

(Hyperelliptic) Feynman Integrals From Differential Equations

Franziska Porkert

with Claude Duhr, Cathrin Semper & Sven Stawinski

arXiv: 2408.04904

arXiv: 2407.17175

arXiv: 2412.02300

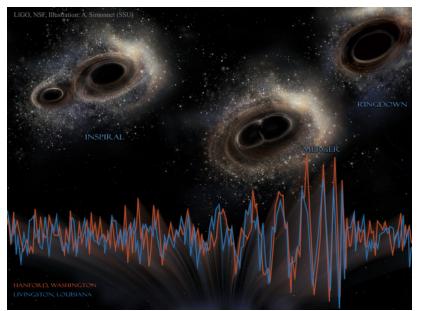
+ work in progress (also with Gaia Fontana, Sara Maggio)

Physics and Number Theory Workshop, 23.01.2025

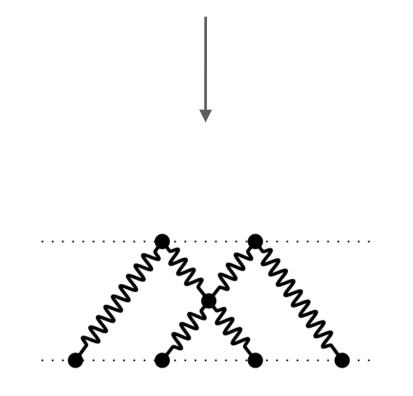
MOTIVATION

Feynman(-like) integrals are the building blocks for scattering amplitudes in ...

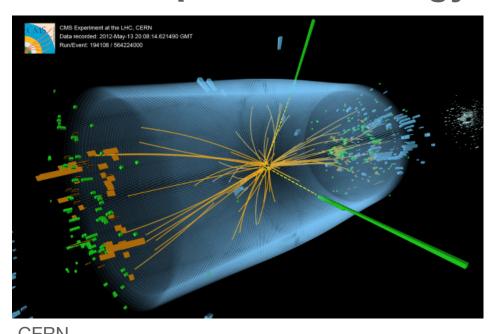
Gravitational wave physics

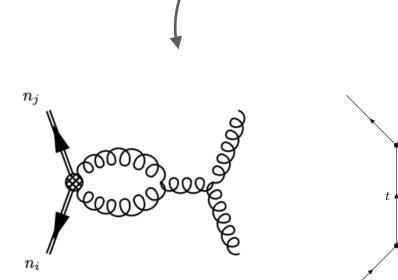


Aurore Simones (Sonoma State University)

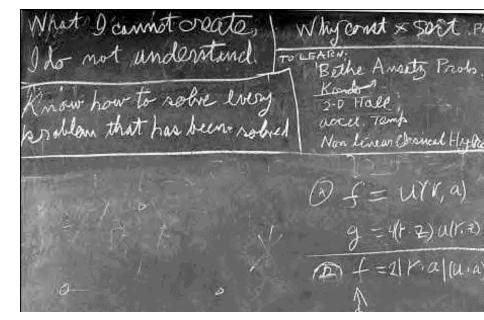


Collider phenomenology

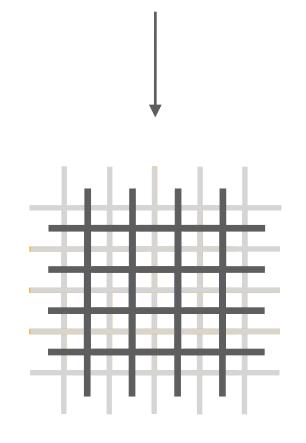




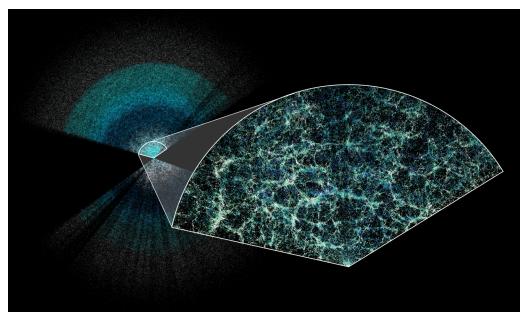
Integrability



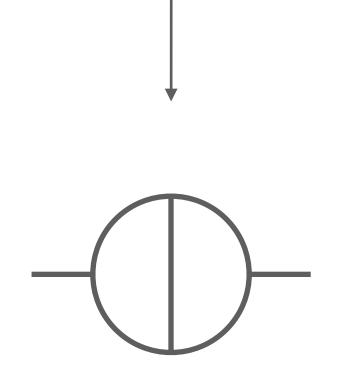
Eovernor



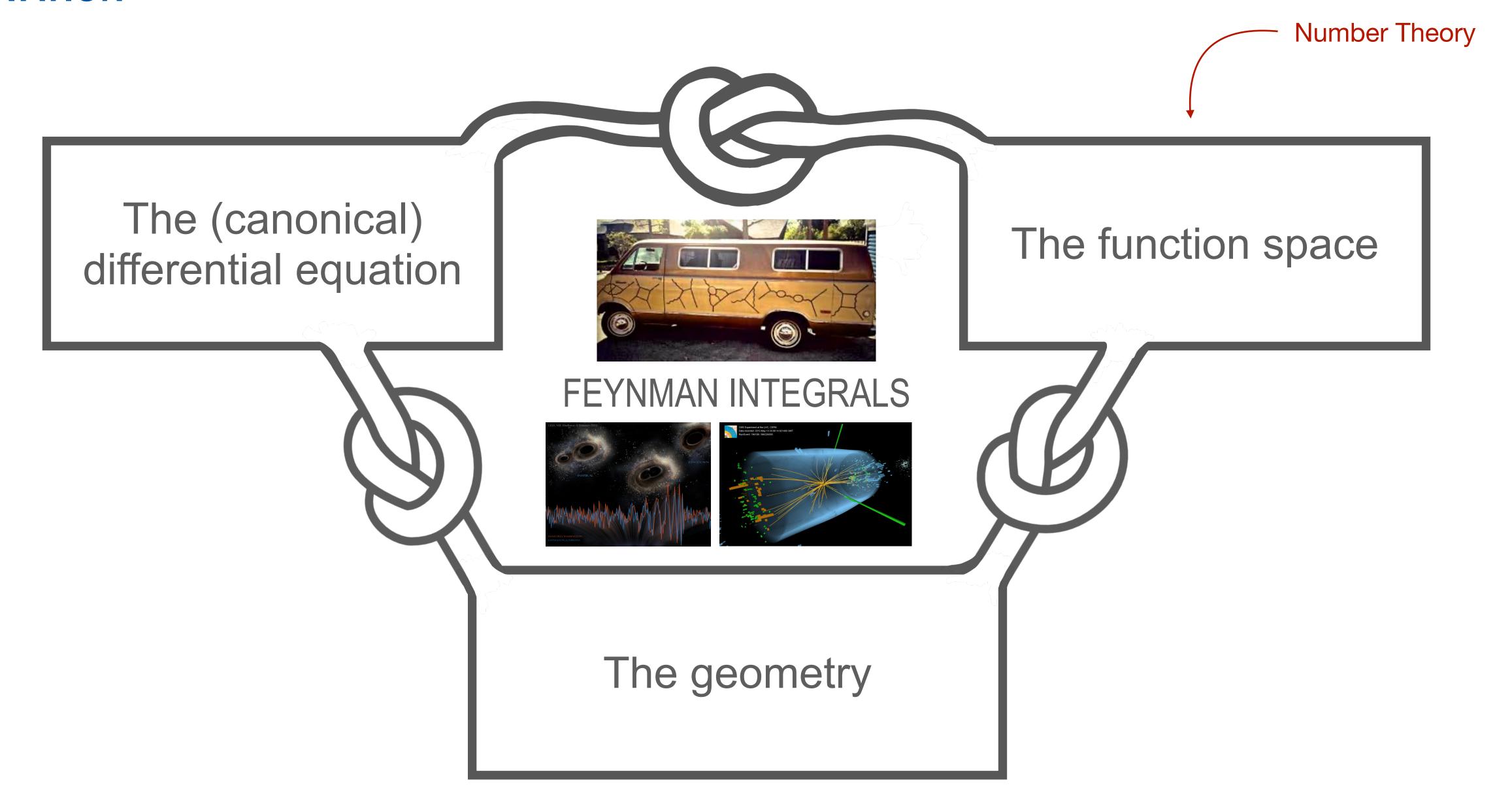
Cosmology



Claire Lamman/DESI collaboration

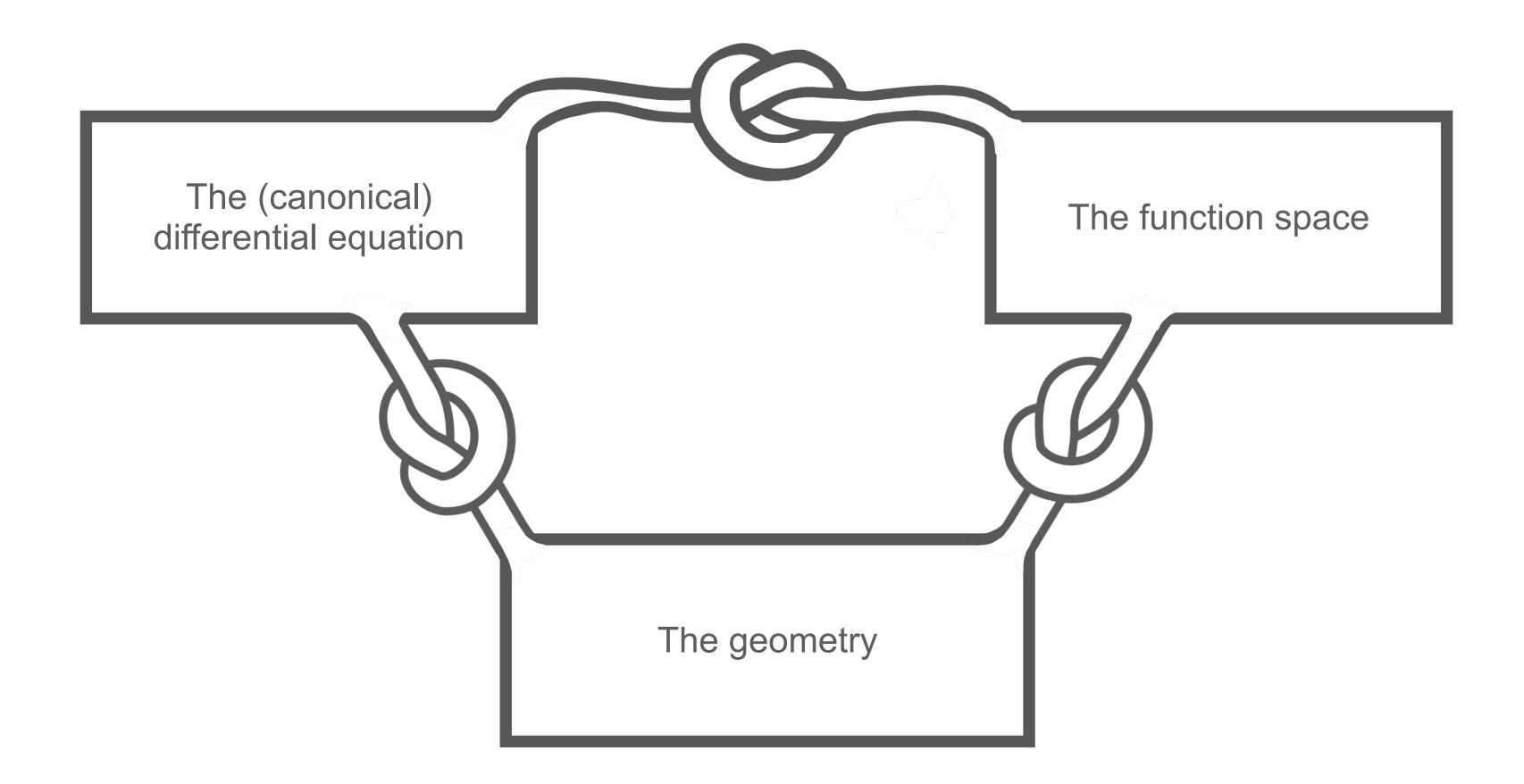


MOTIVATION

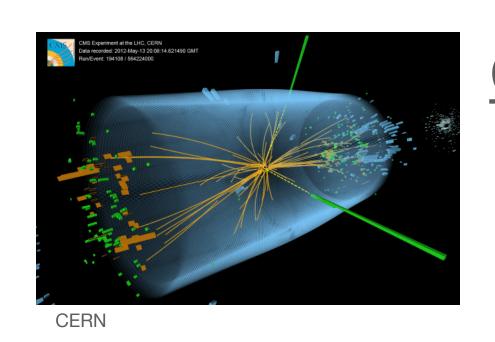


3. EXAMPLE: INTEGRAL FAMILY RELATED TO GENUS 2 CURVE

BASICS ON FEYNMAN INTEGRALS



WHAT IS A FEYNMAN INTEGRAL?



Collider experiment:

Probability for certain outcome = | Scattering Amplitude = $\mathcal{A}|^2$

Perturbation theory: $\mathcal{A}=\mathcal{A}^{(0)}+g\mathcal{A}^{(1)}+g^2\mathcal{A}^{(2)}+\dots$

coupling constant

 $\mathcal{A}^{(L)}$: contributions from all allowed L-loop Feynman diagrams Translate to analytic expressions with Feynman rules

Building blocks: L-loop Feynman integrals

$$I_{\nu} \sim \int \left(\prod_{i=1}^{L} \frac{\mathrm{d}^{D}\ell_{i}}{i\pi^{\frac{D}{2}}}\right) \prod_{j=1}^{n_{\mathrm{int}}} \frac{1}{D_{i}^{\nu_{i}}} \longrightarrow \text{Propagators: } D_{i} = (q_{i}^{2} - m_{i}^{2})$$

WHAT IS A FEYNMAN INTEGRAL?

Family of Feynman integrals in Momentum representation:
$$I_{\nu} \sim \int \left(\prod_{i=1}^{L} \frac{\mathrm{d}^D \ell_i}{i \pi^{\frac{D}{2}}} \right) \prod_{j=1}^{n_{\mathrm{int}}} \frac{1}{D_i^{\nu_i}}$$

Vector space with a basis $I = (I_{\nu_1} \dots I_{\nu_n})$ that fulfills a differential equation $dI(\lambda, \varepsilon) = A(\lambda, \varepsilon)I(\lambda, \varepsilon)$ with $d = \sum_{i=1}^{n} d\lambda_i \partial_{\lambda_i}$

FEYNMAN INTEGRALS FROM DIFFERENTIAL EQUATIONS

Family of Feynman integrals in Momentum representation:
$$I_{\boldsymbol{\nu}} \sim \int \left(\prod_{i=1}^L \frac{\mathrm{d}^D \ell_i}{i \pi^{\frac{D}{2}}} \right) \prod_{j=1}^{n_{\mathrm{int}}} \frac{1}{\boldsymbol{D}_i^{\boldsymbol{\nu}_i}}$$

We want to compute a Feynman integral family analytically with differential equations.

- Use IBPs to find a basis of master integrals for the integral family
- Set up a differential equation w.r.t the external (kinematic) parameters

$$d\mathbf{I}(\mathbf{X}) = A(\mathbf{X}, \varepsilon)\mathbf{I}(\mathbf{X})$$
 with $d = \sum dX_i \partial_{X_i}$ where X_i are kinematic variables

Find a canonical differential equation & solve in terms of iterated integrals. [Henn]

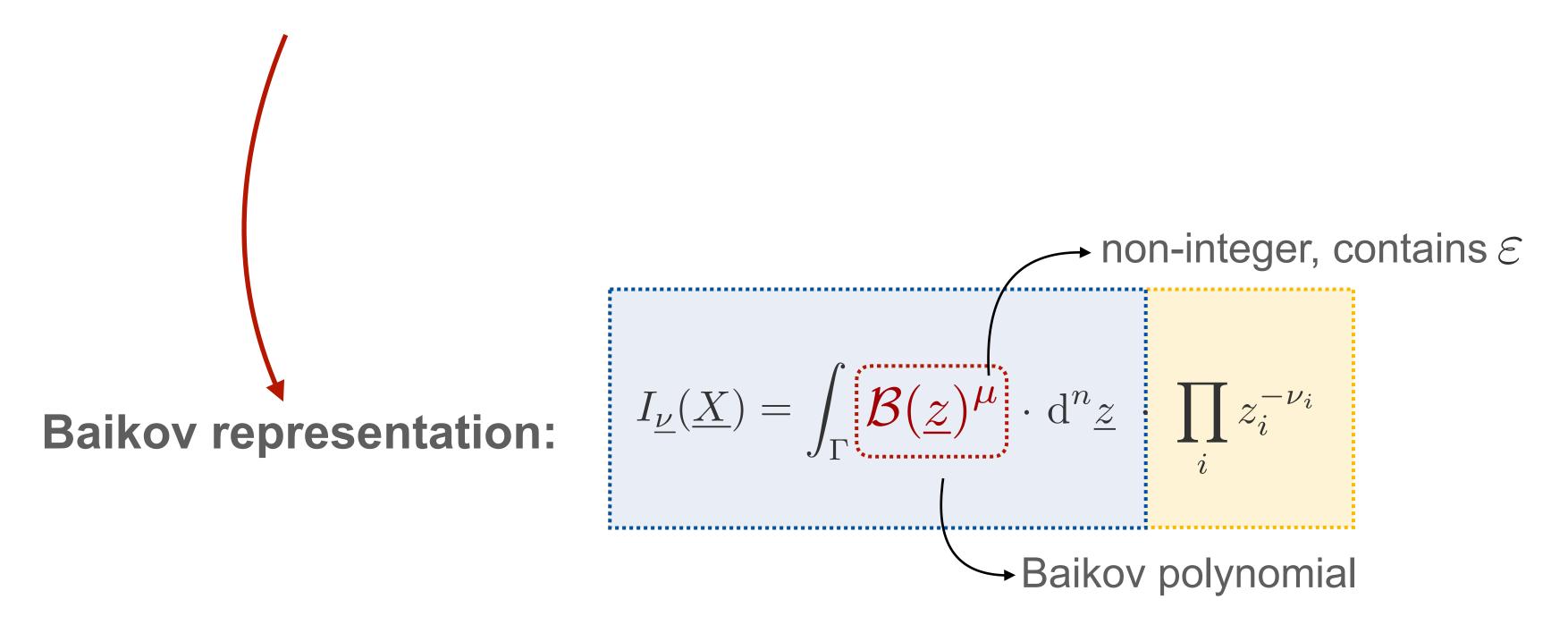
$$\mathbf{J}(\mathbf{X}) = \mathbf{U} \cdot \mathbf{I}(\mathbf{X}) \text{ with } d\mathbf{J}(\mathbf{X}) = \varepsilon B(\mathbf{X}) \mathbf{J}(\mathbf{X})$$
 and
$$\varepsilon B(\mathbf{X}) = (d\mathbf{U}) \cdot \mathbf{U}^{-1} + \mathbf{U} \cdot \mathbf{A}(\mathbf{X}, \varepsilon) \cdot \mathbf{U}^{-1}$$

The function space

$$\mathbf{J}(\mathbf{X}) = \mathbb{P}\exp\left(\varepsilon \int_{\gamma} B\right) \cdot \mathbf{J} \text{ (some point } \mathbf{X}^{0}\text{)} = \left(1 + \varepsilon \int_{\gamma} B + \varepsilon^{2} \int_{\gamma} B \int_{\gamma} B + \dots\right) \cdot \mathbf{J}(\mathbf{X}^{0})$$

WHAT IS A FEYNMAN INTEGRAL?

Family of Feynman integrals in Momentum representation:
$$I_{\nu} \sim \int \left(\prod_{i=1}^{L} \frac{\mathrm{d}^D \ell_i}{i \pi^{\frac{D}{2}}} \right) \prod_{j=1}^{n_{\mathrm{int}}} \frac{1}{D_i^{\nu_i}}$$

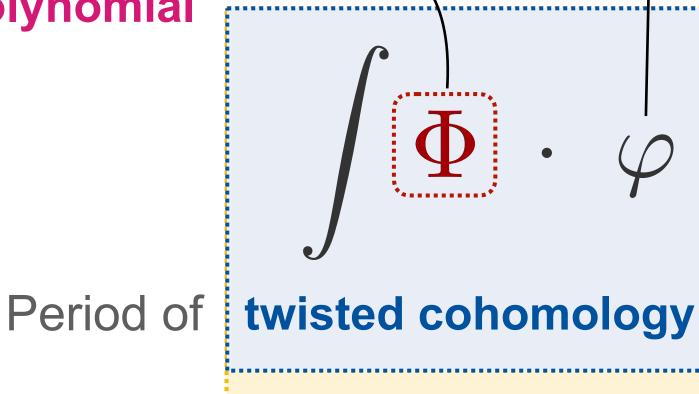


FEYNMAN INTEGRALS: RELATIVE TWISTED PERIODS

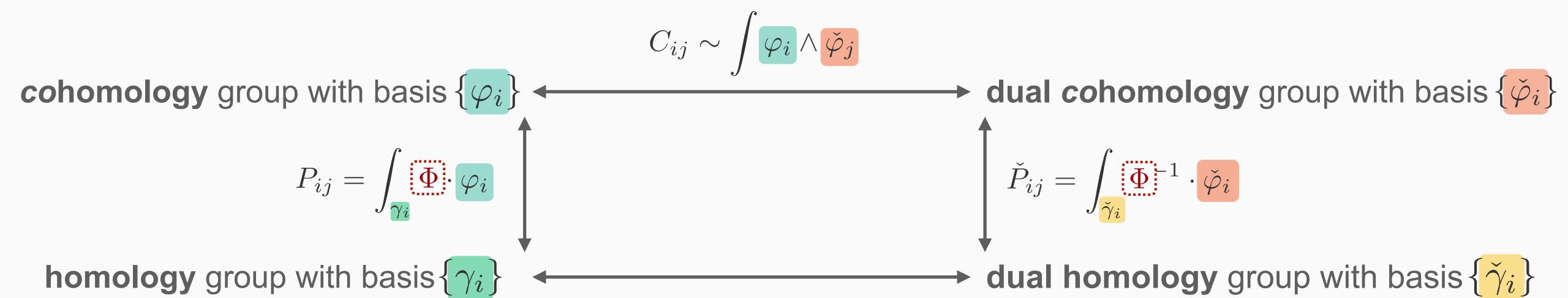
multivalued function in \underline{z} Feynman Integrals: Baikov polynomial

single-valued form in \underline{z} , only poles @ branch points of Φ

Tunction with additional poles in \underline{z} Feynman Integrals: Propagators function with additional poles in \underline{z}



Period of relative twisted cohomology



 $H_{ij} \sim$ weighted topological intersection of $\gamma_i \& \check{\gamma}_j$

WHAT IS A (MAXIMAL) CUT?

$$I_{m{
u}} \sim \int \left(\prod_{i=1}^L rac{\mathrm{d}^D \ell_i}{i\pi^{rac{D}{2}}}
ight) \prod_{j=1}^{n_{\mathrm{int}}} rac{1}{D_i^{
u_i}} \qquad \mathrm{Cut}_{j_1,\dots,j_r} \left[I_{m{
u}}
ight] \sim \mathrm{Res}_{D_{j_1}=0,\dots,D_{j_r}=0} \left[\int \left(\prod_{i=1}^L rac{\mathrm{d}^D \ell_i}{i\pi^{rac{D}{2}}}
ight) \prod_{j=1}^{n_{\mathrm{int}}} rac{1}{D_i^{
u_i}}
ight]$$
 in propagators j_1,\dots,j_r

Baikov representation:
$$I_{\underline{\nu}}(\underline{X}) = \int_{\Gamma} \mathcal{B}(\underline{z})^{\mu} \cdot \mathrm{d}^n \underline{z} \prod_{z=1,\dots,z_N \mapsto 0} \mathrm{d}^n \underline{z} \mapsto \mathrm{d}^{n-N} \underline{z}$$

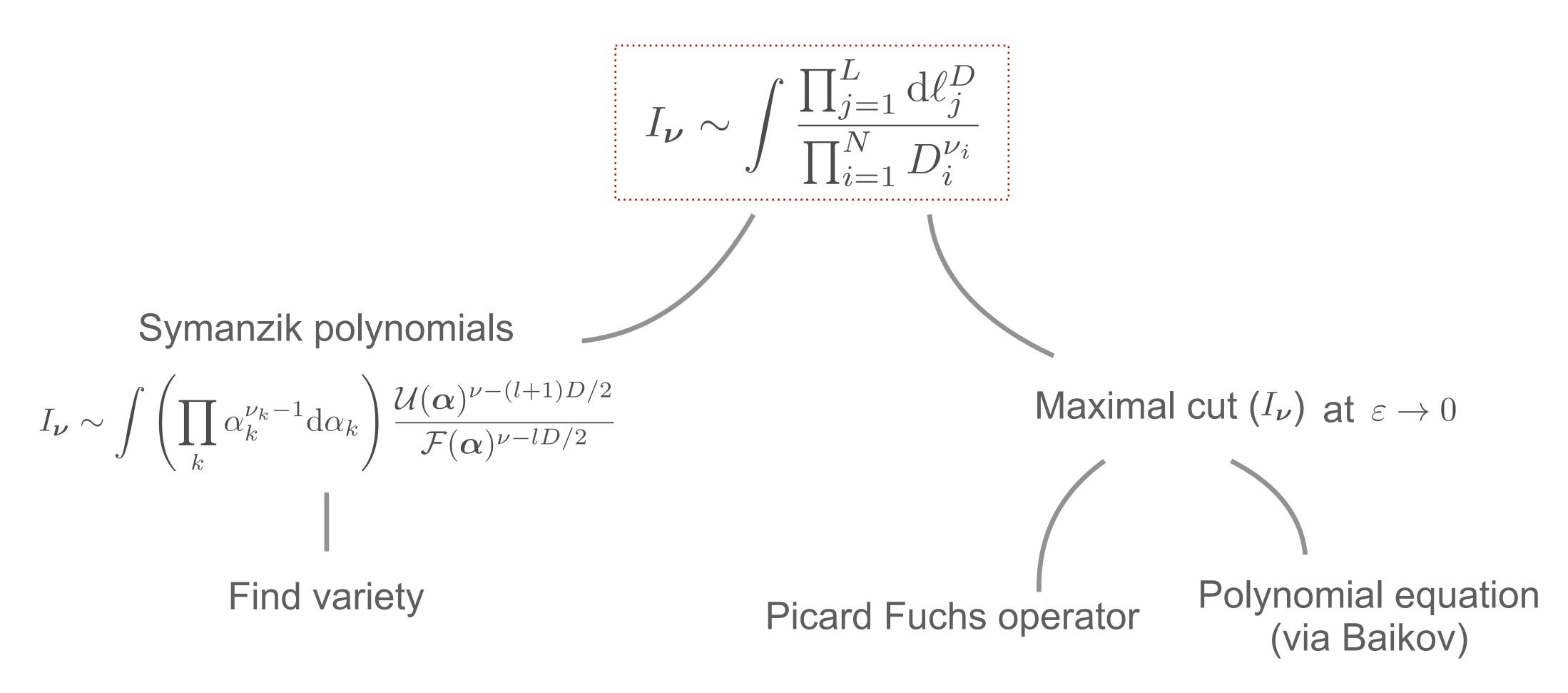
Period matrix = matrix of maximal cuts:
$$\mathbf{P} = \left(\int_{\gamma_i} \Phi \, \varpi_j\right)_{i,j}$$

Bases of twisted (co-)homology groups defined by $\mathcal{B}(\underline{z})^{\mu}$

FEYNMAN INTEGRALS AND THEIR GEOMETRIES

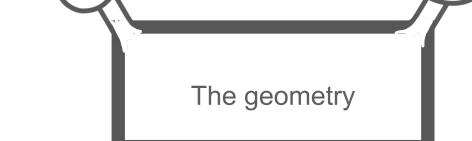
The geometry

How do we associate one (or multiple) geometries to a Feynman integral (family)?

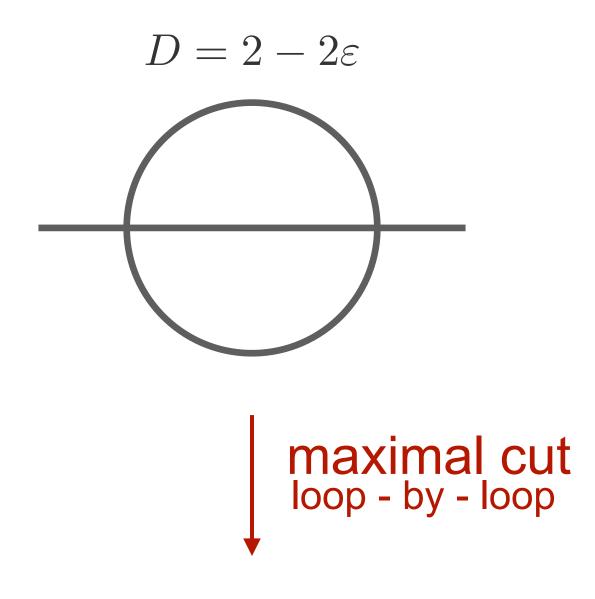


Not necessarily unique! [Marzucca, McLeod, Page, Pögel, Weinzierl | Jockers, Kotlewski, Kuusela, McLeod, Pögel, Sarve, Wang, Weinzierl]

EXAMPLES FOR HYPERELLIPTIC FEYNMAN INTEGRALS



ELLIPTIC EXAMPLE: SUNRISE

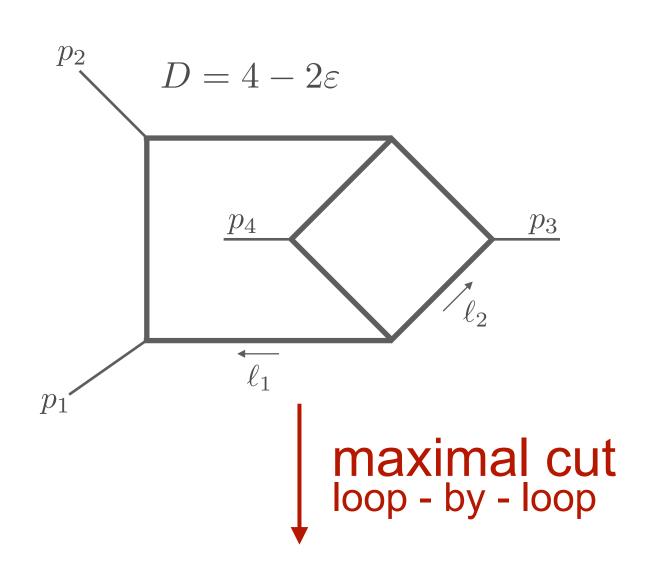


$$\int_{\Gamma} dx \, x^{\varepsilon} \left[(x - \mu_1)(x - \mu_2)(x - \mu_3)(x - \mu_4) \right]^{\frac{1}{2} - \varepsilon}$$

even elliptic curve of genus 1:

$$y^{2} = (x - \mu_{1})(x - \mu_{2})(x - \mu_{3})(x - \mu_{4})$$

HYPERELLIPTIC EXAMPLE: NON-PLANAR CROSSED BOX



$$\int_{\Gamma} dx \, x^{\varepsilon} \left[(x - \mu_1)(x - \mu_2)(x - \mu_3)(x - \mu_4) \right]^{-\frac{1}{2} - \varepsilon} \qquad \int_{\Gamma} dx \left[(x - \lambda_1)(x - \lambda_2) \right]^{-\frac{1}{2}} \left[(x - \lambda_3)(x - \lambda_4)(x - \lambda_5)(x - \lambda_6) \right]^{-\frac{1}{2} - \varepsilon}$$

[Huang, Zhang | Georgoudis, Zhang | Marzucca, McLeod, Page, Pögel, Weinzierl]

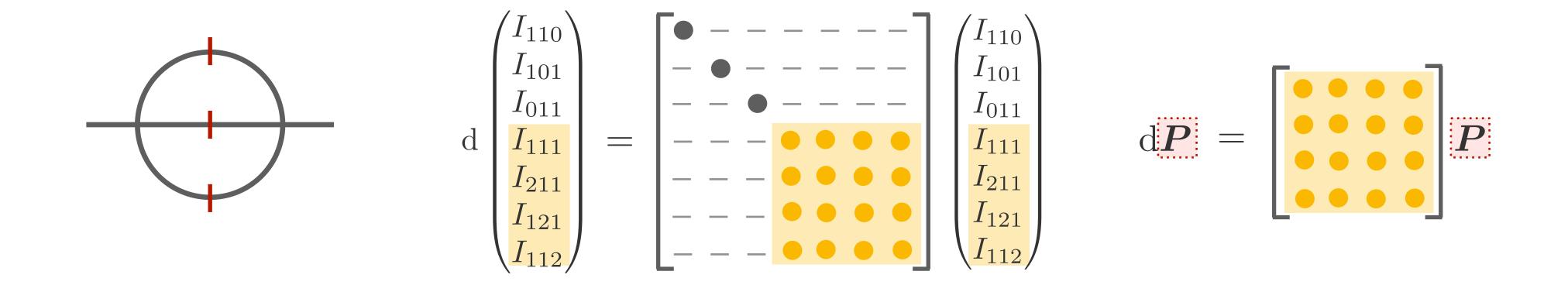
even hyperelliptic curve of genus 2:

$$y^{2} = (x - \lambda_{1})(x - \lambda_{2})(x - \lambda_{3})(x - \lambda_{4})(x - \lambda_{5})(x - \lambda_{6})$$

WHAT IS A (MAXIMAL) CUT? SECOND PERSPECTIVE

MAXIMAL CUT

The fundamental solution for the homogenous differential equation of the top sector.



2. MORE ON CANONICAL DIFFERENTIAL EQUATIONS

C - FORM

$$J(X) = U \cdot I(X)$$
 with $dJ(X) = \varepsilon B(X)J(X)$ — How do we find this (systematically)?

Different methods for finding canonical DEQ of Feynman integrals with elliptic curve or CY geometry. [Brösel, Duhr, Dulat, Penante, Tancredi | Pögel, Wang, Weinzierl | Görges, Nega, Tancredi, Wagner]

$$J(X) = U \cdot I(X)$$
 with $dJ(X) = \varepsilon B(X)J(X)$ — How do we find this (systematically)?

Different methods for finding canonical DEQ of Feynman integrals with elliptic curve or CY geometry. [Brösel, Duhr, Dulat, Penante, Tancredi | Pögel, Wang, Weinzierl | Görges, Nega, Tancredi, Wagner]

Short review of the algorithm by [Görges, Nega, Tancredi, Wagner] (applied to maximal cut):

Make a good choice for the **starting basis**(Inspired by simple basis of Abelian differentials; derivative basis)

$$J(X) = U \cdot I(X)$$
 with $dJ(X) = \varepsilon B(X)J(X) \longrightarrow$ How do we find this (systematically)?

Different methods for finding canonical DEQ of Feynman integrals with elliptic curve or CY geometry. [Brösel, Duhr, Dulat, Penante, Tancredi | Pögel, Wang, Weinzierl | Görges, Nega, Tancredi, Wagner]

- Make a good choice for the **starting basis**(Inspired by simple basis of Abelian differentials; derivative basis)
- Compute the period matrix at $\varepsilon = 0$ and split it in semi-simple and unipotent parts. Rotate the initial basis with the **inverse of the semi-simple part**. (Geometry inspired step)

$$J(X) = U \cdot I(X)$$
 with $dJ(X) = \varepsilon B(X)J(X)$ — How do we find this (systematically)?

Different methods for finding canonical DEQ of Feynman integrals with elliptic curve or CY geometry. [Brösel, Duhr, Dulat, Penante, Tancredi | Pögel, Wang, Weinzierl | Görges, Nega, Tancredi, Wagner]

- Make a good choice for the **starting basis**(Inspired by simple basis of Abelian differentials; derivative basis)
- Compute the period matrix at $\varepsilon = 0$ and split it in semi-simple and unipotent parts. Rotate the initial basis with the **inverse of the semi-simple part**. (Geometry inspired step)
- Make further simple rotations (exchanges of basis elements + powers of ε) to make the remaining non-canonical part lower-triangular. (Adjustment step)

```
J(X) = U \cdot I(X) with dJ(X) = \varepsilon B(X)J(X) \longrightarrow How do we find this (systematically)?
```

Different methods for finding canonical DEQ of Feynman integrals with elliptic curve or CY geometry. [Brösel, Duhr, Dulat, Penante, Tancredi | Pögel, Wang, Weinzierl | Görges, Nega, Tancredi, Wagner]

- Make a good choice for the **starting basis**(Inspired by simple basis of Abelian differentials; derivative basis)
- Compute the period matrix at $\varepsilon = 0$ and split it in semi-simple and unipotent parts. Rotate the initial basis with the **inverse of the semi-simple part**. (Geometry inspired step)
- Make further simple rotations (exchanges of basis elements + powers of \mathcal{E}) to make the remaining **non-canonical part lower-triangular**. (Adjustment step)
- Make **ansatz** to remove these remaining **non-canonical** entries and solve the resulting differential equations. (*New objects* step)

THE C - FORM

Short version: All known (to us) canonical DEQS for Feynman integrals are also in C-form!

Long version:

$d\mathbf{J}(\mathbf{X}) = \varepsilon B(\mathbf{X})\mathbf{J}(\mathbf{X})$ with $B(\mathbf{X})_{ij} = \sum dX_k f_{ijk}$

 $\mathcal{A} = \mathbb{K}$ - algebra of functions that contains all f_{ijk} and:

- Differentially closed ($f \in \mathcal{A} \Rightarrow \partial_{X_i} f \in \mathcal{A} \, \forall i$)
- lacksquare Constants = \mathbb{K} ($\partial_{X_i} f = 0 \ \forall i \Rightarrow f \in \mathbb{K}$)

$$\mathbb{A} = \mathbb{K}$$
 - vector space of closed differential forms generated by the forms appearing in $B(X)$

$$\mathcal{F}_{\mathbb{C}} = \operatorname{Frac}\left(\mathbb{C} \otimes_{\mathbb{K}} \mathcal{A}\right)$$

An ε - factorised differential equation is in C-form, if $\mathbb{A} \cap d\mathcal{F}_{\mathbb{C}} = \{0\}$.

[Duhr, Semper, Stawiński, FP]

Example:

B(X) in dLog-form with

$$f_{ij} = \sum_{r} \frac{1}{a_{ijr} - X}$$

 \bullet $\mathcal{A}_{\mathrm{dLog}} =$ Rational functions in X with singularities at the a_{ijr}

•
$$\mathbb{A}_{dLog} = \left\langle \frac{dX}{a_{ijr} - X} \middle| \text{ all } i, j, r \right\rangle$$

Elements of $\mathrm{d}\mathcal{F}_{\mathbb{C}}$: no pole/ pole of order > 1

$$\Rightarrow \mathbb{A}_{dLog} \cap d\mathcal{F}_{\mathbb{C}} = \{0\}$$

THE C - FORM: MORE EXAMPLES

Elliptic $_2F_1$

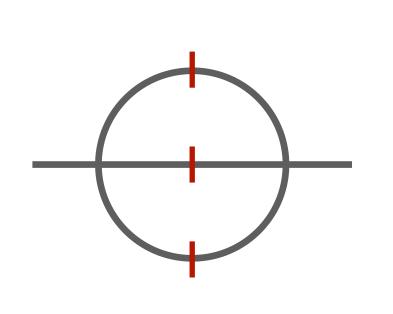
$$I_{\nu}^{1} = \int_{0}^{1} dx \, x^{-\frac{1}{2} + \nu_{1} + a_{1} \varepsilon} (x - 1)^{-\frac{1}{2} + \nu_{2} + a_{2} \varepsilon} (x - \lambda)^{-\frac{1}{2} + \nu_{3} + a_{3} \varepsilon}$$

2 master integrals

→ Elliptic curve $y^2 = x(x-1)(x-\lambda)$

$$\mathcal{A} = \text{Differential closure of } \mathbb{Q}\left[i\pi^{\pm}, \frac{1}{\lambda}, \frac{1}{1-\lambda}, \lambda, \mathrm{K}(\lambda), \mathrm{E}(\lambda), \frac{1}{\mathrm{K}(\lambda)}\right]$$

Sunrise



Specific modular and quasi-modular form

THE C - FORM FOR MAXIMAL CUTS

Reminder: Feynman integral family defines $H_{\mathrm{dR}}^{n-N}(X,\Phi)$ and $H_{n-N}(X,\check{\mathcal{L}}_{\Phi})$ with $\Phi=\mathcal{B}(\underline{z})^{\mu}$ Period matrix = matrix of cuts:

Slogan:

Basis and dual basis are in \mathcal{E} -form and C-form \Rightarrow The intersection matrix is constant in the external variables, $\mathrm{d} C = 0$.

[Duhr, Semper, Stawiński, FP]

Proof idea: Use $C = \frac{1}{(2\pi i)^n} P\left(H^{-1}\right)^T \check{P}^T$ and linear independence of iterated integrals

For maximal cuts: Can choose $\check{m{P}}(arepsilon) = m{P}(-arepsilon)$

- Conceptual: Condition for canonical form and classification of appearing functions
- Practical: Helps us find relations for new functions in canonical DEQ

3. EXAMPLE: INTEGRAL FAMILY RELATED TO GENUS 2 CURVE

EXAMPLE: MAXIMAL CUT OF THE NON-PLANAR CROSSED BOX

$$\mathsf{MC}\left(\begin{array}{c} \sum_{p_1 \atop p_2 \atop p_3} \\ \mathsf{Twist} = \frac{\Phi}{y} \text{ with } \Phi = \prod_{i=1}^{6} (1 - \lambda_i^{-1}x)^{\frac{1}{2} + a_1\varepsilon} \\ \mathsf{a_1}\varepsilon \\ \mathsf{a_2}\varepsilon \\ \mathsf{a_3}\varepsilon \\ \mathsf{a_4}\varepsilon \\ \mathsf{a_5}\varepsilon \\ \mathsf{a_5}\varepsilon \\ \mathsf{a_5}\varepsilon \\ \mathsf{a_5}\varepsilon \\ \mathsf{a_6}\varepsilon \\$$

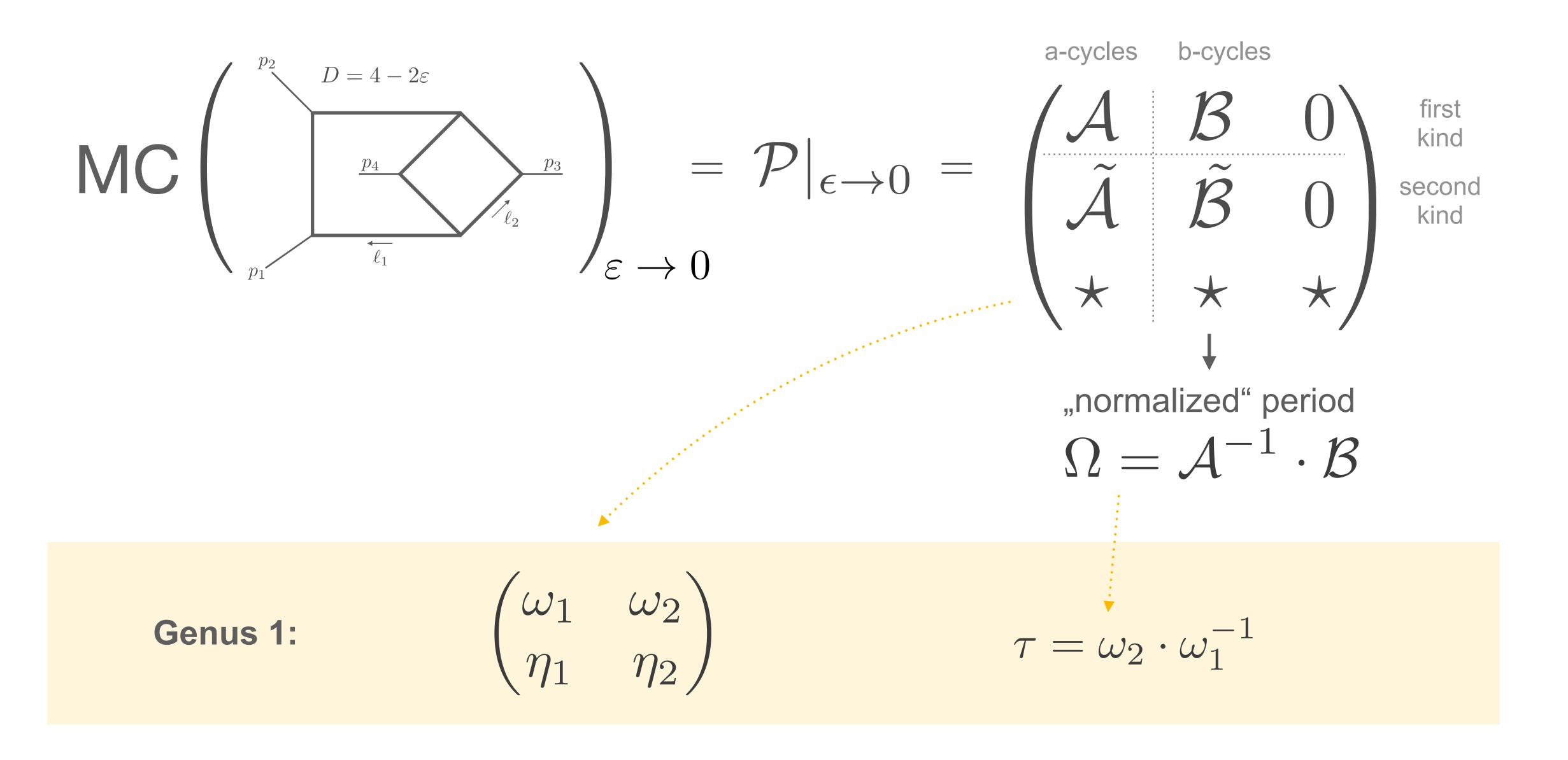
BASIS OF DIFFERENTIALS:

$$\varphi_1^{\scriptscriptstyle (0)} = \frac{\mathrm{d}x}{y} \Phi \;,\;\; \varphi_2^{\scriptscriptstyle (0)} = \frac{x\mathrm{d}x}{y} \Phi \;\;,\;\; \varphi_3^{\scriptscriptstyle (0)} = \frac{\Phi_1(x)\mathrm{d}x}{y} \Phi \;,\;\; \varphi_4^{\scriptscriptstyle (0)} = \frac{\Phi_2(x)\mathrm{d}x}{y} \Phi \;\;\text{and} \;\;\; \varphi_5^{\scriptscriptstyle (0)} = \frac{x^2\mathrm{d}x}{y} \Phi \;\;$$
 "second kind" "third kind"

BASIS OF CYCLES:

$$[\lambda_1,\lambda_2]\,,[\lambda_3,\lambda_4]\qquad [\lambda_2,\lambda_3]+[\lambda_4,\lambda_5]\,\,,[\lambda_4,\lambda_5]\qquad [\lambda_1,\lambda_2]+[\lambda_3,\lambda_4]+[\lambda_5,\lambda_6]\\[2mm] a_1\,,a_2\qquad b_1\,,b_2$$

EXAMPLE: MAXIMAL CUT OF THE NON-PLANAR CROSSED BOX



STEP 1: DERIVATIVE BASIS

$$arphi_1^{ iny (0)} = rac{\mathrm{d} x}{y} \Phi$$
 , $arphi_2^{ iny (0)} = rac{x \mathrm{d} x}{y} \Phi$

$$\varphi_1^{_{(0)}} = \frac{\mathrm{d}x}{y} \Phi \text{ , } \varphi_2^{_{(0)}} = \frac{x \mathrm{d}x}{y} \Phi \text{ , } \varphi_3^{_{(0)}} = \frac{\Phi_1(x) \mathrm{d}x}{y} \Phi \text{ , } \varphi_4^{_{(0)}} = \frac{\Phi_2(x) \mathrm{d}x}{y} \Phi \text{ and } \varphi_5^{_{(0)}} = \frac{x^2 \mathrm{d}x}{y} \Phi \text{ .}$$

and
$$arphi_5^{\scriptscriptstyle (0)}=rac{x^2\mathrm{d}x}{y}$$

$$d\varphi^{(0)} = \begin{bmatrix} \bullet & \bullet & \bullet & - \\ \bullet & \bullet & \bullet & - \\ \bullet & \bullet & \bullet & - \\ \bullet & \bullet & \bullet & - \end{bmatrix} + \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \varepsilon \varphi^{(0)}$$

$$\varphi^{(1)} = U_6^{(1)} \varphi^{(0)}$$

$$\varphi_1^{(1)} = \varphi_1^{(0)}, \quad \varphi_2^{(1)} = \varphi_2^{(0)}$$

$$\varphi_1^{(1)} = \varphi_1^{(0)}, \quad \varphi_2^{(1)} = \varphi_2^{(0)} \qquad \varphi_3^{(1)} = \frac{\partial}{\partial \lambda_1} \varphi_1^{(0)} \quad , \quad \varphi_4^{(1)} = \frac{\partial}{\partial \lambda_2} \varphi_2^{(0)} \qquad \text{and} \qquad \varphi_5^{(1)} = \varphi_5^{(0)}$$

$$\varphi_5^{(1)} = \varphi_5^{(0)}$$

STEP 2: SEMI-SIMPLE ROTATION

$$\lim_{\varepsilon \to 0} \mathcal{P}_{(1)} = \lim_{\varepsilon \to 0} U_6^{(1)} \mathcal{P}_{(0)} = \lim_{\varepsilon \to 0} U_6^{(1)} \begin{pmatrix} \mathcal{A} & \mathcal{B} & 0 \\ \tilde{\mathcal{A}} & \tilde{\mathcal{B}} & 0 \\ \star & \star & \star \end{pmatrix} = \lim_{\varepsilon \to 0} U_6^{(1)} \begin{pmatrix} \mathcal{A} & 0 & 0 \\ \tilde{\mathcal{A}} & 2\pi i \cdot \mathbf{1} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{1} & \Omega & 0 \\ \mathbf{0} & \mathbf{1} & 0 \\ \star & \star & \star \end{pmatrix}$$

$$\varphi^{(2)} = \mathbf{S}^{-1} \varphi^{(1)}$$

STEP 3: ADJUSTMENTS

Remove ε^2 - terms:

$$\boldsymbol{\varphi}^{(3)} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{\varepsilon} & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{\varepsilon} & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \boldsymbol{\varphi}^{(2)} \longrightarrow d\boldsymbol{\varphi}^{(3)} = \begin{bmatrix} ---- \\ ---- \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \boldsymbol{\varepsilon} + \mathbf{0} \boldsymbol{\varepsilon}^2 \boldsymbol{\varphi}^{(3)}$$

Lower triangular ε^0 - terms:

$$\varphi^{(4)} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix} \varphi^{(3)} \longrightarrow d\varphi^{(4)} = \begin{bmatrix} \begin{bmatrix} ----- \\ ----- \\ 0 & --- \\ 0 & 0 & 1 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix} \varepsilon \varphi^{(4)}$$

Find final transformation:

1. Make an ansatz:

$$\mathrm{d}\varphi^{(5)} = U_6^{(5)}\varphi^{(4)} \quad \text{with} \quad U_6^{(5)} = \begin{bmatrix} -----\\ -----\\ \star \star \star ---\\ \star \star \star --- \end{bmatrix} \quad \text{unknowns}$$

2. Transform the differential equation:

$$d\varphi^{(5)} = \left| \left(dU_6^{(5)} \right) \left(U_6^{(5)} \right)^{-1} + U_6^{(5)} \mathbf{A} \left(U_6^{(5)} \right)^{-1} \right| \varphi^{(5)}$$

3. Require that the ε^0 - entries vanish

8 coupled differential equations of 8 unknowns *

- 3. Require that the ε entries vanish
- 8 coupled differential equations of 8 unknowns

- Non-trivial to solve!
- Undetermined (at most 8) number of new functions! (not expressible just in periods and branch points)

- 3. Require that the ε^0 entries vanish 8 coupled differential equations of 8 unknowns \star

We can simplify this, using the intersection matrix!

Slogan:

Basis and dual basis are in \mathcal{E} -form and C-form \Rightarrow The intersection matrix is constant in the external variables, $\mathrm{d} C = 0$.

[Duhr, Semper, Stawiński, FP]

Use this condition constructively:

- 1. Choose basis $\boldsymbol{\varphi}^{(5)}$ & dual basis $\boldsymbol{\check{\varphi}}^{(5)}$, so that $\boldsymbol{\check{P}}(\varepsilon) = \boldsymbol{P}(-\varepsilon)$.
- 2. Compute intersection matrix C [Contains the 8 unknowns \bigstar of $U_{\epsilon}^{(5)}$]
- 3. Require all entries of C to be constant in parameters λ_i and solve for (some) \bigstar .

- 3. Require that the ε^0 entries vanish 8 coupled differential equations of 8 unknowns \star

Slogan:

Basis and dual basis are in \mathcal{E} -form and C-form \Rightarrow The intersection matrix is constant in the external variables, $\mathrm{d} C = 0$.

[Duhr, Semper, Stawiński, FP]

Use this condition constructively:

$$U_6^{(5)} = \begin{bmatrix} ----- \\ ----- \\ ----- \\ \bullet & \star -- \\ \bullet & \star -- \end{bmatrix} \longrightarrow \text{All but three entries of the final transformation} \\ \text{(expressed in periods, branch points \& the three remaining new functions)} \\ C = \begin{bmatrix} ---- \\ ----- \\ ----- \\ ----- \\ \bullet & ---- \end{bmatrix} \longrightarrow \text{A constant skew-diagonal intersection}$$

The requirement, that the intersection matrix is constant, can be used constructively!

RESULTS

$$\varphi^{(5)} = U_6^{(5)} \ U_6^{(4)} \ U_6^{(3)} \ U_6^{(2)} \ U_6^{(1)} \ \varphi \longrightarrow_{\text{(inspired by geometry)}}^{\text{Initial basis (inspired by geometry)}}$$
 Ansatz for final rotation (Use intersection matrix) Reordering Rotation with the inverse of the semi-simple part of the period matrix

$$\mathrm{d}\varphi^{(5)}=\varepsilon B(\underline{\lambda}) \ \ \varphi^{(5)} \ \mathrm{in} \ \mathcal{E} ext{-form and C-form}$$

SUMMARY: THREE TAKEAWAYS

Compute Feynman integrals in terms of specific iterated integrals (from DEQ)

Differential equation for maximal cut in ε - form and C-form \Rightarrow constant intersection matrix! Can be used constructively!

The algorithm by [Görges,Nega,Tancredi,Wagner] also works for hyperelliptic maximal cuts!

OUTLOOK

- Better understanding of the appearing (partially Siegel modular) forms
- Numerical evaluation of hyperelliptic Feynman integrals
- Better understanding of the role of the C-form (more generally)

BACKUP

Assumption: Period matrices P and \check{P} with differential equations in ε -form and C-form (same algebra)

$$C \in \mathbb{C}(\varepsilon) \longrightarrow \mathrm{d}C = 0$$

Assumption: Period matrices P and \check{P} with differential equations in ε -form and C-form (same algebra)

Twisted Riemann bilinear relations:

$$\mathbf{C} = \frac{1}{(2\pi i)^n} \mathbf{P} \left(\mathbf{H}^{-1} \right)^T \check{\mathbf{P}}^T$$

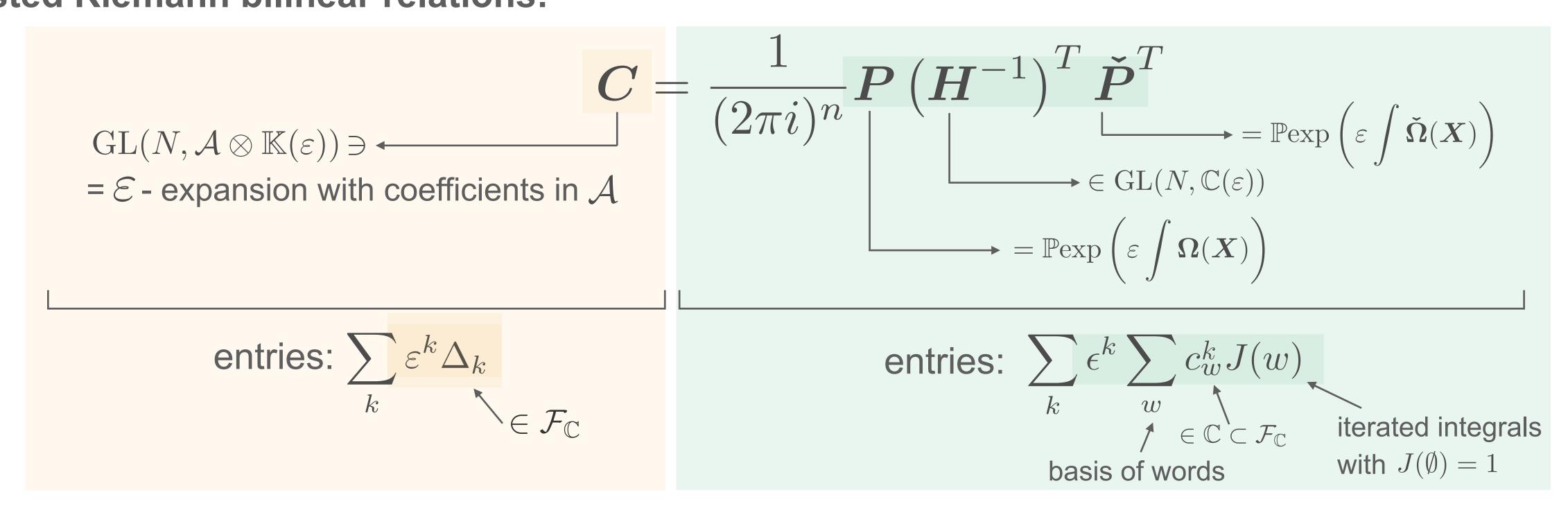
$$= \varepsilon \text{- expansion with coefficients in } \mathcal{A}$$

$$= \mathbb{P} \exp \left(\varepsilon \int \check{\Omega}(X) \right)$$

$$= \mathbb{P} \exp \left(\varepsilon \int \Omega(X) \right)$$

$$C \in \mathbb{C}(\varepsilon) \longrightarrow dC = 0$$

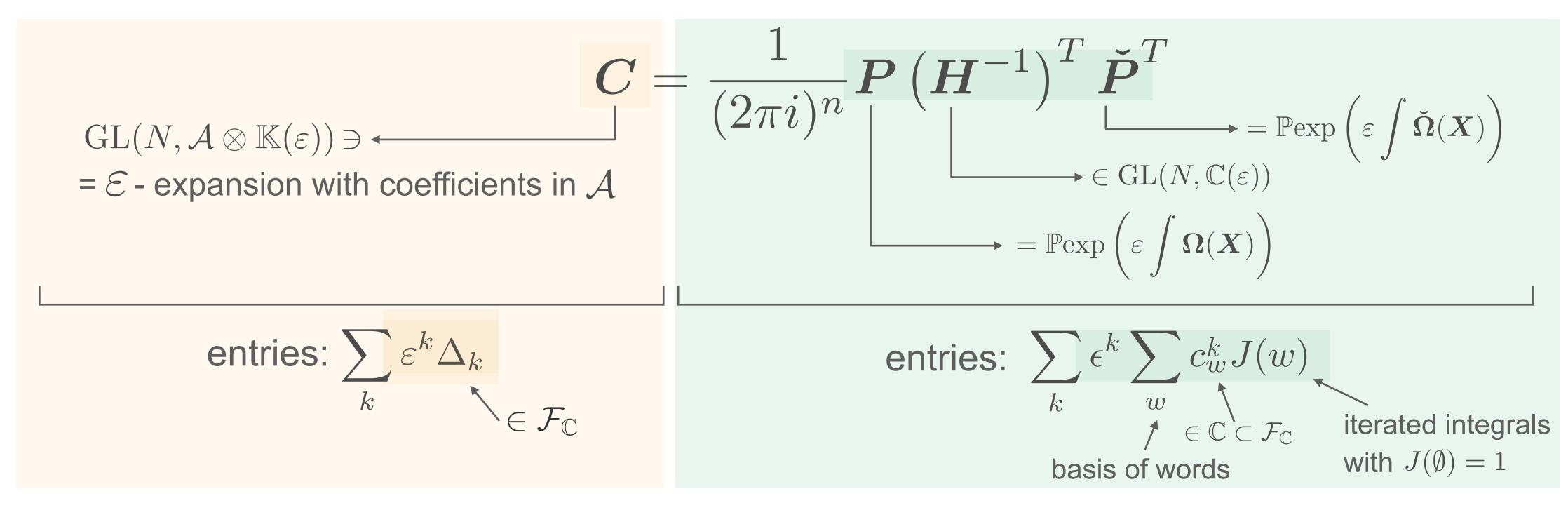
Assumption: Period matrices P and \check{P} with differential equations in \mathcal{E} -form and C-form (same algebra) **Twisted Riemann bilinear relations:**



$$C \in \mathbb{C}(\varepsilon) \longrightarrow \mathrm{d}C = 0$$

Assumption: Period matrices P and \check{P} with differential equations in ε -form and C-form (same algebra)

Twisted Riemann bilinear relations:



$$\frac{\Delta_k J(\emptyset)}{w} = \sum_{w} c_w^k J(w) \implies 0 = (c_\emptyset^k - \Delta_k) J(\emptyset) + \sum_{w \neq \emptyset} c_w^k J(w)$$

$$C \in \mathbb{C}(\varepsilon) \longrightarrow \mathrm{d}C = 0$$

Assumption: Period matrices P and \dot{P} with differential equations in ε -form and C-form (same algebra) Twisted Riemann bilinear relations:

$$\frac{\Delta_k J(\emptyset)}{w} = \sum_{w} c_w^k J(w) \implies 0 = (c_\emptyset^k - \Delta_k) J(\emptyset) + \sum_{w \neq \emptyset} c_w^k J(w)$$

C-form $\Leftrightarrow J(w)$ are linearly independent over $\mathcal{F}_{\mathbb{C}} \implies c_w^k = 0$ for $w \neq \emptyset$ and $c_\emptyset \in \mathbb{C}$ [Deneufchatel, Duchamp, Hoang Ngoc Minh, Solomon]

$$\Rightarrow c_w^k = 0 \text{ for } w \neq \emptyset \text{ and } c_\emptyset \in \mathbb{C}$$

$$C \in \mathbb{C}(\varepsilon) \longrightarrow \mathrm{d}C = 0$$