L

RH Z \w
) Bethe Center for
pean Research Council u Theo retical Ph)ISiCS

UNIVERSITAT

NN

(Hyperelliptic) Feynman Integrals From Differential Equations

Franziska Porkert

with Claude Duhr, Cathrin Semper & Sven Stawinski

arXiv: 2408.04904
arXiv: 2407.17175
arXiv: 2412.02300

+ work in progress (also with Gaia Fontana, Sara Maggio)

Physics and Number Theory Workshop, 23.01.2025


https://arxiv.org/pdf/2408.04904
https://arxiv.org/abs/2407.17175
https://arxiv.org/pdf/2412.02300

MOTIVATION

Feynman(-like) integrals are the building blocks for scattering amplitudes in

Gravitational wave physics Collider phenomenology Integrability Cosmology

Aurore Simones (Sonoma State University) CERN Feynman Claire Lamman/DESI collaboration
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MOTIVATION

F Number Theory

The (canonical)
differential equation

The geometry
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BASICS ON FEYNMAN INTEGRALS

The (canonical)
differential equation

Y &

The geometry

The function space




WHAT IS A FEYNMAN INTEGRAL?

| Collider experiment:

Sl Probability for certain outcome = | Scattering Amplitude = 4 |

CERN

Perturbation theory: A = A©) + gA<1) + gQA@) + ...
_— /
coupling constant

AL): contributions from all allowed L-loop Feynman diagrams
- Translate to analytic expressions with Feynman rules

Building blocks: L-loop Feynman integrals
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WHAT IS A FEYNMAN INTEGRAL?

Family of Feynman integrals . / (H EY2 @) Mint
N v .
Momentum representation: -

Vector space witha basis I = (1,, ...1,,)
that fulfills a differential equation

dI(Ae) = AAe)I(Ae) with d =Y d\idy,

1=1
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FEYNMAN INTEGRALS FROM DIFFERENTIAL EQUATIONS r—

differential
Family of Feynman integrals L oqPpe, | i 1
if\ .I;/ N/ b//a :]:j[: . D :[T][ j[)l/i
Momentum representation: i—1 T2 ) i

equation

We want to compute a Feynman integral family analytically with differential equations.

B Use IBPs to find a basis of master integrals for the integral family

B Set up a differential equation w.r.t the external (kinematic) parameters

dI(X) = A(X, ¢)I(X) with d= Z dX;0x, where X; are kinematic variables

® Find a canonical dlfferentlal equation & solve in terms of iterated integrals.
[Henn] : :

J(X)=U- I(X) with :1.] (X) =eB(X)J (X)
and eB(X)=(dU)- U '+U -A(X,e) - U !

fhefunction space - J(X) = Pexp <g / B> -J (some point X) = (1 +e / B+ / B / > - J(XY)
R R
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WHAT IS A FEYNMAN INTEGRAL?

Family of Feynman integrals L

dDZZ Tlint 1

Momentum representation: i=1 T2 ) =1

non-integer, contains £

lllllllllllllllllll

Baikov representation: | ¥/~ [P\

KoBaikov polynomial
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FEYNMAN INTEGRALS: RELATIVE TWISTED PERIODS

multivalued function in 2 single-valued form in Z , only poles @ branch points of ®
Feynman |ntegra|s: Baikov polynomial i ?

ﬁfunction with additional poles in £
Feynman Integrals: Propagators

llllllllllll

Period of :relative twisted cohomology

Cij ~ /%‘ N @
cohomology group with basis {¢; } «—— dual cohomology group with basis {¢; }

homology group with basis{%'} +———— > dual homology group with basis{%}

Hij ~ weighted topological intersection of Vi & ’ij
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WHAT IS A (MAXIMAL) CUT?

LodPe | v
Iy N/ H D H D;/Z

=1 Y ) s

d°e; \ ¥ 1
CU-tjl,...,jn,« [[1/] Y ReSDjle,...,Djr:O / H . D DV

Cut

in propagators j1, ..., jr

Baikov representation:

10

I,(X) =

i 1 ij
Bases of twisted (co-)homology groups defined by B(z)*
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FEYNMAN INTEGRALS AND THEIR GEOMETRIES \‘]j

How do we associate one (or multiple) geometries to a Feynman integral (family)?

L D
T~ Hj:l dgj
1 N »
.................................. i D7
Symanzik polynomials
e ([Tt a,/) e
Find variety Polynomlal equation

Picard Fuchs operator (via Baikov)

NOt nNnecessa r||y unique! [ Marzucca, McLeod, Page, Pogel, Weinzierl | Jockers, Kotlewski, Kuusela, McLeod, Pogel, Sarve, Wang, Weinzierl]
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EXAMPLES FOR HYPERELLIPTIC FEYNMAN INTEGRALS l : | l

ELLIPTIC EXAMPLE: SUNRISE HYPERELLIPTIC EXAMPLE: NON-PLANAR CROSSED BOX
D =2-—2¢ D2

D=4 —2¢

maximal cut maximal cut
loop - by - loop loop - by - loop

[ Huang, Zhang | Georgoudis, Zhang | Marzucca, McLeod, Page, Pogel, Weinzierl |

, l

even elliptic curve of genus 1: even hyperelliptic curve of genus 2:
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WHAT IS A (MAXIMAL) CUT?

MAXIMAL CUT
The fundamental solution for the homogenous differential equation of the top sector.

(T110 ® — — — — —— (I110\

I101 - @ - — — —— I101

Io11 - — @ — — — — lovn | Vo
d 1111 — - 1111 dP — P

Io11 — — — I211

I197 — — — I121

\ 1112 - = - \1112/
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2. MORE ON CANONICAL DIFFERENTIAL EQUATIONS

_



FINDING CANONICAL DEQs

J(X) =U-I(X) with dJ(X) = ¢B(X)J(X)—> How do we find this (systematically)?

Different methods for finding canonical DEQ of Feynman integrals with elliptic curve or CY geometry.

[ Brosel, Duhr, Dulat, Penante, Tancredi | Pogel, Wang, Weinzierl | Gorges, Nega, Tancredi, Wagner ]

Short review of the algorithm by [Gorges, Nega, Tancredi, Wagner] (applied to maximal cut):
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FINDING CANONICAL DEQs
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Different methods for finding canonical DEQ of Feynman integrals with elliptic curve or CY geometry.

[ Brosel, Duhr, Dulat, Penante, Tancredi | Pogel, Wang, Weinzierl | Gorges, Nega, Tancredi, Wagner ]

Short review of the algorithm by [Gorges, Nega, Tancredi, Wagner] (applied to maximal cut):

Make a good choice for the starting basis
(Inspired by simple basis of Abelian differentials; derivative basis)

Compute the period matrix at € = 0 and split it in semi-simple and unipotent parts.

Rotate the initial basis with the inverse of the semi-simple part.
(Geometry inspired step)
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FINDING CANONICAL DEQs
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Different methods for finding canonical DEQ of Feynman integrals with elliptic curve or CY geometry.

[ Brosel, Duhr, Dulat, Penante, Tancredi | Pogel, Wang, Weinzierl | Gorges, Nega, Tancredi, Wagner ]

Short review of the algorithm by [Gorges, Nega, Tancredi, Wagner] (applied to maximal cut):

Make a good choice for the starting basis
(Inspired by simple basis of Abelian differentials; derivative basis)

Compute the period matrix at € = 0 and split it in semi-simple and unipotent parts.

Rotate the initial basis with the inverse of the semi-simple part.
(Geometry inspired step)

Make further simple rotations (exchanges of basis elements + powers of &£ )

to make the remaining non-canonical part lower-triangular.
(Adjustment step)
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FINDING CANONICAL DEQs

J(X) =U-I(X) with dJ(X) = ¢B(X)J(X)—> How do we find this (systematically)?

Different methods for finding canonical DEQ of Feynman integrals with elliptic curve or CY geometry.

[ Brosel, Duhr, Dulat, Penante, Tancredi | Pogel, Wang, Weinzierl | Gorges, Nega, Tancredi, Wagner ]

Short review of the algorithm by [Gorges, Nega, Tancredi, Wagner] (applied to maximal cut):

Make a good choice for the starting basis
(Inspired by simple basis of Abelian differentials; derivative basis)

Compute the period matrix at € = 0 and split it in semi-simple and unipotent parts.

Rotate the initial basis with the inverse of the semi-simple part.
(Geometry inspired step)

Make further simple rotations (exchanges of basis elements + powers of &£ )

to make the remaining non-canonical part lower-triangular.
(Adjustment step)

B Make ansatz to remove these remaining non-canonical entries and

solve the resulting differential equations.
(New objects step)
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THE C - FORM

Long version:

dJ(X) = eB(X)J(X) with B(X);; = zn:kafijk
k=1 !

m Differentially closed (f € A= 0x,f € AVi )
m Constants = K (0x,f=0Vi= f € K)

- A = K - vector space of closed differential forms
"""" generated by the forms appearing in B(X)

f"@ — Frac ((C RK .A)

[ Duhr, Semper, Stawinski, FP ]

B(X) in dLog-form with

1
fij :Zaijr_X

r

® -AdLog —
Rational functions in X
with singularities at the a;;r

dX .
® Adrog = <a~ijr — X‘ all 1, 7, 7“>

Elements of dF¢:
no pole/ pole of order > 1

—> AdLog M df(c — {O}
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THE C - FORM : MORE EXAMPLES

Elliptic 2£1

| 74

1
Il _ / dXX—%—I-Vl—I-al&‘(X _ 1)—%—|-V2—|-a28(x _ )\)—%—I-V:%—l-a:%&‘
0

~— . Elliptic curve y* = z(x — 1)(x — \)
A = Diff tial cl fQ P A, K(A), E(M) !
p— ’L -
lrrerential ciosure o _77 N1 Y 7 7K()\)
Sunrise
(1110 ® — — — — —— (T110
I101 - @ - — — — — 1101
lo11 - — @ - - — = lo11
d| L | = |- — — I11 —  Specific modular and quasi-modular form
I211 - = = I511
[121 - = = 121
\1112/ _— \[112)
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THE C - FORM FOR MAXIMAL CUTS

Reminder: Feynman integral family defines H'» " (X, ®) and H,,_n(X, L) with @ = B(z)*

Period matrix = matrix of cuts:

The intersection matrix is constant

Basis and dual basis are in £-form and C-form —> n the external variables dC — 0.

[ Duhr, Semper, Stawinski, FP ]

1

_I\T £
Proof idea: Use C = (Qm')nP(H )" P° and linear independence of iterated integrals

For maximal cuts: Can choose 13(5) = P(—¢)

e Conceptual: Condition for canonical form and classification of appearing functions

e Practical: Helps us find relations for new functions in canonical DEQ
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3. EXAMPLE: INTEGRAL FAMILY RELATED TO GENUS 2 CURVE



EXAMPLE: MAXIMAL CUT OF THE NON-PLANAR CROSSED BOX

A2 L — 2 tage
LA\, a) :/ dx (1 — )\1_155) ol (1 — )\6_193) 3l
A

1 6 0
.. D 1 _Na; —1
Twist =— with @ = 1 =\ x)" & [y = 1—A
y [[0 -2 [Tvo-ao

dx rdx o d ) d 2d
S =D o= O = 1(z)de 0 _ 2(2) “dand: AU = AT o
Jirst kind” ,second Kind"® Jthird kind®
BASIS OF CYCLES:

L], s Al b A As] + A, As] L A sl A, Ag]  [Asy Ad] + [As, Ael
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EXAMPLE: MAXIMAL CUT OF THE NON-PLANAR CROSSED BOX

a-cycles Db-cycles

A B 0\ &

B second
O Kind

e—0

,nhormalized” period

Q=A""-B

G 1 1 2 1
enus 1. _ —
T = Wo - W
m N2 2%
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STEP 1: DERIVATIVE BASIS

dz rdax o d Oy (x)dx r2dx
90(3):—(1’,90(0): o 90(%)2 1()dz ,90(4(1): 2(2) d: and gp(%): )
............. oYY Y
0 00 0 000
® 000 0000
d¢(0): o0 00 | - |00 000 | £ ¢(O)
O 000 - 0 00 9
0000 o 00 09
0
D _ 0 D0 @ e o9 e (1) _ 0
Lo T TN T TN T
0 00 ®e®& - -, |1 --—-——-—-
® 000 0 — — 0 —— = = =
dp) = ||eeee—| + [=eeee|c +|oe——0|c’| H
000 — — 000 o0 — o
0000 ®eeée& - |-
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STEP 2: SEMI-SIMPLE ROTATION

e — 0

iy Plo) =i, U5 Pro) = Jimy U (

I
N

0 A 0 )
1 R 1 (D | A 3
A B 0 —ghglo U/ (A 2mi-1 0
*x Kk x 0 0 1

dp® — [E:EE N [::,:: - +["']€2 e

23
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STEP 3: ADJUSTMENTS

2
Remove £ - terms:

r o o0 o o e o000 0O
0O 1 0 0 O _ _ . _
o[ ge® [./.H:::::]g+ 52| o®
0 0 0 L o0 o6 __o 0000
0 0 0 6 1 o0 — — — 00000
Lower triangular 80 - terms:
$r oo ooy —  Tr_____ NN NN
SON S DT I | PR I - H
0001 3 I 4
O 0 1 0 O
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STEP 4: ANSATZ

(4)— — - - ::::: e g0(4)

/ |
A

We want to remove these entries!
Find final transformation:

1. Make anansatzz. |\ __

dp® = U o® with U = [** .—

unknowns

_1 L
2. Transform the differential equation:  de'® = (dUé5)) (Ué‘”) + U A (Ué5>) ne

3. Require that the E:‘O- entries vanish 8 coupled differential equations of 8 unknowns %
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STEP 4: ANSATZ

26

0

3. Require that the &£ - entries vanish 8 coupled differential equations of 8 unknowns %

e Non-trivial to solve !

e Undetermined (at most 8) number of new functions !
(not expressible just in periods and branch points)
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STEP 4: ANSATZ

3. Require that the 50- entries vanish 8 coupled differential equations of 8 unknowns %

'

We can simyﬁﬂ this, using the intersection matrix!

The intersection matrix is constant

Basis and dual basis are in £-form and C-form —> n the external variables dC — 0.

[ Duhr, Semper, Stawinski, FP ]

Use this condition constructively:

~

1. Choose basis 90(5)& dual basis ¥ ,)so that P(e) = P(—¢) .
2. Compute intersection matrix C' [ Contains the 8 unknowns Y of Ué5)]

3. Require all entries of C to be constant in parameters )\, and solve for (some) % .
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STEP 4: ANSATZ

3. Require that the 50- entries vanish 8 coupled differential equations of 8 unknowns %

The intersection matrix is constant
in the external variables, dC = 0.

[ Duhr, Semper, Stawinski, FP ]

Basis and dual basis are in &-form and C-form —>

Use this condition constructively:

All but three entries of the final transformation

(5) — ® &6 — — — —
U6 ke x— — (expressed in periods, branch points & the three remaining new functions)
® % — —
Find from (now) simpler
o : : differential equations
C = - - o — — | — A constant skew-diagonal intersection
‘ — — —

The requirement, that the intersection matrix is constant, can be used constructively!
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RESULTS

(5) . U(5)

Ansatz for final rotation 4) )

(Use intersection matrix)

29

Reordering

(4)

E -

(3) U(Z) (1) SO Initial basis

(msplred by geometry)

K \ Derivative basis

Rotation with the inverse of the

semi-simple part of the period matrix
factors Pie P P

dgo(5) = cB()) 90(5) in £-form and C-form
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SUMMARY: THREE TAKEAWAYS

‘ Compute Feynman integrals in terms of specific iterated integrals (from DEQ)

Differential equation for maximal cut in £-form and C-form —> constant intersection matrix!
Can be used constructively!

/f The algorithm by [Gorges,Nega,Tancredi,Wagner] also works for hyperelliptic maximal cuts!

OUTLOOK

e Better understanding of the appearing (partially Siegel modular) forms

e Numerical evaluation of hyperelliptic Feynman integrals

e Better understanding of the role of the C-form (more generally)
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BACKUP



WHY? PROOF!

Assumption: Period matrices P and P with differential equations in &-form and C-form (same algebra)
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WHY? PROOF!

Assumption: Period matrices P and P with differential equations in &-form and C-form (same algebra)

Twisted Riemann bilinear relations:

1 \T =T
C=_——PH") P
GL(N, A® K(g))> | ( T‘-Z) | » = Pexp <€/Q(X)>
= £ - expansion with coefficients in A > € GL(V, C(¢))
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WHY? PROOF!

Assumption: Period matrices P and P with differential equations in &-form and C-form (same algebra)

Twisted Riemann bilinear relations:

( =
GL(N, A®K(£)) > - |
= £ - expansion with coefficients in 4

| + = Pexp (s/fz(X)>

. € GL(N, C(¢))

. = Pexp <g / Q(X)>

entries: Z R A,
: \E Nale

entries: » € ) chJ(w)
k W \

f c CcC Fr
basis of words

™~

iterated integrals
with J(0) =1
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WHY? PROOF!

Assumption: Period matrices P and P with differential equations in &-form and C-form (same algebra)

Twisted Riemann bilinear relations:

1 \T =T
C=_——PH") P
GL(N, A® K(g))> | ( T‘-Z) | » = Pexp <€/Q(X)>
= £ - expansion with coefficients in A > € GL(V, C(¢))
» = Pexp (5/9()())
| |
entries: Z 6kAk entries: Z er Z C,{% J(w)
k \ L
S # eCcrF. iterated integrals
basis of words with J(0) =1
ApJ(0) = ZCZJ(UJ) — 0= (cj — Ar)J(D) + Z ct J(w)
w wF~(
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WHY? PROOF!

Assumption: Period matrices P and P with differential equations in &-form and C-form (same algebra)

Twisted Riemann bilinear relations:

1 \T =T
C=_——PH") P
GL(N, A® K(g))> | ( T‘-Z) | » = Pexp <€/Q(X)>
= £ - expansion with coefficients in A > € GL(V, C(¢))

. = Pexp <g / n<x>>
| |

entries: Z 6kAk entries: Z ek Z C!fU J(w)
k w \

k "\ S .
€ JFc # eCcrF. lterated integrals
basis of words with J(0) =1
ApJ (D) = ZCZJ(UJ) — 0 = (clg — Ag)J(0) + Z ¢ J(w)
w wF~(

C-form < J(w) are linearly independent over F¢ = cffu =0 for w # () andcy € C '\

[Deneufchatel, Duchamp, Hoang Ngoc Minh, Solomon] et e ee ettt e,
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