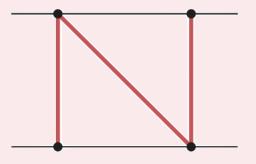


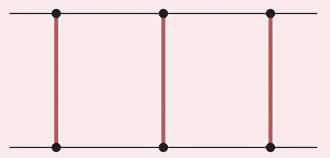
$$\sigma_1 = -(k_1 - p_1)^2 + m^2, \quad \sigma_2 = -(k_1 - p_{12})^2, \quad \sigma_3 = -k_1^2,
\sigma_4 = -(k_1 + k_2)^2 + m^2, \quad \sigma_5 = -(k_2 + p_{12})^2, \quad \sigma_6 = -k_2^2,
\sigma_7 = -(k_2 + p_{123})^2 + m^2, \quad \sigma_8 = -(k_1 - p_{13})^2, \quad \sigma_9 = -(k_2 + p_{13})^2$$

• 35 master integrals - 20 sectors

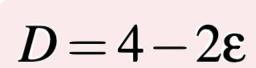
Geometries:





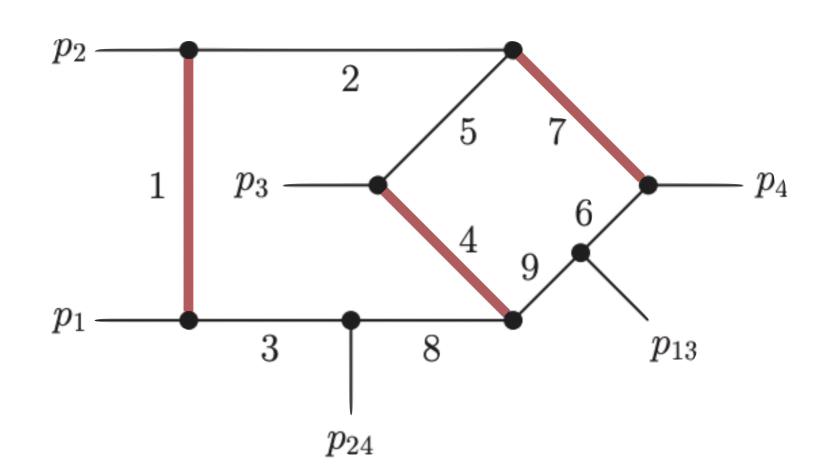


Non Planar Double Box



rescale away

Scales: m², t, s

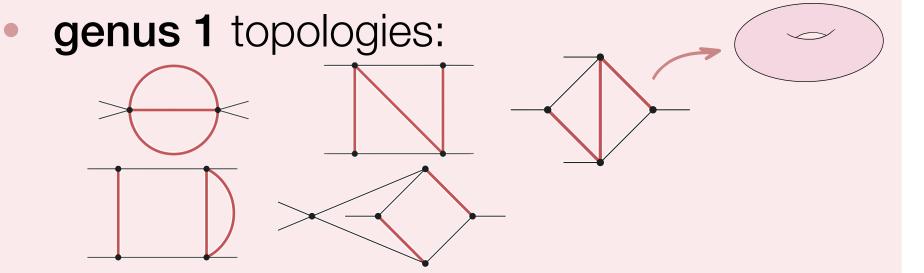


$$\sigma_1 = -(k_1 - p_1)^2 + m^2, \quad \sigma_2 = -(k_1 - p_{12})^2, \quad \sigma_3 = -k_1^2,
\sigma_4 = -(k_1 + k_2)^2 + m^2, \quad \sigma_5 = -(k_{12} + p_3)^2, \quad \sigma_6 = -k_2^2,
\sigma_7 = -(k_2 + p_{123})^2 + m^2, \quad \sigma_8 = -(k_1 - p_{13})^2, \quad \sigma_9 = -(k_2 + p_{13})^2$$

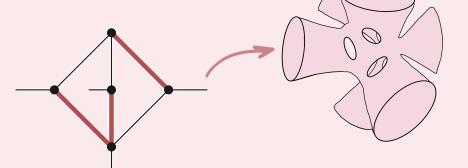
• 67 master integrals - 27 sectors

Geometries:

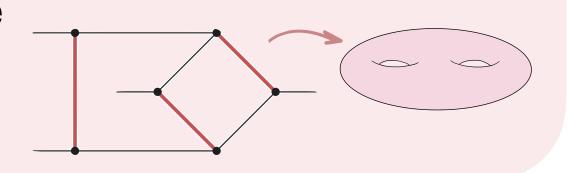
genus 0 sectors



K3 surface



genus 2 curve

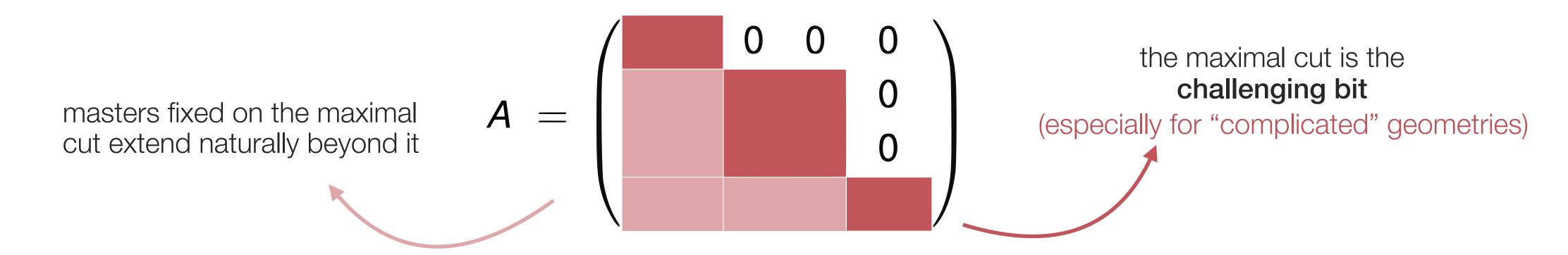


Differential Equations and \(\epsilon\)-factorization

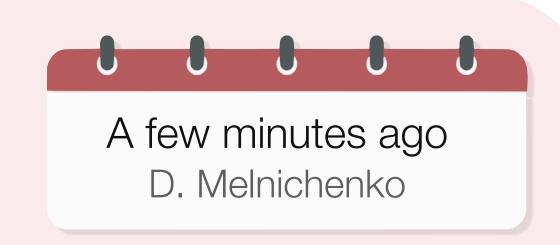
• By applying integration-by-parts, one obtains a differential equation of the form

$$dI = A(\varepsilon, x)I$$
 find transformation $I = RK$ solve this DEQ with appropriate boundary conditions in terms of **iterated integrals**

• If we sort the integrals from least to most complicated, the matrix A has a lower block-triangular structure:



How to ε-factorize differential equations



[arXiv:2506.09124]

Goal: pick a set of master integrals that ε-factorizes the differential equation without explicitly exploiting the geometry

2-Step Procedure:

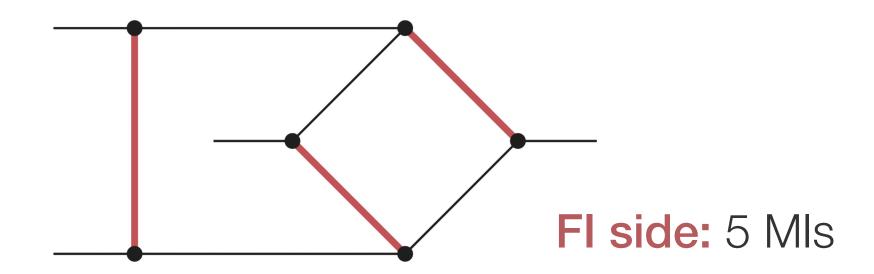
Pick a basis of integrands Ψ using ordering criteria based on pole order and residue.

Translate into a basis of **integrals** *J*. The differential equation for *J* is in **Laurent polynomial form**:

$$dJ = \sum_{k=k_{\min}}^{1} \varepsilon^k A^{(k)}(x) J$$

Construct a matrix R, such that the differential equation for $K = R^{-1}J$ is in ϵ -factorized form

Non Planar Double Box



We can find a one-dimensional Baikov representation. The homogenised twist reads:

$$U(z) = [p_0(z)]^{4\epsilon} [p_1(z)]^{-\frac{1}{2}} [p_2(z)]^{-\frac{1}{2}} [p_3(z)]^{-\frac{1}{2}-\epsilon} [p_4(z)]^{-\frac{1}{2}-\epsilon}$$

$$\sum_{i=0}^{\infty} p_0(z) = z_0$$

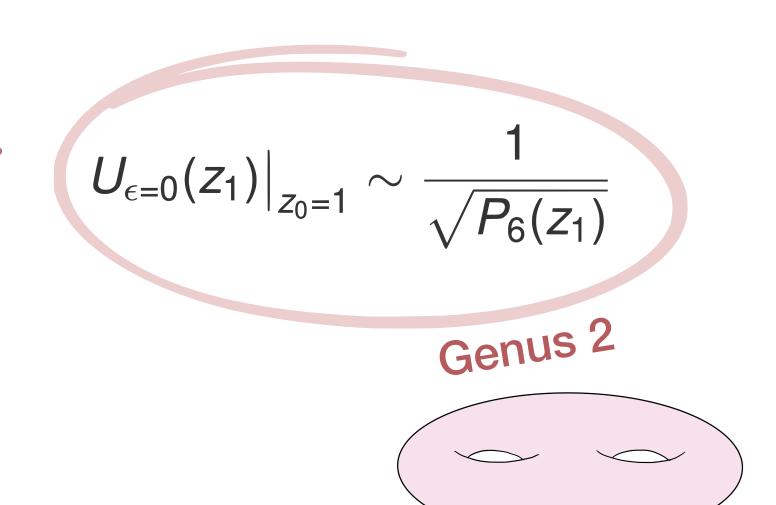
$$p_{0}(z) = z_{0}$$

$$p_{1}(z) = (m^{2} - t)z_{0} - z_{1}$$

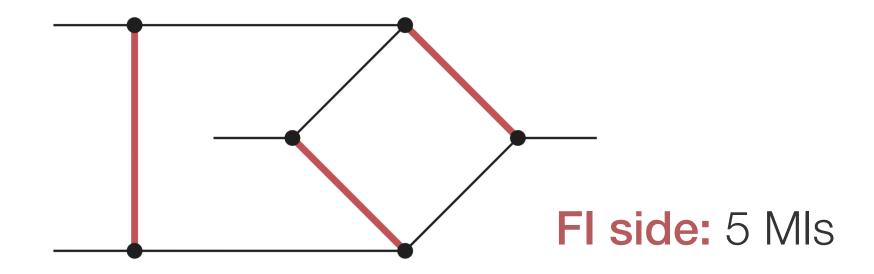
$$p_{2}(z) = (m^{2} - s - t)z_{0} - z_{1}$$

$$p_{3}(z) = (9m^{4} - 5m^{2}s)z_{0}^{2} - \dots$$

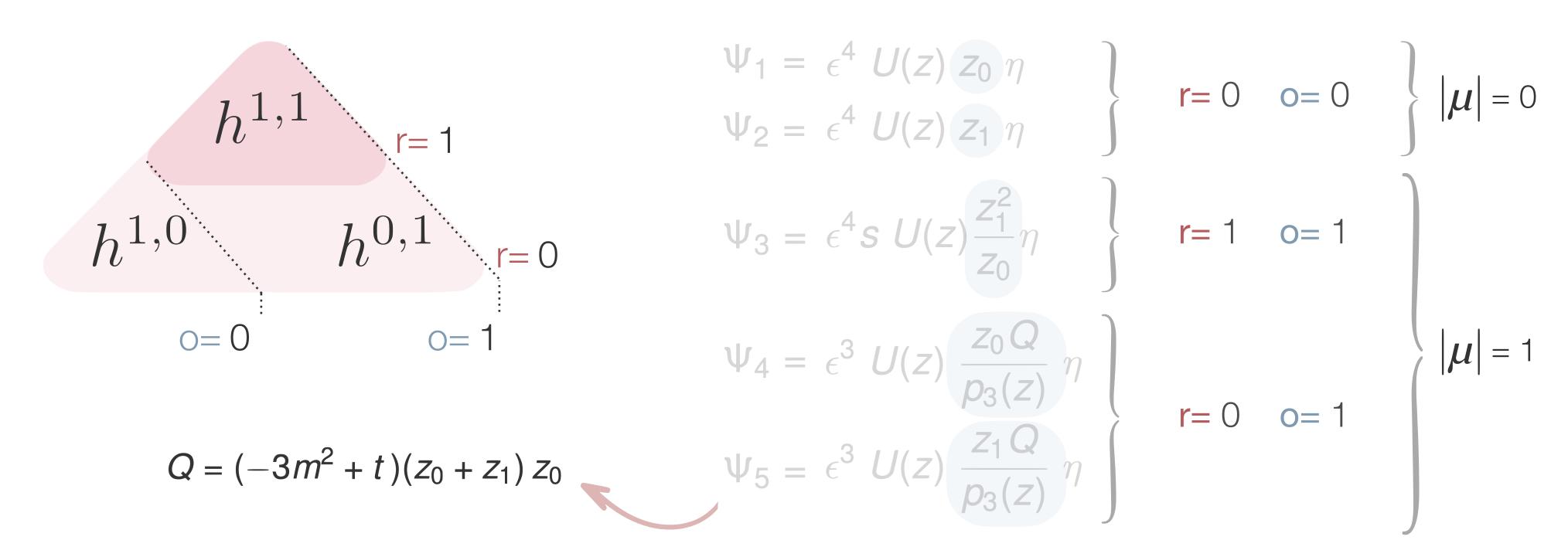
$$p_{4}(z) = 4m^{4}(s + t)z_{0}^{2} + sz_{1}^{2} - \dots$$



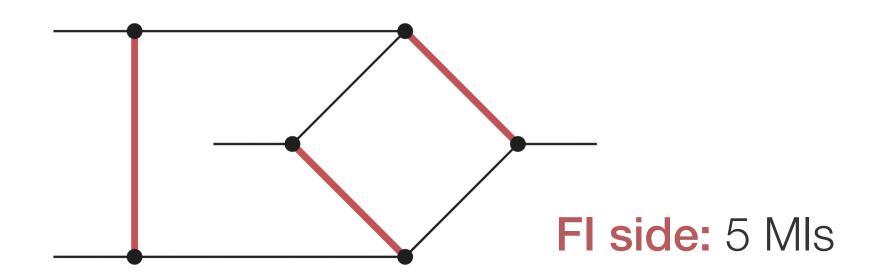
Non Planar Double Box



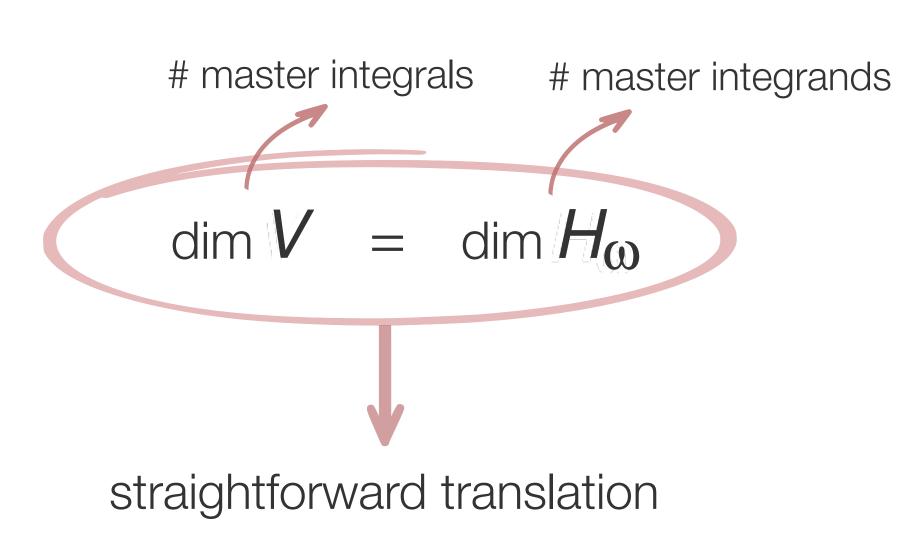
• Running the full IBP reduction, we find 5 basis forms:

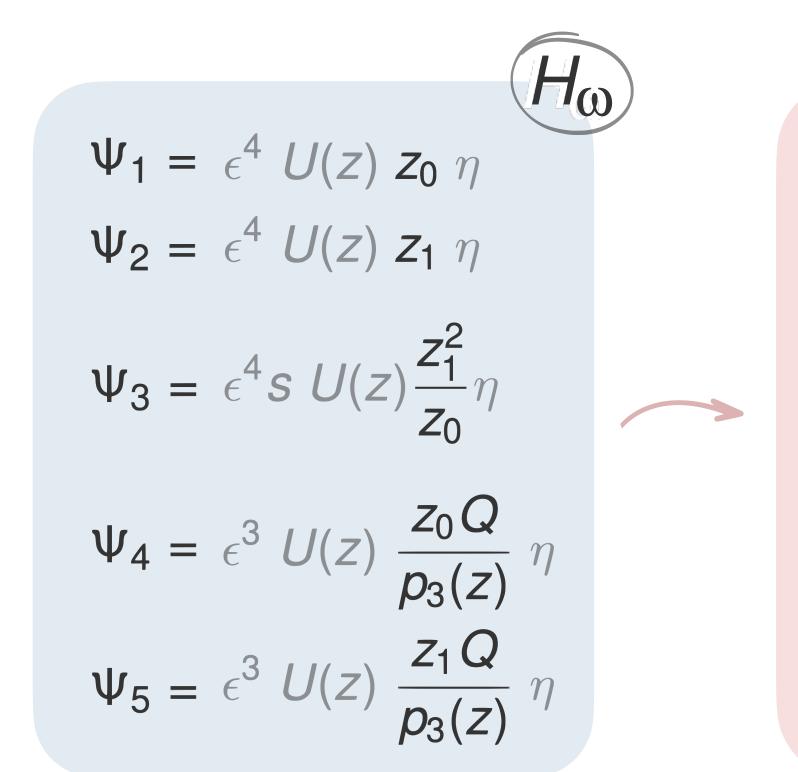


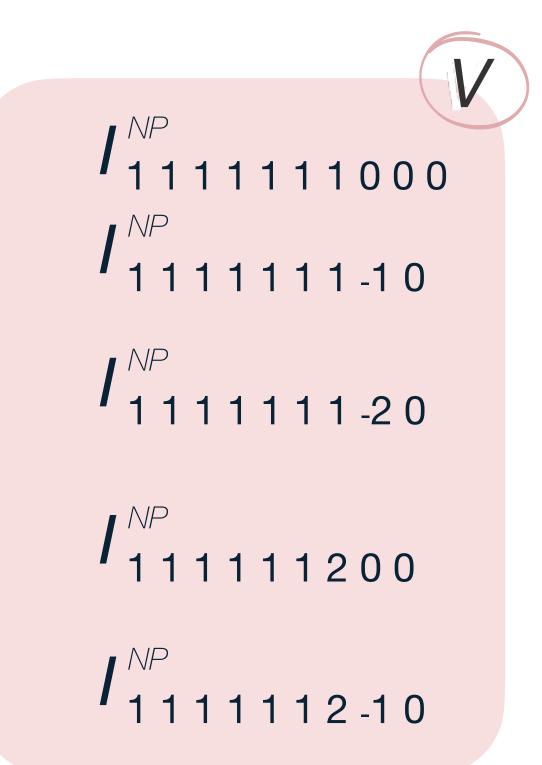
Non Planar Double Box



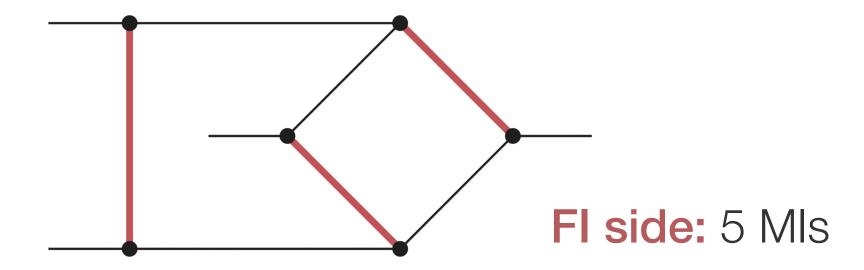
Now, we must translate the master forms into Feynman integrals.







Non Planar Double Box



• Using the basis found by the algorithm, we find the DEQ is indeed a Laurent polynomial in ε:

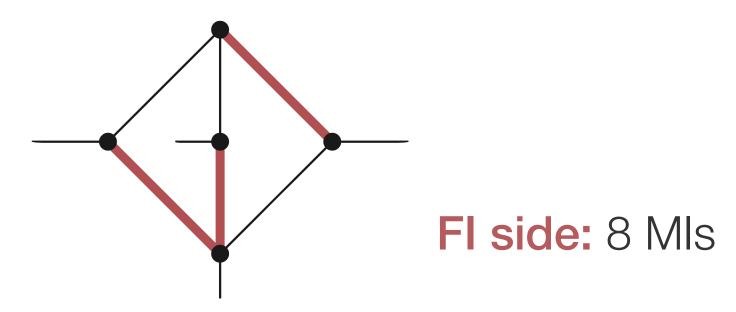
$$A = \epsilon^{-1} \left| \begin{array}{c} \\ \\ \\ \end{array} \right| + \epsilon^{0} \left| \begin{array}{c} \\ \\ \end{array} \right| + \epsilon^{1} \left| \begin{array}{c} \\ \\ \end{array} \right|$$

• The rotation to an ε -factorized DEQ can be achieved by the matrix R,

$$R^{-1} = \varepsilon^{-1}$$
 $+ \varepsilon^0$ F_1 F_2 F_3 P_2^{-1} and F_2 F_3 F_2

solution to ε-independent differential equations

Non Planar Double Box



• We can find a two-dimensional Baikov representation. The homogenised twist reads:

$$U(z) = [p_0(z)]^{4\epsilon} [p_1(z)]^{\epsilon} [p_2(z)]^{\epsilon} [p_3(z)]^{-\frac{1}{2}-\epsilon} [p_4(z)]^{-\frac{1}{2}-\epsilon}$$

$$p_0(z) = z_0$$

$$p_1(z) = z_1$$

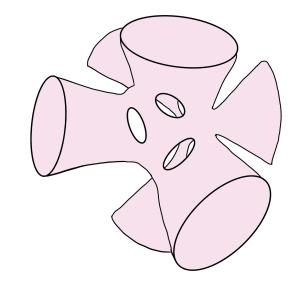
$$p_2(z) = z_2$$

$$p_3(z) = (m^2 s z_0 - t z_1)^2 + \dots$$

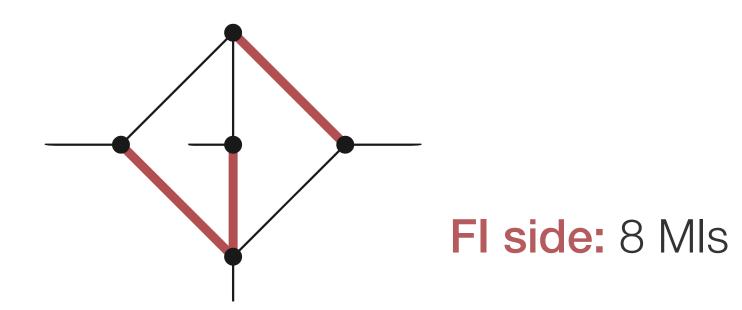
$$p_4(z) = m^4 z_0^2 (-s z_0 + z_1)^2 - \dots$$

$$U_{\epsilon=0}(z_1,z_2)\big|_{z_0=1} \sim \frac{1}{\sqrt{P_6(z_1,z_2)}}$$

K3

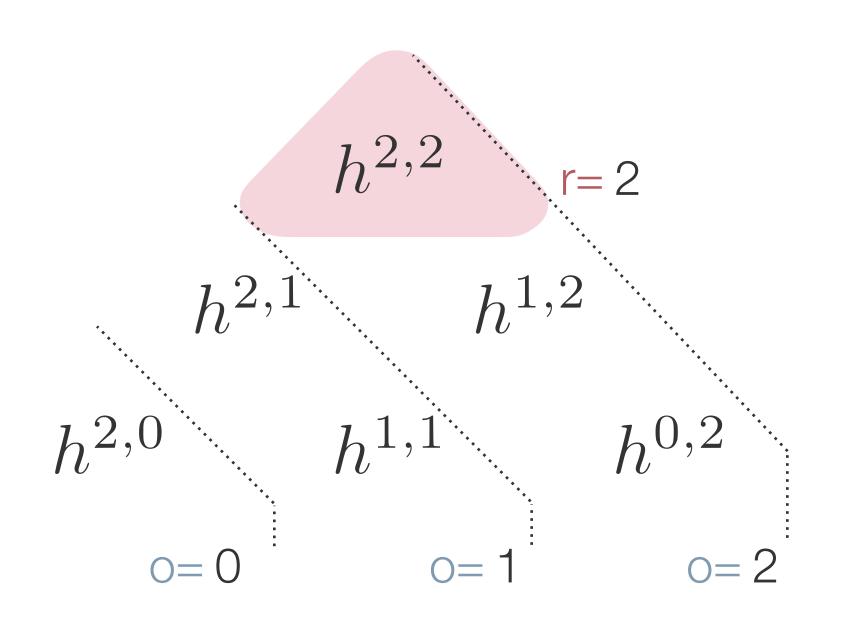


Non Planar Double Box



• Running the full IBP reduction, we find 12 basis forms.

≠ number Feynman Integrals



• At r= 2, we find 6 forms:

$$\Psi_{2} = \epsilon^{4} U(z) \frac{z_{1}}{z_{0}} \eta$$

$$\Psi_{3} = \epsilon^{4} U(z) \frac{z_{2}}{z_{0}} \eta$$

$$\Psi_{4} = \epsilon^{4} U(z) \frac{z_{0}}{z_{1}} \eta$$

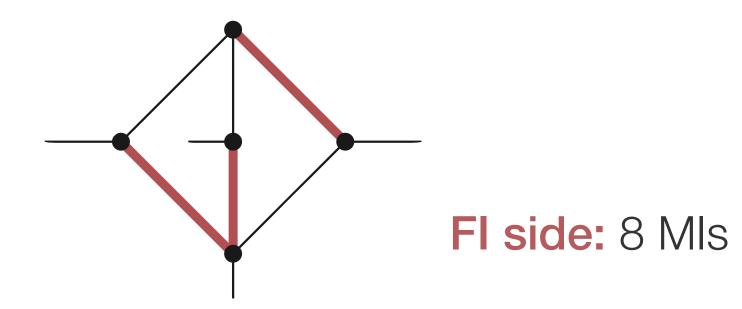
$$\Psi_{5} = \epsilon^{4} U(z) \frac{z_{2}}{z_{1}} \eta$$

$$\Psi_{6} = \epsilon^{4} U(z) \frac{z_{0}}{z_{2}} \eta$$

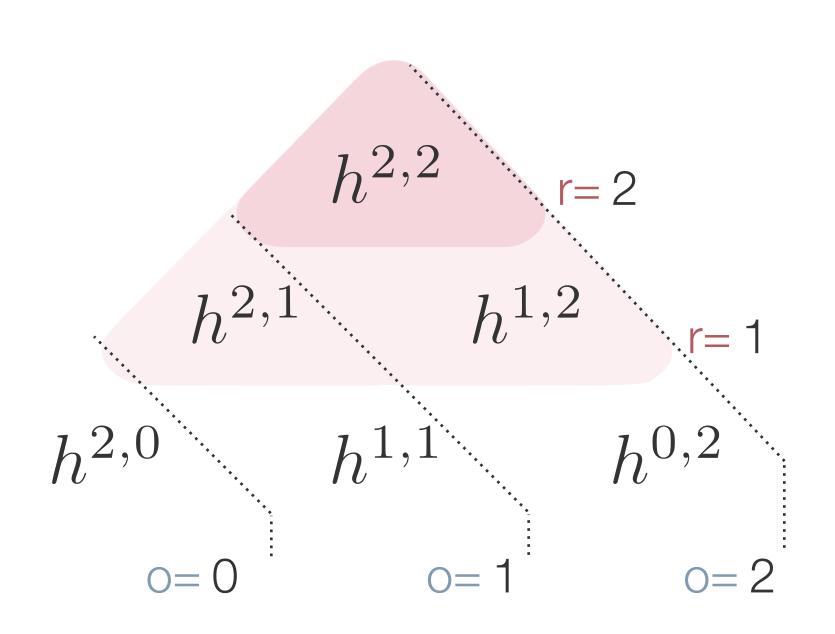
$$\Psi_{7} = \epsilon^{4} U(z) \frac{z_{0}}{z_{2}} \eta$$

no discrepancy in number of MIs
$$|\mu|=1$$
 vanish upon translation to FIs

Non Planar Double Box



Running the full IBP reduction, we find 12 basis forms.

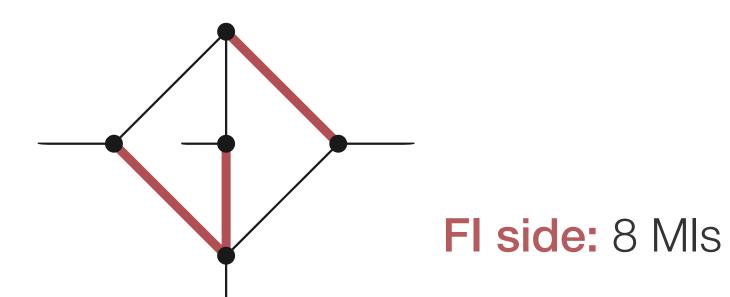


• At r=1, we find 0 forms.

if either even polynomial is in the denominator, taking a residue will make one of the odd polynomials a **perfect square**

can take second residue

Non Planar Double Box



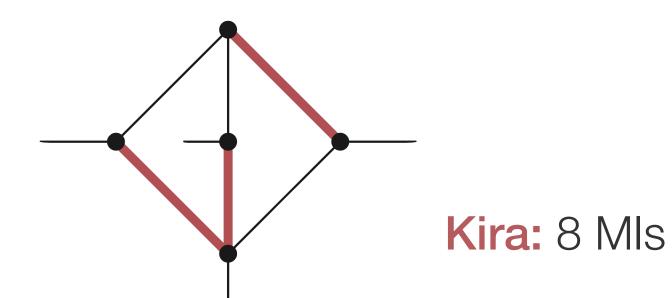
Running the full IBP reduction, we find 12 basis forms.

 $h^{2,2} \qquad \text{r= 2}$ $h^{2,1} \qquad h^{1,2} \qquad \text{r= 1}$ $h^{2,0} \qquad h^{1,1} \qquad h^{0,2} \qquad \text{r= 0}$ $0=0 \qquad 0=1 \qquad 0=2$

• At r= 0, we find, once again, 6 forms:
$$\Psi_1 = \epsilon^4 \ U(z) \ \eta \qquad \qquad \Big| \ \mu \Big| = 0$$

$$\Psi_8 = \epsilon^4 \ U(z) \ \frac{z_0^2 z_2^2}{p_4(z)} \ \eta \qquad \qquad \Big| \qquad$$

Non Planar Double Box



- ullet In translating the basis back into V, we must be mindful of the vanishing integrands.
- Using the basis found by the algorithm, we find the DEQ is indeed a Laurent polynomial in ε:

$$A = \epsilon^{-1} \left| \begin{array}{c} & & \\ & & \\ \end{array} \right| + \epsilon^{0} \left| \begin{array}{c} & & \\ & & \\ \end{array} \right| + \epsilon^{1} \left| \begin{array}{c} & & \\ & & \\ \end{array} \right|$$

• Finally, the rotation to an ε-factorized form can be achieved by a matrix of the shape

$$R^{-1} = \epsilon^{-1} \left| \begin{array}{c} & & \\ & & \\ & & \end{array} \right| + \epsilon^{0} \left| \begin{array}{c} & & \\ & & \\ & & \end{array} \right|$$

Closing Remarks

- We considered the planar and non-planar double-box integrals with three massive propagators.
- The non-planar double-box is a particularly challenging integral, as it is associated to trickier geometries: **K3** and **genus 2**.
- We showed how these integrals can be computed systematically with no prior knowledge of the geometries, using the general algorithm of [arXiv:2506.09124].

