Computing Zeta Functions of Calabi-Yau Threefolds

MITP Physics and Number Theory, January 2025

Michael Stepniczka

Cornell University, Department of Physics

Joint work in progress with Pyry Kuusela and Mikey Lathwood

- Let spacetime have a product structure $M_{10} = M_4 \times X_6$ with X_6 a compact 6-dimensional manifold
 - $\circ~$ To solve the 10D-vacuum Einstein equations, we require that X_6 be Ricci flat
 - The only known examples are Calabi-Yau threefolds (CY3s)! In addition to being Ricci flat, the manifold is also Kähler
- Type IIB string theory contains data about even-dimensional forms. We can then study the structure using **complex** algebraic geometry (i.e. over \mathbb{C})
 - More specifically, IIB comes with data including: 2-forms B_2, C_2 and corresponding field strengths $H_3 = dB_2, F_3 = dC_2$. Together with the axiodilaton τ , these are packaged as $G_3 = F_3 - \tau H_3$

- Let spacetime have a product structure $M_{10} = M_4 \times X_6$ with X_6 a compact 6-dimensional manifold
 - $\circ~$ To solve the 10D-vacuum Einstein equations, we require that X_6 be Ricci flat
 - The only known examples are Calabi-Yau threefolds (CY3s)! In addition to being Ricci flat, the manifold is also Kähler
- Type IIB string theory contains data about even-dimensional forms. We can then study the structure using **complex** algebraic geometry (i.e. over \mathbb{C})
 - More specifically, IIB comes with data including: 2-forms B_2, C_2 and corresponding field strengths $H_3 = dB_2, F_3 = dC_2$. Together with the axiodilaton τ , these are packaged as $G_3 = F_3 - \tau H_3$

- Let spacetime have a product structure $M_{10} = M_4 \times X_6$ with X_6 a compact 6-dimensional manifold
 - $\circ~$ To solve the 10D-vacuum Einstein equations, we require that X_6 be Ricci flat
 - The only known examples are Calabi-Yau threefolds (CY3s)! In addition to being Ricci flat, the manifold is also Kähler
- Type IIB string theory contains data about even-dimensional forms. We can then study the structure using **complex** algebraic geometry (i.e. over \mathbb{C})
 - More specifically, IIB comes with data including: 2-forms B_2, C_2 and corresponding field strengths $H_3 = dB_2, F_3 = dC_2$. Together with the axiodilaton τ , these are packaged as $G_3 = F_3 - \tau H_3$

- Let spacetime have a product structure $M_{10} = M_4 \times X_6$ with X_6 a compact 6-dimensional manifold
 - $\circ~$ To solve the 10D-vacuum Einstein equations, we require that X_6 be Ricci flat
 - The only known examples are Calabi-Yau threefolds (CY3s)! In addition to being Ricci flat, the manifold is also Kähler
- Type IIB string theory contains data about even-dimensional forms. We can then study the structure using **complex** algebraic geometry (i.e. over \mathbb{C})
 - More specifically, IIB comes with data including: 2-forms B_2, C_2 and corresponding field strengths $H_3 = dB_2, F_3 = dC_2$. Together with the axiodilaton τ , these are packaged as $G_3 = F_3 - \tau H_3$

- Let spacetime have a product structure $M_{10} = M_4 \times X_6$ with X_6 a compact 6-dimensional manifold
 - $\circ~$ To solve the 10D-vacuum Einstein equations, we require that X_6 be Ricci flat
 - The only known examples are Calabi-Yau threefolds (CY3s)! In addition to being Ricci flat, the manifold is also Kähler
- Type IIB string theory contains data about even-dimensional forms. We can then study the structure using **complex** algebraic geometry (i.e. over \mathbb{C})
 - More specifically, IIB comes with data including: 2-forms B_2, C_2 and corresponding field strengths $H_3 = dB_2, F_3 = dC_2$. Together with the axiodilaton τ , these are packaged as $G_3 = F_3 - \tau H_3$

- Better than complex algebraic geometry, the largest-known collection of CY3s comes from **toric geometry** [Batyrev; alg-geom/9310003]
 - $\circ~$ CY3s are found as hypersurfaces in toric varieties
 - These toric varieties are obtained from (suitable triangulations of) 4D reflexive polytopes
 - * Combinatorial in nature!
 - * Question: How much of the CY data can be obtained purely from this combinatorial data?
 - Polytopal construction lends itself to computer-based studies via e.g. CYTools

- Better than complex algebraic geometry, the largest-known collection of CY3s comes from **toric geometry** [Batyrev; alg-geom/9310003]
 - CY3s are found as hypersurfaces in toric varieties
 - These toric varieties are obtained from (suitable triangulations of) 4D reflexive polytopes
 - * Combinatorial in nature!
 - * Question: How much of the CY data can be obtained purely from this combinatorial data?
 - Polytopal construction lends itself to computer-based studies via e.g. CYTools

- Better than complex algebraic geometry, the largest-known collection of CY3s comes from **toric geometry** [Batyrev; alg-geom/9310003]
 - CY3s are found as hypersurfaces in toric varieties
 - These toric varieties are obtained from (suitable triangulations of) 4D reflexive polytopes
 - *** Combinatorial** in nature!
 - * Question: How much of the CY data can be obtained purely from this combinatorial data?
 - Polytopal construction lends itself to computer-based studies via e.g. CYTools

From Physics

- Better than complex algebraic geometry, the largest-known collection of CY3s comes from **toric geometry** [Batyrev; alg-geom/9310003]
 - CY3s are found as hypersurfaces in toric varieties
 - These toric varieties are obtained from (suitable triangulations of) 4D reflexive polytopes

* **Combinatorial** in nature!

- * Question: How much of the CY data can be obtained purely from this combinatorial data?
- Polytopal construction lends itself to computer-based studies via e.g. CYTools

- Better than complex algebraic geometry, the largest-known collection of CY3s comes from **toric geometry** [Batyrev; alg-geom/9310003]
 - CY3s are found as hypersurfaces in toric varieties
 - These toric varieties are obtained from (suitable triangulations of) 4D reflexive polytopes
 - *** Combinatorial** in nature!
 - ★ Question: How much of the CY data can be obtained purely from this combinatorial data?
 - Polytopal construction lends itself to computer-based studies via e.g. CYTools

- Better than complex algebraic geometry, the largest-known collection of CY3s comes from **toric geometry** [Batyrev; alg-geom/9310003]
 - CY3s are found as hypersurfaces in toric varieties
 - These toric varieties are obtained from (suitable triangulations of) 4D reflexive polytopes
 - * **Combinatorial** in nature!
 - ★ Question: How much of the CY data can be obtained purely from this combinatorial data?
 - $\circ~$ Polytopal construction lends itself to computer-based studies via e.g. <code>CYTools</code>

- More generally, a Calabi-Yau *n*-fold can be defined to be a compact Kähler manifold with vanishing first Chern class
- Examples:
 - $\circ n = 1$: Complex Tori ↔ Elliptic Curves
 - n = 2 : K3 surfaces
 - $\circ n = 3 : CY3s!$
- As with elliptic curves, CYs can be studied via arithmetic geometry
 - $\circ~$ Example: finding point counts over finite fields

- More generally, a Calabi-Yau *n*-fold can be defined to be a compact Kähler manifold with vanishing first Chern class
- Examples:
 - $\circ n = 1$: Complex Tori \leftrightarrow Elliptic Curves
 - $\circ n = 2 : K3$ surfaces
 - $\circ n = 3 : CY3s!$
- As with elliptic curves, CYs can be studied via arithmetic geometry
 - $\circ~$ Example: finding point counts over finite fields

- More generally, a Calabi-Yau *n*-fold can be defined to be a compact Kähler manifold with vanishing first Chern class
- Examples:
 - $\circ n = 1$: Complex Tori \leftrightarrow Elliptic Curves
 - $\circ n = 2 : K3$ surfaces
 - $\circ n = 3 : CY3s!$
- As with elliptic curves, CYs can be studied via arithmetic geometry
 - $\circ~$ Example: finding point counts over finite fields

- More generally, a Calabi-Yau *n*-fold can be defined to be a compact Kähler manifold with vanishing first Chern class
- Examples:
 - $\circ \ n=1:$ Complex Tori \leftrightarrow Elliptic Curves
 - $\circ n = 2 : K3$ surfaces
 - $\circ n = 3 : CY3s!$
- As with elliptic curves, CYs can be studied via arithmetic geometry
 - $\circ~$ Example: finding point counts over finite fields

- More generally, a Calabi-Yau *n*-fold can be defined to be a compact Kähler manifold with vanishing first Chern class
- Examples:
 - $\circ \ n=1:$ Complex Tori \leftrightarrow Elliptic Curves
 - $\circ n = 2$: K3 surfaces
 - $\circ n = 3 : CY3s!$
- As with elliptic curves, CYs can be studied via arithmetic geometry
 - $\circ~$ Example: finding point counts over finite fields

- More generally, a Calabi-Yau *n*-fold can be defined to be a compact Kähler manifold with vanishing first Chern class
- Examples:
 - $\circ \ n=1:$ Complex Tori \leftrightarrow Elliptic Curves
 - $\circ n = 2$: K3 surfaces
 - n = 3 : CY3s!
- As with elliptic curves, CYs can be studied via arithmetic geometry
 - $\circ~$ Example: finding point counts over finite fields

- More generally, a Calabi-Yau *n*-fold can be defined to be a compact Kähler manifold with vanishing first Chern class
- Examples:
 - $\circ \ n=1:$ Complex Tori \leftrightarrow Elliptic Curves
 - $\circ \ n=2: \mathrm{K3} \ \mathrm{surfaces}$
 - n = 3 : CY3s!
- As with elliptic curves, CYs can be studied via arithmetic geometry
 - Example: finding point counts over finite fields

• Elliptic curves over \mathbb{Q} can be written in Weierstrass form $E: y^2 = x^3 + ax + b$ with $a, b \in \mathbb{Z}$

- These curves can then be considered over finite field, e.g. \mathbb{F}_p
- The number of solutions of the elliptic curve E over these finite fields are related to Fourier coefficients of a weight-2 modular form via $a_p = p + 1 - \#E(\mathbb{F}_p)$

• Example:
$$y^2 = x^3 + x$$

• Over \mathbb{F}_3 , we have solutions (x, y) = (0, 0), (2, 1), (2, 2), and a point at infinity

 $\star a_3 = 3 + 1 - 4 = 0$

• Over \mathbb{F}_5 , we have solutions (x, y) = (0, 0), (2, 0), (3, 0), and a point at infinity

 $a_5 = 5 + 1 - 4 = 2$

- Compare to **64.2.a.a**: $f(q) = q + 2q^5 3q^9 + \cdots$
- Modularity then says elliptic curves E/\mathbb{Q} have associated to them such modular forms f.

- Elliptic curves over \mathbb{Q} can be written in Weierstrass form $E: y^2 = x^3 + ax + b$ with $a, b \in \mathbb{Z}$
 - These curves can then be considered over finite field, e.g. \mathbb{F}_p
 - The number of solutions of the elliptic curve E over these finite fields are related to Fourier coefficients of a weight-2 modular form via $a_p = p + 1 - \#E(\mathbb{F}_p)$

• Example:
$$y^2 = x^3 + x$$

• Over \mathbb{F}_3 , we have solutions (x, y) = (0, 0), (2, 1), (2, 2), and a point at infinity

 $\star a_3 = 3 + 1 - 4 = 0$

• Over \mathbb{F}_5 , we have solutions (x, y) = (0, 0), (2, 0), (3, 0), and a point at infinity

 $a_5 = 5 + 1 - 4 = 2$

- Compare to **64.2.a.a**: $f(q) = q + 2q^5 3q^9 + \cdots$
- Modularity then says elliptic curves E/\mathbb{Q} have associated to them such modular forms f.

- Elliptic curves over \mathbb{Q} can be written in Weierstrass form $E: y^2 = x^3 + ax + b$ with $a, b \in \mathbb{Z}$
 - These curves can then be considered over finite field, e.g. \mathbb{F}_p
 - The number of solutions of the elliptic curve E over these finite fields are related to Fourier coefficients of a weight-2 modular form via $a_p = p + 1 - \#E(\mathbb{F}_p)$

• Example:
$$y^2 = x^3 + x$$

• Over \mathbb{F}_3 , we have solutions (x, y) = (0, 0), (2, 1), (2, 2), and a point at infinity

 $a_3 = 3 + 1 - 4 = 0$

• Over \mathbb{F}_5 , we have solutions (x, y) = (0, 0), (2, 0), (3, 0), and a point at infinity

 $a_5 = 5 + 1 - 4 = 2$

- Compare to **64.2.a.a**: $f(q) = q + 2q^5 3q^9 + \cdots$
- Modularity then says elliptic curves E/\mathbb{Q} have associated to them such modular forms f.

- Elliptic curves over \mathbb{Q} can be written in Weierstrass form $E: y^2 = x^3 + ax + b$ with $a, b \in \mathbb{Z}$
 - These curves can then be considered over finite field, e.g. \mathbb{F}_p
 - The number of solutions of the elliptic curve E over these finite fields are related to Fourier coefficients of a weight-2 modular form via $a_p = p + 1 - \#E(\mathbb{F}_p)$

• Example:
$$y^2 = x^3 + x$$

• Over \mathbb{F}_3 , we have solutions (x, y) = (0, 0), (2, 1), (2, 2), and a point at infinity

 $\star \ a_3 = 3 + 1 - 4 = 0$

• Over \mathbb{F}_5 , we have solutions (x, y) = (0, 0), (2, 0), (3, 0), and a point at infinity

 $\star a_5 = 5 + 1 - 4 = 2$

• Compare to **64.2.a.a**: $f(q) = q + 2q^5 - 3q^9 + \cdots$

- Elliptic curves over \mathbb{Q} can be written in Weierstrass form $E: y^2 = x^3 + ax + b$ with $a, b \in \mathbb{Z}$
 - These curves can then be considered over finite field, e.g. \mathbb{F}_p
 - The number of solutions of the elliptic curve E over these finite fields are related to Fourier coefficients of a weight-2 modular form via $a_p = p + 1 - \#E(\mathbb{F}_p)$

• Example:
$$y^2 = x^3 + x$$

• Over \mathbb{F}_3 , we have solutions (x, y) = (0, 0), (2, 1), (2, 2), and a point at infinity

 $\star a_3 = 3 + 1 - 4 = 0$

• Over \mathbb{F}_5 , we have solutions (x, y) = (0, 0), (2, 0), (3, 0), and a point at infinity

 $\star a_5 = 5 + 1 - 4 = 2$

• Compare to **64.2.a.a**: $f(q) = q + 2q^5 - 3q^9 + \cdots$

- Elliptic curves over \mathbb{Q} can be written in Weierstrass form $E: y^2 = x^3 + ax + b$ with $a, b \in \mathbb{Z}$
 - These curves can then be considered over finite field, e.g. \mathbb{F}_p
 - The number of solutions of the elliptic curve E over these finite fields are related to Fourier coefficients of a weight-2 modular form via $a_p = p + 1 - \#E(\mathbb{F}_p)$

• Example:
$$y^2 = x^3 + x$$

• Over \mathbb{F}_3 , we have solutions (x, y) = (0, 0), (2, 1), (2, 2), and a point at infinity

 $\star a_3 = 3 + 1 - 4 = 0$

• Over \mathbb{F}_5 , we have solutions (x, y) = (0, 0), (2, 0), (3, 0), and a point at infinity

 $\star a_5 = 5 + 1 - 4 = 2$

• Compare to **64.2.a.a**: $f(q) = q + 2q^5 - 3q^9 + \cdots$

- Elliptic curves over \mathbb{Q} can be written in Weierstrass form $E: y^2 = x^3 + ax + b$ with $a, b \in \mathbb{Z}$
 - These curves can then be considered over finite field, e.g. \mathbb{F}_p
 - The number of solutions of the elliptic curve E over these finite fields are related to Fourier coefficients of a weight-2 modular form via $a_p = p + 1 - \#E(\mathbb{F}_p)$

• Example:
$$y^2 = x^3 + x$$

• Over \mathbb{F}_3 , we have solutions (x, y) = (0, 0), (2, 1), (2, 2), and a point at infinity

 $\star a_3 = 3 + 1 - 4 = 0$

• Over \mathbb{F}_5 , we have solutions (x, y) = (0, 0), (2, 0), (3, 0), and a point at infinity

 $\star a_5 = 5 + 1 - 4 = 2$

- Compare to **64.2.a.a**: $f(q) = q + 2q^5 3q^9 + \cdots$
- Modularity then says elliptic curves E/\mathbb{Q} have associated to them such modular forms f.

- Elliptic curves over \mathbb{Q} can be written in Weierstrass form $E: y^2 = x^3 + ax + b$ with $a, b \in \mathbb{Z}$
 - These curves can then be considered over finite field, e.g. \mathbb{F}_p
 - The number of solutions of the elliptic curve E over these finite fields are related to Fourier coefficients of a weight-2 modular form via $a_p = p + 1 - \#E(\mathbb{F}_p)$

• Example:
$$y^2 = x^3 + x$$

• Over \mathbb{F}_3 , we have solutions (x, y) = (0, 0), (2, 1), (2, 2), and a point at infinity

 $\star a_3 = 3 + 1 - 4 = 0$

• Over \mathbb{F}_5 , we have solutions (x, y) = (0, 0), (2, 0), (3, 0), and a point at infinity

 $\star a_5 = 5 + 1 - 4 = 2$

• Compare to **64.2.a.a**: $f(q) = q + 2q^5 - 3q^9 + \cdots$

- More generally, this story can be told in terms of representations of Gal(Q/Q):
 - The middle cohomology of an elliptic curve E/\mathbb{Q} provides us with a 2-dimensional representation $\rho_2(E)$.
 - On the other hand, cusp forms f that are simultaneous eigenvectors of all Hecke operators are also associated to 2-dimensional representations $\rho_2(f)$
 - $\circ~$ It is then the modularity theorem which associates to every E/\mathbb{Q} such an f for which the representations coincide
- This story can be generalized to Calabi-Yau *n*-folds X. Modularity can arise, for instance, when the representation decomposes into a 2-dimensional subrepresentation and a $(b_n - 2)$ -dimensional component.
 - Singular K3s
 - Rigid CY3s
 - SUSY Flux Vacua

- More generally, this story can be told in terms of representations of Gal(Q/Q):
 - The middle cohomology of an elliptic curve E/\mathbb{Q} provides us with a 2-dimensional representation $\rho_2(E)$.
 - On the other hand, cusp forms f that are simultaneous eigenvectors of all Hecke operators are also associated to 2-dimensional representations $\rho_2(f)$
 - It is then the modularity theorem which associates to every E/\mathbb{Q} such an f for which the representations coincide
- This story can be generalized to Calabi-Yau *n*-folds X. Modularity can arise, for instance, when the representation decomposes into a 2-dimensional subrepresentation and a $(b_n - 2)$ -dimensional component.
 - Singular K3s
 - Rigid CY3s
 - SUSY Flux Vacua

- More generally, this story can be told in terms of representations of Gal(Q/Q):
 - The middle cohomology of an elliptic curve E/\mathbb{Q} provides us with a 2-dimensional representation $\rho_2(E)$.
 - On the other hand, cusp forms f that are simultaneous eigenvectors of all Hecke operators are also associated to 2-dimensional representations $\rho_2(f)$
 - It is then the modularity theorem which associates to every E/\mathbb{Q} such an f for which the representations coincide
- This story can be generalized to Calabi-Yau *n*-folds X. Modularity can arise, for instance, when the representation decomposes into a 2-dimensional subrepresentation and a $(b_n - 2)$ -dimensional component.
 - Singular K3s
 - Rigid CY3s
 - SUSY Flux Vacua

- More generally, this story can be told in terms of representations of Gal(Q/Q):
 - The middle cohomology of an elliptic curve E/\mathbb{Q} provides us with a 2-dimensional representation $\rho_2(E)$.
 - On the other hand, cusp forms f that are simultaneous eigenvectors of all Hecke operators are also associated to 2-dimensional representations $\rho_2(f)$
 - It is then the modularity theorem which associates to every E/\mathbb{Q} such an f for which the representations coincide
- This story can be generalized to Calabi-Yau *n*-folds X. Modularity can arise, for instance, when the representation decomposes into a 2-dimensional subrepresentation and a $(b_n - 2)$ -dimensional component.
 - Singular K3s
 - Rigid CY3s
 - SUSY Flux Vacua

- More generally, this story can be told in terms of representations of Gal(Q/Q):
 - The middle cohomology of an elliptic curve E/\mathbb{Q} provides us with a 2-dimensional representation $\rho_2(E)$.
 - On the other hand, cusp forms f that are simultaneous eigenvectors of all Hecke operators are also associated to 2-dimensional representations $\rho_2(f)$
 - It is then the modularity theorem which associates to every E/\mathbb{Q} such an f for which the representations coincide
- This story can be generalized to Calabi-Yau *n*-folds X. Modularity can arise, for instance, when the representation decomposes into a 2-dimensional subrepresentation and a $(b_n - 2)$ -dimensional component.
 - Singular K3s
 - Rigid CY3s
 - SUSY Flux Vacua

- More generally, this story can be told in terms of representations of Gal(Q/Q):
 - The middle cohomology of an elliptic curve E/\mathbb{Q} provides us with a 2-dimensional representation $\rho_2(E)$.
 - On the other hand, cusp forms f that are simultaneous eigenvectors of all Hecke operators are also associated to 2-dimensional representations $\rho_2(f)$
 - It is then the modularity theorem which associates to every E/\mathbb{Q} such an f for which the representations coincide
- This story can be generalized to Calabi-Yau *n*-folds X. Modularity can arise, for instance, when the representation decomposes into a 2-dimensional subrepresentation and a $(b_n - 2)$ -dimensional component.
 - Singular K3s
 - Rigid CY3s
 - SUSY Flux Vacua

- More generally, this story can be told in terms of representations of Gal(Q/Q):
 - The middle cohomology of an elliptic curve E/\mathbb{Q} provides us with a 2-dimensional representation $\rho_2(E)$.
 - On the other hand, cusp forms f that are simultaneous eigenvectors of all Hecke operators are also associated to 2-dimensional representations $\rho_2(f)$
 - It is then the modularity theorem which associates to every E/\mathbb{Q} such an f for which the representations coincide
- This story can be generalized to Calabi-Yau *n*-folds X. Modularity can arise, for instance, when the representation decomposes into a 2-dimensional subrepresentation and a $(b_n - 2)$ -dimensional component.
 - Singular K3s
 - Rigid CY3s
 - SUSY Flux Vacua

- More generally, this story can be told in terms of representations of Gal(Q/Q):
 - The middle cohomology of an elliptic curve E/\mathbb{Q} provides us with a 2-dimensional representation $\rho_2(E)$.
 - On the other hand, cusp forms f that are simultaneous eigenvectors of all Hecke operators are also associated to 2-dimensional representations $\rho_2(f)$
 - It is then the modularity theorem which associates to every E/\mathbb{Q} such an f for which the representations coincide
- This story can be generalized to Calabi-Yau *n*-folds X. Modularity can arise, for instance, when the representation decomposes into a 2-dimensional subrepresentation and a $(b_n - 2)$ -dimensional component.
 - Singular K3s
 - Rigid CY3s
 - SUSY Flux Vacua

(Local) Zeta Functions Definition

Let X/\mathbb{Q} be a smooth projective variety. As before, we can clear denominators and view X/\mathbb{Z} . Furthermore, we can reduce modulo p to view this as X/\mathbb{F}_p . As \mathbb{F}_p is a subfield of \mathbb{F}_{p^n} , we can finally study X/\mathbb{F}_{p^n} .

Definition

For X/\mathbb{Q} as above and for good primes p, define the *local zeta* function to be:

$$\zeta_p(X,T) = \exp\left(\sum_{n=1}^{\infty} \frac{\#X(\mathbb{F}_{p^n})T^n}{n}\right)$$

with $\#X(\mathbb{F}_{p^n})$ denoting the point count over \mathbb{F}_{p^n} .
(Local) Zeta Functions Definition

Let X/\mathbb{Q} be a smooth projective variety. As before, we can clear denominators and view X/\mathbb{Z} . Furthermore, we can reduce modulo p to view this as X/\mathbb{F}_p . As \mathbb{F}_p is a subfield of \mathbb{F}_{p^n} , we can finally study X/\mathbb{F}_{p^n} .

Definition

For X/\mathbb{Q} as above and for good primes p, define the *local zeta function* to be:

$$\zeta_p(X,T) = \exp\left(\sum_{n=1}^{\infty} \frac{\#X(\mathbb{F}_{p^n})T^n}{n}\right)$$

with $\#X(\mathbb{F}_{p^n})$ denoting the point count over \mathbb{F}_{p^n} .

Example: Riemann Zeta Function

Example

Let X be a point. Clearing denominators, $\#X(\mathbb{F}_{p^n}) = 1$. Then:

$$\zeta_p(\{\mathrm{pt}\}, T) = \exp\left(\sum_{n=1}^{\infty} \frac{T^n}{n}\right) = \frac{1}{1-T}$$

From the local zeta functions, construct:

$$\zeta(X,s) = \prod_{p} \zeta_p(X, p^{-s}),$$

and find the usual Riemann zeta function

$$\zeta(\{\mathrm{pt}\}, s) = \prod_{p} \frac{1}{1 - p^{-s}} = \zeta(s).$$

Theorem (Rationality)

 $\zeta_p(X,T)$ is a rational function of T. Specifically:

$$\zeta_p(X,T) = \frac{R_p^{(1)}(X,T) \cdots R_p^{(2n-1)}(X,T)}{R_p^{(0)}(X,T) \cdots R_p^{(2n)}(X,T)},$$

where each $R_p^{(i)}(T)$ has integral coefficients and is of degree b_i , the *i*'th Betti number.

There are other nice properties that these zeta functions satisfy: namely, a functional equation and a Riemann hypothesis.

First, the numbers #X(F_p) can be determined as follows:
 Recall the Frobenius endomorphism:

$$\operatorname{Frob}_p : (x_1, \dots, x_k) \mapsto (x_1^p, \dots, x_k^p)$$

- As $x^p \equiv x \mod p$ for all $x \in \mathbb{F}_p$, the fixed points of Frob_p over any field extension are exactly those in \mathbb{F}_p
- You can repeat this for \mathbb{F}_{p^n}
- Now think of a family of CY3s X_φ. One can define a p-adic cohomology theory H^k(X_φ, Q_p) and pullback the Frobenius map:

$$\operatorname{Fr}_p: H^k(X_{\varphi}, \mathbb{Q}_p) \to H^k(X_{\varphi}, \mathbb{Q}_p)$$

$$#X_{\varphi}(\mathbb{F}_{p^n}) = \sum_{m=0}^{6} (-1)^m \operatorname{Tr}(\operatorname{Fr}_{p^n}|_{H^m(X_{\varphi}, \mathbb{Q}_p)})$$

To prove this, Dwork used *p*-adic cohomological techniques. First, the numbers #X(F_n) can be determined as follows:

• Recall the Frobenius endomorphism:

$$\operatorname{Frob}_p : (x_1, \ldots, x_k) \mapsto (x_1^p, \ldots, x_k^p)$$

- As $x^p \equiv x \mod p$ for all $x \in \mathbb{F}_p$, the fixed points of Frob_p over any field extension are exactly those in \mathbb{F}_p
- You can repeat this for \mathbb{F}_{p^n}
- Now think of a family of CY3s X_φ. One can define a p-adic cohomology theory H^k(X_φ, Q_p) and pullback the Frobenius map:

$$\operatorname{Fr}_p: H^k(X_{\varphi}, \mathbb{Q}_p) \to H^k(X_{\varphi}, \mathbb{Q}_p)$$

$$#X_{\varphi}(\mathbb{F}_{p^n}) = \sum_{m=0}^{6} (-1)^m \operatorname{Tr}(\operatorname{Fr}_{p^n}|_{H^m(X_{\varphi}, \mathbb{Q}_p)})$$

- First, the numbers $\#X(\mathbb{F}_p)$ can be determined as follows:
 - Recall the Frobenius endomorphism:

$$\operatorname{Frob}_p : (x_1, \ldots, x_k) \mapsto (x_1^p, \ldots, x_k^p)$$

- As $x^p \equiv x \mod p$ for all $x \in \mathbb{F}_p$, the fixed points of Frob_p over any field extension are exactly those in \mathbb{F}_p
- You can repeat this for \mathbb{F}_{p^n}
- Now think of a family of CY3s X_φ. One can define a p-adic cohomology theory H^k(X_φ, Q_p) and pullback the Frobenius map:

$$\operatorname{Fr}_p: H^k(X_{\varphi}, \mathbb{Q}_p) \to H^k(X_{\varphi}, \mathbb{Q}_p)$$

$$#X_{\varphi}(\mathbb{F}_{p^n}) = \sum_{m=0}^{6} (-1)^m \operatorname{Tr}(\operatorname{Fr}_{p^n}|_{H^m(X_{\varphi}, \mathbb{Q}_p)})$$

- First, the numbers $\#X(\mathbb{F}_p)$ can be determined as follows:
 - Recall the Frobenius endomorphism:

$$\operatorname{Frob}_p : (x_1, \ldots, x_k) \mapsto (x_1^p, \ldots, x_k^p)$$

• As $x^p \equiv x \mod p$ for all $x \in \mathbb{F}_p$, the fixed points of Frob_p over any field extension are exactly those in \mathbb{F}_p

• You can repeat this for \mathbb{F}_{p^n}

Now think of a family of CY3s X_φ. One can define a p-adic cohomology theory H^k(X_φ, Q_p) and pullback the Frobenius map:

$$\operatorname{Fr}_p: H^k(X_{\varphi}, \mathbb{Q}_p) \to H^k(X_{\varphi}, \mathbb{Q}_p)$$

$$#X_{\varphi}(\mathbb{F}_{p^n}) = \sum_{m=0}^{6} (-1)^m \operatorname{Tr}(\operatorname{Fr}_{p^n}|_{H^m(X_{\varphi}, \mathbb{Q}_p)})$$

- First, the numbers $\#X(\mathbb{F}_p)$ can be determined as follows:
 - Recall the Frobenius endomorphism:

$$\operatorname{Frob}_p : (x_1, \ldots, x_k) \mapsto (x_1^p, \ldots, x_k^p)$$

- As $x^p \equiv x \mod p$ for all $x \in \mathbb{F}_p$, the fixed points of Frob_p over any field extension are exactly those in \mathbb{F}_p
- You can repeat this for \mathbb{F}_{p^n}
- Now think of a family of CY3s X_φ. One can define a p-adic cohomology theory H^k(X_φ, Q_p) and pullback the Frobenius map:

$$\operatorname{Fr}_p: H^k(X_{\varphi}, \mathbb{Q}_p) \to H^k(X_{\varphi}, \mathbb{Q}_p)$$

$$#X_{\varphi}(\mathbb{F}_{p^n}) = \sum_{m=0}^{6} (-1)^m \operatorname{Tr}(\operatorname{Fr}_{p^n}|_{H^m(X_{\varphi}, \mathbb{Q}_p)})$$

- First, the numbers $\#X(\mathbb{F}_p)$ can be determined as follows:
 - Recall the Frobenius endomorphism:

$$\operatorname{Frob}_p : (x_1, \ldots, x_k) \mapsto (x_1^p, \ldots, x_k^p)$$

- As $x^p \equiv x \mod p$ for all $x \in \mathbb{F}_p$, the fixed points of Frob_p over any field extension are exactly those in \mathbb{F}_p
- You can repeat this for \mathbb{F}_{p^n}
- Now think of a family of CY3s X_φ. One can define a p-adic cohomology theory H^k(X_φ, Q_p) and pullback the Frobenius map:

$$\operatorname{Fr}_p: H^k(X_{\varphi}, \mathbb{Q}_p) \to H^k(X_{\varphi}, \mathbb{Q}_p)$$

$$#X_{\varphi}(\mathbb{F}_{p^n}) = \sum_{m=0}^{6} (-1)^m \operatorname{Tr}(\operatorname{Fr}_{p^n}|_{H^m(X_{\varphi}, \mathbb{Q}_p)})$$

- First, the numbers $\#X(\mathbb{F}_p)$ can be determined as follows:
 - Recall the Frobenius endomorphism:

$$\operatorname{Frob}_p : (x_1, \ldots, x_k) \mapsto (x_1^p, \ldots, x_k^p)$$

- As $x^p \equiv x \mod p$ for all $x \in \mathbb{F}_p$, the fixed points of Frob_p over any field extension are exactly those in \mathbb{F}_p
- You can repeat this for \mathbb{F}_{p^n}
- Now think of a family of CY3s X_φ. One can define a p-adic cohomology theory H^k(X_φ, Q_p) and pullback the Frobenius map:

$$\operatorname{Fr}_p: H^k(X_{\varphi}, \mathbb{Q}_p) \to H^k(X_{\varphi}, \mathbb{Q}_p)$$

$$\#X_{\varphi}(\mathbb{F}_{p^n}) = \sum_{m=0}^{6} (-1)^m \operatorname{Tr}(\operatorname{Fr}_{p^n}|_{H^m(X_{\varphi}, \mathbb{Q}_p)})$$

• The characteristic polynomial of the inverse of the Frobenius map is then:

$$R_p^{(m)}(X_{\varphi}, T) = \det(I - T \operatorname{Fr}_p^{-1}|_{H^m(X_{\varphi}, \mathbb{Q}_p)})$$

=
$$\det(I - T U_p(\varphi))$$

• The Hodge diamond for a CY3s is:

• The characteristic polynomial of the inverse of the Frobenius map is then:

$$R_p^{(m)}(X_{\varphi}, T) = \det(I - T \operatorname{Fr}_p^{-1}|_{H^m(X_{\varphi}, \mathbb{Q}_p)})$$

=
$$\det(I - T U_p(\varphi))$$

• The Hodge diamond for a CY3s is:

 $b_3 = 2$

• The characteristic polynomial of the inverse of the Frobenius map is then:

$$R_p^{(m)}(X_{\varphi}, T) = \det(I - T \operatorname{Fr}_p^{-1}|_{H^m(X_{\varphi}, \mathbb{Q}_p)})$$

=
$$\det(I - T U_p(\varphi))$$

• The Hodge diamond for a CY3s is:

• This tells us
$$b_0 = b_6 = 1, \ b_1 = b_5 = 0, \ b_2 = b_4 = h^{1,1}$$
, and $b_3 = 2 + 2h^{2,1}$.

Zeta Functions Weil Conjectures

• Now our zeta function is:

$$\begin{aligned} \zeta_p(X_{\varphi},T) &= \frac{R_p^{(1)}(X_{\varphi},T)R_p^{(3)}(X_{\varphi},T)R_p^{(5)}(X_{\varphi},T)}{R_p^{(0)}(X_{\varphi},T)R_p^{(2)}(X_{\varphi},T)R_p^{(4)}(X_{\varphi},T)R_p^{(6)}(X_{\varphi},T)} \\ &= \frac{R_p^{(3)}(X_{\varphi},T)}{(1-T)(1-pT)^{h^{1,1}}(1-p^2T)^{h^{1,1}}(1-p^3T)}, \end{aligned}$$

where I have glossed over a few details.

In this case, we only need to care about R⁽³⁾_p(X_φ, T)
 We'll get back to this point later!

Zeta Functions Weil Conjectures

• Now our zeta function is:

$$\begin{aligned} \zeta_p(X_{\varphi},T) &= \frac{R_p^{(1)}(X_{\varphi},T)R_p^{(3)}(X_{\varphi},T)R_p^{(5)}(X_{\varphi},T)}{R_p^{(0)}(X_{\varphi},T)R_p^{(2)}(X_{\varphi},T)R_p^{(4)}(X_{\varphi},T)R_p^{(6)}(X_{\varphi},T)} \\ &= \frac{R_p^{(3)}(X_{\varphi},T)}{(1-T)(1-pT)^{h^{1,1}}(1-p^2T)^{h^{1,1}}(1-p^3T)}, \end{aligned}$$

where I have glossed over a few details.

In this case, we only need to care about R⁽³⁾_p(X_φ, T)
 We'll get back to this point later!

Zeta Functions Use in Physics

- BH modularity/rank-2 attractor points [e.g. Candelas, de la Ossa, Elmi, van Straten 1912.06146v1]
- Supersymmetric flux vacua and F-theory/M-theory modularity [e.g. Kachru, Nally, Yang 2001.06022v2, 2010.07285v2; Jockers, Kotlewski, Kuusela 2312.07611v3]
- Ratio of L-functions to GWs [Candelas, de la Ossa, McGovern 2410.07107v1]

$$\frac{3\pi}{2} \frac{L_{54.4.a.c}(1)}{L_{54.4.a.c}(2)} = \sqrt{69} - \sqrt{\frac{2}{\pi^3}} \sum_{\substack{j \in \mathbb{Z}_{>0} \\ \mathfrak{p} \in \mathrm{pt}(j)}} (-1)^j \widetilde{N}_{\mathfrak{p}} \left(\frac{j}{3\pi\sqrt{69}}\right)^{l(\mathfrak{p})-1/2} \\ * K_{l(\mathfrak{p})-1/2} \left(\frac{\pi j\sqrt{69}}{3}\right)$$

Use in Physics

- BH modularity/rank-2 attractor points [e.g. Candelas, de la Ossa, Elmi, van Straten 1912.06146v1]
- Supersymmetric flux vacua and F-theory/M-theory modularity [e.g. Kachru, Nally, Yang 2001.06022v2, 2010.07285v2; Jockers, Kotlewski, Kuusela 2312.07611v3]
- Ratio of L-functions to GWs [Candelas, de la Ossa, McGovern 2410.07107v1]

$$\frac{3\pi}{2} \frac{L_{54.4.a.c}(1)}{L_{54.4.a.c}(2)} = \sqrt{69} - \sqrt{\frac{2}{\pi^3}} \sum_{\substack{j \in \mathbb{Z}_{>0} \\ \mathfrak{p} \in \mathrm{pt}(j)}} (-1)^j \widetilde{N}_{\mathfrak{p}} \left(\frac{j}{3\pi\sqrt{69}}\right)^{l(\mathfrak{p})-1/2} \\ * K_{l(\mathfrak{p})-1/2} \left(\frac{\pi j\sqrt{69}}{3}\right)$$

Use in Physics

- BH modularity/rank-2 attractor points [e.g. Candelas, de la Ossa, Elmi, van Straten 1912.06146v1]
- Supersymmetric flux vacua and F-theory/M-theory modularity [e.g. Kachru, Nally, Yang 2001.06022v2, 2010.07285v2; Jockers, Kotlewski, Kuusela 2312.07611v3]
- Ratio of L-functions to GWs [Candelas, de la Ossa, McGovern 2410.07107v1]

$$\frac{3\pi}{2} \frac{L_{54.4.\mathbf{a.c}}(1)}{L_{54.4.\mathbf{a.c}}(2)} = \sqrt{69} - \sqrt{\frac{2}{\pi^3}} \sum_{\substack{j \in \mathbb{Z}_{>0} \\ \mathfrak{p} \in \mathrm{pt}(j)}} (-1)^j \widetilde{N}_{\mathfrak{p}} \left(\frac{j}{3\pi\sqrt{69}}\right)^{l(\mathfrak{p})-1/2} \\ * K_{l(\mathfrak{p})-1/2} \left(\frac{\pi j\sqrt{69}}{3}\right)$$

Use in Physics

- BH modularity/rank-2 attractor points [e.g. Candelas, de la Ossa, Elmi, van Straten 1912.06146v1]
- Supersymmetric flux vacua and F-theory/M-theory modularity [e.g. Kachru, Nally, Yang 2001.06022v2, 2010.07285v2; Jockers, Kotlewski, Kuusela 2312.07611v3]
- Ratio of L-functions to GWs [Candelas, de la Ossa, McGovern 2410.07107v1]

$$\frac{3\pi}{2} \frac{L_{54.4.a.c}(1)}{L_{54.4.a.c}(2)} = \sqrt{69} - \sqrt{\frac{2}{\pi^3}} \sum_{\substack{j \in \mathbb{Z}_{>0} \\ \mathfrak{p} \in \mathrm{pt}(j)}} (-1)^j \widetilde{N}_{\mathfrak{p}} \left(\frac{j}{3\pi\sqrt{69}}\right)^{l(\mathfrak{p})-1/2} \\ * K_{l(\mathfrak{p})-1/2} \left(\frac{\pi j\sqrt{69}}{3}\right)$$

Computing Zeta Functions Method: Point Counts

• Description: Work from the definition of the zeta function

$$\zeta_p(X_{\varphi}, T) = \exp\left(\sum_{n=1}^{\infty} \frac{\#X_{\varphi}(\mathbb{F}_{p^n})T^n}{n}\right)$$

and compute these point counts explicitly.

- Advantages:
 - Straightforward to implement
- Disadvantages:
 - Slow
 - Fixes a point in CS moduli space

• Description: Work from the definition of the zeta function

$$\zeta_p(X_{\varphi}, T) = \exp\left(\sum_{n=1}^{\infty} \frac{\#X_{\varphi}(\mathbb{F}_{p^n})T^n}{n}\right)$$

and compute these point counts explicitly.

- Advantages:
 - Straightforward to implement
- Disadvantages:
 - Slow
 - Fixes a point in CS moduli space

• Description: Work from the definition of the zeta function

$$\zeta_p(X_{\varphi}, T) = \exp\left(\sum_{n=1}^{\infty} \frac{\#X_{\varphi}(\mathbb{F}_{p^n})T^n}{n}\right)$$

and compute these point counts explicitly.

- Advantages:
 - Straightforward to implement
- Disadvantages:
 - Slow
 - Fixes a point in CS moduli space

- See e.g. 0705.2056v1; 2104.07816v1; 2405.08067v1. (Candelas, de la Ossa, Kuusela, van Straten)
- As mentioned earlier, we have reduced the computation of the zeta function to the computation of

 $R_p^{(3)}(X_{\varphi},T) = \det(I - TU_p(\varphi)), \text{ where } U_p(\varphi) \text{ is the action of } Fr_p^{-1} \text{ on the middle cohomology } H^3(X_{\varphi}, \mathbb{Q}_p).$

- Therefore, if we can determine $U_p(\varphi)$, we can compute the zeta function!
- Due to Dwork, $U_p(\varphi) = E(\varphi^p)^{-1}U_p(0)E(\varphi)$, where E is a matrix depending on the periods
 - We like 0 LCS point!
 - Subtleties exist: if we chose φ such that $\varphi^p = \varphi$, then it would seem that ζ is independent of φ
 - Instead, it turns out that the periods converge when $||\varphi||_p < 1$, and we need to follow *p*-adic analytic continuation to define $U(\varphi)$ for $||\varphi||_p = 1$

Method: Dwork Deformation

- See e.g. 0705.2056v1; 2104.07816v1; 2405.08067v1. (Candelas, de la Ossa, Kuusela, van Straten)
- As mentioned earlier, we have reduced the computation of the zeta function to the computation of

 $R_p^{(3)}(X_{\varphi},T) = \det(I - TU_p(\varphi)), \text{ where } U_p(\varphi) \text{ is the action of } Fr_p^{-1} \text{ on the middle cohomology } H^3(X_{\varphi}, \mathbb{Q}_p).$

- Therefore, if we can determine $U_p(\varphi)$, we can compute the zeta function!
- Due to Dwork, $U_p(\varphi) = E(\varphi^p)^{-1}U_p(0)E(\varphi)$, where E is a matrix depending on the periods
 - \circ We like 0 LCS point!
 - Subtleties exist: if we chose φ such that $\varphi^p = \varphi$, then it would seem that ζ is independent of φ
 - Instead, it turns out that the periods converge when $||\varphi||_p < 1$, and we need to follow *p*-adic analytic continuation to define $U(\varphi)$ for $||\varphi||_p = 1$

Method: Dwork Deformation

- See e.g. 0705.2056v1; 2104.07816v1; 2405.08067v1. (Candelas, de la Ossa, Kuusela, van Straten)
- As mentioned earlier, we have reduced the computation of the zeta function to the computation of

- Therefore, if we can determine $U_p(\varphi)$, we can compute the zeta function!
- Due to Dwork, $U_p(\varphi) = E(\varphi^p)^{-1}U_p(0)E(\varphi)$, where E is a matrix depending on the periods
 - \circ We like 0 LCS point!
 - Subtleties exist: if we chose φ such that $\varphi^p = \varphi$, then it would seem that ζ is independent of φ
 - Instead, it turns out that the periods converge when $||\varphi||_p < 1$, and we need to follow *p*-adic analytic continuation to define $U(\varphi)$ for $||\varphi||_p = 1$

Method: Dwork Deformation

- See e.g. 0705.2056v1; 2104.07816v1; 2405.08067v1. (Candelas, de la Ossa, Kuusela, van Straten)
- As mentioned earlier, we have reduced the computation of the zeta function to the computation of

- Therefore, if we can determine $U_p(\varphi)$, we can compute the zeta function!
- Due to Dwork, $U_p(\varphi) = E(\varphi^p)^{-1}U_p(0)E(\varphi)$, where E is a matrix depending on the periods
 - We like 0 LCS point!
 - Subtleties exist: if we chose φ such that $\varphi^p = \varphi$, then it would seem that ζ is independent of φ
 - Instead, it turns out that the periods converge when $||\varphi||_p < 1$, and we need to follow *p*-adic analytic continuation to define $U(\varphi)$ for $||\varphi||_p = 1$

Method: Dwork Deformation

- See e.g. 0705.2056v1; 2104.07816v1; 2405.08067v1. (Candelas, de la Ossa, Kuusela, van Straten)
- As mentioned earlier, we have reduced the computation of the zeta function to the computation of

- Therefore, if we can determine $U_p(\varphi)$, we can compute the zeta function!
- Due to Dwork, $U_p(\varphi) = E(\varphi^p)^{-1}U_p(0)E(\varphi)$, where E is a matrix depending on the periods
 - We like 0 LCS point!
 - Subtleties exist: if we chose φ such that $\varphi^p = \varphi$, then it would seem that ζ is independent of φ
 - Instead, it turns out that the periods converge when $||\varphi||_p < 1$, and we need to follow *p*-adic analytic continuation to define $U(\varphi)$ for $||\varphi||_p = 1$

Method: Dwork Deformation

- See e.g. 0705.2056v1; 2104.07816v1; 2405.08067v1. (Candelas, de la Ossa, Kuusela, van Straten)
- As mentioned earlier, we have reduced the computation of the zeta function to the computation of

 $R_p^{(3)}(X_{\varphi},T) = \det(I - TU_p(\varphi)), \text{ where } U_p(\varphi) \text{ is the action of } Fr_p^{-1} \text{ on the middle cohomology } H^3(X_{\varphi}, \mathbb{Q}_p).$

- Therefore, if we can determine $U_p(\varphi)$, we can compute the zeta function!
- Due to Dwork, $U_p(\varphi) = E(\varphi^p)^{-1}U_p(0)E(\varphi)$, where E is a matrix depending on the periods
 - We like 0 LCS point!
 - Subtleties exist: if we chose φ such that $\varphi^p = \varphi$, then it would seem that ζ is independent of φ

• Instead, it turns out that the periods converge when $||\varphi||_p < 1$, and we need to follow *p*-adic analytic continuation to define $U(\varphi)$ for $||\varphi||_p = 1$

Method: Dwork Deformation

- See e.g. 0705.2056v1; 2104.07816v1; 2405.08067v1. (Candelas, de la Ossa, Kuusela, van Straten)
- As mentioned earlier, we have reduced the computation of the zeta function to the computation of

- Therefore, if we can determine $U_p(\varphi)$, we can compute the zeta function!
- Due to Dwork, $U_p(\varphi) = E(\varphi^p)^{-1}U_p(0)E(\varphi)$, where E is a matrix depending on the periods
 - We like 0 LCS point!
 - Subtleties exist: if we chose φ such that $\varphi^p = \varphi$, then it would seem that ζ is independent of φ
 - Instead, it turns out that the periods converge when $||\varphi||_p < 1$, and we need to follow *p*-adic analytic continuation to define $U(\varphi)$ for $||\varphi||_p = 1$

Computing Zeta Functions Periods: Introduction

- Now the problem has been (largely) reduced to solving for the periods *π* (\varpi) of our CY3.
- Recall that dim $H^3 = b_3 = 2 + 2h^{2,1}$. Our holomorphic top form: $\Omega \in H^{(3,0)}(X_{\varphi}, \mathbb{C})$, and Griffiths transversality tells us:

 $\Omega \in H^{(3,0)}(X_{\varphi}, \mathbb{C}),$ $\partial_{\varphi^{i}}\Omega \in H^{(3,0)}(X_{\varphi}, \mathbb{C}) \oplus H^{(2,1)}(X_{\varphi}, \mathbb{C}),$ $\partial_{\varphi^{i}}\partial_{\varphi^{j}}\Omega \in H^{(3,0)}(X_{\varphi}, \mathbb{C}) \oplus H^{(2,1)}(X_{\varphi}, \mathbb{C}) \oplus H^{(1,2)}(X_{\varphi}, \mathbb{C}),$ $\partial_{\varphi^{i}}\partial_{\varphi^{j}}\partial_{\varphi^{k}}\Omega \in H^{(3,0)}(X_{\varphi}, \mathbb{C}) \oplus H^{(2,1)}(X_{\varphi}, \mathbb{C}) \oplus H^{(1,2)}(X_{\varphi}, \mathbb{C}) \oplus H^{(0,3)}(X_{\varphi}, \mathbb{C})$

 As the space is 2 + 2h^{2,1}-dimensional, choosing a basis then gives us relations between the other derivatives and these basis elements. This then gives a system of differential equations that Ω satisfies, the *Picard-Fuchs* system.

Computing Zeta Functions Periods: Introduction

- Now the problem has been (largely) reduced to solving for the periods *π* (\varpi) of our CY3.
- Recall that dim $H^3 = b_3 = 2 + 2h^{2,1}$. Our holomorphic top form: $\Omega \in H^{(3,0)}(X_{\varphi}, \mathbb{C})$, and Griffiths transversality tells us:

$$\Omega \in H^{(3,0)}(X_{\varphi}, \mathbb{C}),$$

$$\partial_{\varphi^{i}}\Omega \in H^{(3,0)}(X_{\varphi}, \mathbb{C}) \oplus H^{(2,1)}(X_{\varphi}, \mathbb{C}),$$

$$\partial_{\varphi^{i}}\partial_{\varphi^{j}}\Omega \in H^{(3,0)}(X_{\varphi}, \mathbb{C}) \oplus H^{(2,1)}(X_{\varphi}, \mathbb{C}) \oplus H^{(1,2)}(X_{\varphi}, \mathbb{C}),$$

$$\partial_{\varphi^{i}}\partial_{\varphi^{j}}\partial_{\varphi^{k}}\Omega \in H^{(3,0)}(X_{\varphi}, \mathbb{C}) \oplus H^{(2,1)}(X_{\varphi}, \mathbb{C}) \oplus H^{(1,2)}(X_{\varphi}, \mathbb{C}) \oplus H^{(0,3)}(X_{\varphi}, \mathbb{C})$$

 As the space is 2 + 2h^{2,1}-dimensional, choosing a basis then gives us relations between the other derivatives and these basis elements. This then gives a system of differential equations that Ω satisfies, the *Picard-Fuchs* system.

Computing Zeta Functions Periods: Introduction

- Now the problem has been (largely) reduced to solving for the periods *π* (\varpi) of our CY3.
- Recall that dim $H^3 = b_3 = 2 + 2h^{2,1}$. Our holomorphic top form: $\Omega \in H^{(3,0)}(X_{\varphi}, \mathbb{C})$, and Griffiths transversality tells us:

$$\Omega \in H^{(3,0)}(X_{\varphi}, \mathbb{C}),$$

$$\partial_{\varphi^{i}}\Omega \in H^{(3,0)}(X_{\varphi}, \mathbb{C}) \oplus H^{(2,1)}(X_{\varphi}, \mathbb{C}),$$

$$\partial_{\varphi^{i}}\partial_{\varphi^{j}}\Omega \in H^{(3,0)}(X_{\varphi}, \mathbb{C}) \oplus H^{(2,1)}(X_{\varphi}, \mathbb{C}) \oplus H^{(1,2)}(X_{\varphi}, \mathbb{C}),$$

$$\partial_{\varphi^{i}}\partial_{\varphi^{j}}\partial_{\varphi^{k}}\Omega \in H^{(3,0)}(X_{\varphi}, \mathbb{C}) \oplus H^{(2,1)}(X_{\varphi}, \mathbb{C}) \oplus H^{(1,2)}(X_{\varphi}, \mathbb{C}) \oplus H^{(0,3)}(X_{\varphi}, \mathbb{C})$$

• As the space is $2 + 2h^{2,1}$ -dimensional, choosing a basis then gives us relations between the other derivatives and these basis elements. This then gives a system of differential equations that Ω satisfies, the *Picard-Fuchs* system.

- Integrating, this can then be stated in terms of the *periods*; namely, $\mathcal{L}\varpi = 0$.
- These may be seen in different bases. One important one for our purposes is, extracting around the LCS point $\varphi = 0$, the Frobenius basis:

$$\varpi = \begin{pmatrix} f \\ f^{i} + fl^{i} \\ \frac{1}{2!}Y_{ijk}(f^{ij} + 2f^{j}l^{k} + fl^{j}l^{k}) \\ \frac{1}{3!}Y_{ijk}(f^{ijk} + 3f^{ij}l^{k} + 3f^{i}l^{j}l^{k} + fl^{i}l^{j}l^{k}) \end{pmatrix}$$

• Defining $(\vartheta_0, \vartheta_i, \vartheta^i, \vartheta^0) = \left(1, \theta_i, \hat{Y}^{ijk} \theta_j \theta_k, \frac{\hat{Y}^{ijk}}{m} \theta_i \theta_j \theta_k\right)$, we then have

$$E(\varphi)_a^b = \begin{pmatrix} \vartheta_a \varpi^b & \vartheta^a \varpi^b \\ \vartheta_a \varpi_b & \vartheta^a \varpi_b \end{pmatrix}$$

- Integrating, this can then be stated in terms of the *periods*; namely, $\mathcal{L}\varpi = 0$.
- These may be seen in different bases. One important one for our purposes is, extracting around the LCS point $\varphi = 0$, the Frobenius basis:

$$\varpi = \begin{pmatrix} f \\ f^{i} + fl^{i} \\ \frac{1}{2!}Y_{ijk}(f^{ij} + 2f^{j}l^{k} + fl^{j}l^{k}) \\ \frac{1}{3!}Y_{ijk}(f^{ijk} + 3f^{ij}l^{k} + 3f^{i}l^{j}l^{k} + fl^{i}l^{j}l^{k}) \end{pmatrix}$$

• Defining $(\vartheta_0, \vartheta_i, \vartheta^i, \vartheta^0) = \left(1, \theta_i, \hat{Y}^{ijk} \theta_j \theta_k, \frac{\hat{Y}^{ijk}}{m} \theta_i \theta_j \theta_k\right)$, we then have

$$E(\varphi)_a^b = \begin{pmatrix} \vartheta_a \varpi^b & \vartheta^a \varpi^b \\ \vartheta_a \varpi_b & \vartheta^a \varpi_b \end{pmatrix}$$

- Integrating, this can then be stated in terms of the *periods*; namely, $\mathcal{L}\varpi = 0$.
- These may be seen in different bases. One important one for our purposes is, extracting around the LCS point $\varphi = 0$, the Frobenius basis:

$$\varpi = \begin{pmatrix} f \\ f^i + fl^i \\ \frac{1}{2!} Y_{ijk} (f^{ij} + 2f^j l^k + fl^j l^k) \\ \frac{1}{3!} Y_{ijk} (f^{ijk} + 3f^{ij} l^k + 3f^i l^j l^k + fl^i l^j l^k) \end{pmatrix}$$

• Defining $(\vartheta_0, \vartheta_i, \vartheta^i, \vartheta^0) = \left(1, \theta_i, \hat{Y}^{ijk} \theta_j \theta_k, \frac{\hat{Y}^{ijk}}{m} \theta_i \theta_j \theta_k\right)$, we then have

$$E(\varphi)_a^b = \begin{pmatrix} \vartheta_a \varpi^b & \vartheta^a \varpi^b \\ \vartheta_a \varpi_b & \vartheta^a \varpi_b \end{pmatrix}$$

Method: Dwork Deformation

- It turns out $U_p(\varphi) = \widetilde{E}(\varphi^p)^{-1}U_p(0)\widetilde{E}(\varphi)$, where $\widetilde{E}(\varphi) := E(\varphi)|_{\log(\varphi_i) \to 0}$.
 - We don't have to deal with log terms!
- Advantages:
 - $\circ~$ Tackles the whole family of CY3s
 - Relatively quick to evaluate
 - Can be evaluated at conifold loci
 - Convergence in *p*-adics
- Disadvantages:
 - Can't reach as high of primes as e.g. controlled reduction (see for instance https://github.com/edgarcosta/pycontrolledreduction)
Method: Dwork Deformation

- It turns out $U_p(\varphi) = \widetilde{E}(\varphi^p)^{-1}U_p(0)\widetilde{E}(\varphi)$, where $\widetilde{E}(\varphi) \coloneqq E(\varphi)|_{\log(\varphi_i) \to 0}$.
 - We don't have to deal with log terms!
- Advantages:
 - $\circ~$ Tackles the whole family of CY3s
 - Relatively quick to evaluate
 - Can be evaluated at conifold loci
 - $\circ~$ Convergence in $p\text{-}\mathrm{adics}$
- Disadvantages:
 - Can't reach as high of primes as e.g. controlled reduction (see for instance https://github.com/edgarcosta/pycontrolledreduction)

Method: Dwork Deformation

- It turns out $U_p(\varphi) = \widetilde{E}(\varphi^p)^{-1}U_p(0)\widetilde{E}(\varphi)$, where $\widetilde{E}(\varphi) \coloneqq E(\varphi)|_{\log(\varphi_i) \to 0}$.
 - We don't have to deal with log terms!
- Advantages:
 - $\circ~$ Tackles the whole family of CY3s
 - Relatively quick to evaluate
 - Can be evaluated at conifold loci
 - Convergence in *p*-adics
- Disadvantages:
 - Can't reach as high of primes as e.g. controlled reduction (see for instance https://github.com/edgarcosta/pycontrolledreduction)

Method 1: Picard-Fuchs Equation

Given the Picard-Fuchs equation, create power series ansätze for the periods and higher periods in terms of the complex structure parameters; e.g. $f = \sum_{n=0}^{\infty} c_n \varphi^n$. As we are expanding around $\varphi = 0$, set $c_0 = 1$ as an initial condition. Apply the differential operators to the ansatz, and obtain recurrence relations.

This of course generalizes to higher parameter families.

Example

Given a one-parameter differential operator:

$$\mathcal{L} = \sum_{k=0}^{d} P_k(\varphi) \theta^k,$$

with $P_k(\varphi) \in \mathbb{Z}[\varphi]$ integral polynomials and $\theta = \varphi \partial_{\varphi}$, then we know $\theta \varphi^n = n \varphi^n$. Apply the operator to the ansatz, find the recurrence, and use the initial condition to solve for these coefficients c_n .

Example

Consider the Picard-Fuchs for the quintic:

$$\mathcal{L} = \theta^{4} - 5\varphi(5\theta + 1)(5\theta + 2)(5\theta + 3)(5\theta + 4) = \theta^{4} - 3125\varphi\theta^{4} - 6250\varphi\theta^{3} - 4375\varphi\theta^{2} - 1250\varphi\theta - 120\varphi$$

Apply this to $f = \sum_{n=0}^{\infty} c_n \varphi^n$:

$$\mathcal{L}f = \sum_{n=0}^{\infty} n^4 c(n) \varphi^n - 3125 \sum_{n=0}^{\infty} n^4 c(n) \varphi^{n+1} + \cdots$$
$$= 0.$$

This gives a recurrence between c(n) and c(n+1).

- We note that for the higher periods, as they also satisfy the Picard-Fuchs system, we can find them via standard methods to solve differential equations. In our case, we use the Frobenius method.
 - We have $f(z) = \sum c(n)\varphi^n$.
 - To find further solutions from this initial solution, take $f(z,\rho) = \sum c(n+\rho)\varphi^{n+\rho}$. Then we can look at $\partial_{\rho}f|_{\rho=0}$.
 - This strategy gives us one way to compute the coefficients f^i , f^{ij} , and f^{ijk} from before!

Periods: Computations

<pre>In [267_ L_guintic = theta**d=5*x*(5*theta*1)*(5*theta*2)*(5*theta*3)*(5*theta*4) kappa = 5 max_n = 1000 periods_guintic = pf_speedrum(L_guintic,kappa,max_n)</pre>
The operator
$ heta^4 - 5z \left(5 heta+1 ight) \left(5 heta+2 ight) \left(5 heta+3 ight) \left(5 heta+4 ight)$
Satisfies the recurrence relation
$-3125n^4c(n)-6250n^3c(n)-4375n^2c(n)-1250nc(n)+(n+1)^4c(n+1)-120c(n)$
-3125m ² (n) - 0250m ³ c(n) - 4375m ³ c(n) - 1230mc(n) (n + 1) ⁵ (n + 1) - 120c(n) Tt took 2.445557544348145 seconds to compute 1000 terms of the solution. c(0) = 1 c(1) = 120 c(2) = 113400 c(3) = 481548000 c(4) = 03546213153100 c(6) = 03546213153100 c(7) = 137045307583241356500 c(8) = 150054307585241356500 c(8) = 150054307585241356500 c(9) = 150163407585263071297820000 d(1) = 0 d(2) = 0 d(2) = 174559007/3 d(3) = 1745593007/3 d(4) = 4257120640627/2 d(5) = (77685980574804 d(6) = 139392146442537790627/4 d(7) = 1394523146442537796423/4 d(6) = 139392146442537796442325/4 d(7) = 1395231464442537796442325/4 d(7) = 000057146442537796442325/4 d(7) = 000057146442537796442325/4 d(7) = 000057146442537796442325/4 d(7) = 000057146442537796444235749
$d_2(1) = 2875$
$d_2(2) = 210408/5/4$ $d_2(3) = 84822610000/9$
d_2(4) = 900108233890625/48 d_2(5) = 402601823157405890
d_2(6) = 91943921656621615700
d_2(7) = 10706723300003047945287000/49 d_2(8) = 1697770708898264851374199078678/31326
d_2(9) = 6129440113413577251707286214540625/4536
$d_3(0) = 0$ $d_3(1) = -5750$
$d_{-3(2)} = -16491875/4$
$d_3(3) = -233308099375/54$ $d_3(4) = -1626647874546875/288$
d_3(5) = -6714062345046793/8
d_3(6) = -5803135656533650259615/432 d_3(7) = -68839905199851646538471800/3087

Michael Stepniczka

Computing Zeta Functions of Calabi-Yau Threefolds

Method 2: Toric Data

Given the GLSM data/Mori vectors, one can construct the fundamental period [Hosono, Klemm, Theisen, Yau hep-th/9406055v2]. We can do this with SymPy and take the appropriate derivatives to find the higher periods.

Imports

[11: #pip install symengine
[21: #pip uninstall symengine ---yes
[31: #pip uninstall sympy ---yes
[41: #pip install sympy==1.11.1
[51: import generate_periods_updated_sp as generate_periods
from cytools import Polytope, fetch_polytopes
import flint
import symengine as se
import symengine as s

Periods: Computations

Quintic

Setup

[6]:	<pre>g = fetch_polytopes(h11=1,lattice="N",as_list=True)</pre>			
<pre>[7]: poly = g[1] poly.vertices() # picking mirror quintic</pre>				
[7]:	array([[-1, -1, -1, -1], [0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0])			
[8]:	<pre>t = poly.triangulate() cy = t.get_cy()</pre>			
[9]:	<pre>print(cy.h11()) print(cy.h21())</pre>			
	1 101			
10]:	<pre>intnums = cy.intersection_numbers(in_basis=True, format='dense').tolist() print(intnums)</pre>			
	[[[5]]]			
11]:	<pre>glsm_charge = cy.glsm_charge_matrix(include_origin=True).tolist() print(glsm_charge)</pre>			
	[[-5, 1, 1, 1, 1, 1]]			

Periods: Computations

We can then (in a misleading way) compute the periods:

Scratch Work with SymPy

[12]:	<pre>start_time = time:time() {0, r_vars = generate_periods.FumPeriod_se(glsm_charge) {1,r_c1s = generate_periods.out_higher_periods(f0, r_vars) end_time = time.time() print("Computing the periods takes {end_time-start_time} seconds')</pre>				
	Computing the periods takes 0.0021300315856933594 seconds				
[13]:	: f0sympy_().rewrite(sp.harmonic)				
[13]:	$\frac{\Gamma\left(5n_{1}+1\right)}{\Gamma^{5}\left(n_{1}+1\right)}$				
[14]:	f1[0]sympy_()				
[14]:	$=\frac{5\Gamma(5n_l+1)\operatorname{polygamma}(0,n_l+1)}{\Gamma^5(n_l+1)}+\frac{5\Gamma(5n_l+1)\operatorname{polygamma}(0,5n_l+1)}{\Gamma^5(n_l+1)}$				
15]:	: f2[0] (0]sympy_()				
[15]:	$\frac{25\Gamma(5n_{1}+1)\operatorname{polygamma}^{2}(0,n_{1}+1)}{\Gamma^{5}(n_{1}+1)\operatorname{polygamma}(0,n_{1}+1)} - \frac{5\Gamma(5n_{1}+1)\operatorname{polygamma}(0,5n_{1}+1)}{\Gamma^{5}(n_{1}+1)} + \frac{2\Gamma(5n_{1}+1)\operatorname{polygamma}^{2}(0,5n_{1}+1)}{\Gamma^{5}(n_{1}+1)} - \frac{5\Gamma(5n_{1}+1)\operatorname{polygamma}^{2}(0,5n_{1}+1)}{\Gamma^{5}(n_{1}+1)} + \frac{2\Gamma(5n_{1}+1)\operatorname{polygamma}^{2}(0,5n_{1}+1)}{\Gamma^{5}(n_{1}+1)} + \frac{2\Gamma(5n_{1}+1)\operatorname{polygamma}^{2}(0,5n_{1}+1$				
[16]:	f3[0][0]sympy_()				
[16]:	$-\frac{125\Gamma\left(5n_{1}+1\right)\text{polygamma}^{3}\left(0,n_{1}+1\right)}{\Gamma^{5}\left(n_{1}+1\right)}+\frac{375\Gamma\left(5n_{1}+1\right)\text{polygamma}^{2}\left(0,n_{1}+1\right)\text{polygamma}\left(0,5n_{1}+1\right)}{\Gamma^{5}\left(n_{1}+1\right)}$				
	$-\frac{375\Gamma(5n_{1}+1) \text{ polygamma}(0,n_{1}+1) \text{ polygamma}^{2}(0,5n_{1}+1)}{+}+\frac{75\Gamma(5n_{1}+1) \text{ polygamma}(0,n_{1}+1) \text{ polygamma}(1,n_{1}+1)}{+}$				
	$\Gamma^{2}(n_{1}+1)$ $\Gamma^{3}(n_{1}+1)$				
	$=\frac{3/51(5n_1+1)\text{polygamma}(0,n_1+1)\text{polygamma}(1,5n_1+1)}{1251(5n_1+1)\text{polygamma}^3(0,5n_1+1)} + \frac{1251(5n_1+1)\text{polygamma}^3(0,5n_1+1)}{1251(5n_1+1)\text{polygamma}^3(0,5n_1+1)}$				
	$1^{-2}(n_1 + 1)$ $25\Gamma(5_{n_1} + 1)$ reduce more $(1, 5_{n_1} + 1)$ $25\Gamma(5_{n_2} + 1)$ reduce more $(1, 5_{n_2} + 1)$				
	$= \frac{-53(5n_1 + 1)polygannia(0, 5n_1 + 1)polygannia(1, n_1 + 1)}{-533(5n_1 + 1)polygannia(0, 5n_1 + 1)polygannia(1, 5n_1 + 1)}$				

Periods: Computations

[21]: order = 1000 start_time = time.time() f0,f1,f2,f3 = generate_periods.get_rational_coefficients(cy,order=order,as_harmonic=False,verbosity=0) end_time = time.time() print(f'Total time: {end time-start time} seconds to go to order={order}') # can already see it is slow with the quintic. Please have SymEngine and SymPy v1.11.1 installed. Total time: 12,733577251434326 seconds to go to order=1000 [22]: f0[:10],f1[0][:10],f2[0][0][:10],f3[0][0][0][:10] [22]: ([1, 120. 113400. 168168000. 305540235000. 623360743125120. 1370874167589326400. 3177459078523411968000. 7656714453153197981835000. 190106382026520307129782000001. 10. 770. 810225. 3745679080/3. 4627128648625/2. 4776890809748904. 10589914735183563780. 24687653993108095017600 238994525146844285287808625/4. 1339662446153766674378966491250/9]. [0. 1150, 4208175/2. 33929044000/9, 180021646778125/24, 16144072866962796, 36777568662648646280 4282689320001219178114800/49, 336454805917872972224839605375/1568, 1225888022682715450341457242908125/2268], [0,

-6980,

- This is slow^{*}, even compared to what can be done in Mathematica!
 - Note, that this is already *after* having made a number of optimizations. Namely, we use an old version of SymPy (1.11.1) which allows us to cache the evaluations of these polygammas automatically, and we use SymEngine, a backend written in C. SymPy 1.11.1 by itself took O(20s), and 1.13.3 by itself took more than 10min before I aborted the evaluation. 1.13.3 and SymEngine brought the time to O(480s).
- However, as an upside, we don't need the Picard-Fuchs equation to compute the periods in this way.

- This is slow^{*}, even compared to what can be done in Mathematica!
 - Note, that this is already *after* having made a number of optimizations. Namely, we use an old version of SymPy (1.11.1) which allows us to cache the evaluations of these polygammas automatically, and we use SymEngine, a backend written in C. SymPy 1.11.1 by itself took O(20s), and 1.13.3 by itself took more than 10min before I aborted the evaluation. 1.13.3 and SymEngine brought the time to O(480s).
- However, as an upside, we don't need the Picard-Fuchs equation to compute the periods in this way.

Knowing the periods is also needed for countless other applications:

• Mirror map:
$$t^i = \frac{1}{2\pi i} \frac{\varpi^i}{\omega^0} \sim \log(z^i) + \mathcal{O}(z)$$

 $\circ \ \varpi^i \sim \log(z_i) + \mathcal{O}(z)$
 $\circ \ \varpi^0 \sim 1 + \mathcal{O}(z)$

• GVs/GWs [cygv (Andres Rios Tascon), 2303.00757]

• Moduli stabilization

Knowing the periods is also needed for countless other applications:

• Mirror map:
$$t^i = \frac{1}{2\pi i} \frac{\varpi^i}{\omega^0} \sim \log(z^i) + \mathcal{O}(z)$$

 $\circ \ \varpi^i \sim \log(z_i) + \mathcal{O}(z)$
 $\circ \ \varpi^0 \sim 1 + \mathcal{O}(z)$

- GVs/GWs [cygv (Andres Rios Tascon), 2303.00757]
- Moduli stabilization

Knowing the periods is also needed for countless other applications:

• Mirror map:
$$t^i = \frac{1}{2\pi i} \frac{\varpi^i}{\omega^0} \sim \log(z^i) + \mathcal{O}(z)$$

 $\circ \ \varpi^i \sim \log(z_i) + \mathcal{O}(z)$
 $\circ \ \varpi^0 \sim 1 + \mathcal{O}(z)$

- GVs/GWs [cygv (Andres Rios Tascon), 2303.00757]
- Moduli stabilization

Implementation

We have implemented^{*} both methods in Python, and are preparing to release the code as ToricZeta.

- Method 1: PFs
 - Plus: Fast; can handle multi-parameter families
- Method 2: Directly in SymPy/SymEngine
 - $\circ~$ Plus: Don't need PF
 - Minus: Slow... need to do testing on 2-parameter families to see if it can ever work

We have implemented^{*} both methods in Python, and are preparing to release the code as ToricZeta.

- Method 1: PFs
 - Plus: Fast; can handle multi-parameter families
- Method 2: Directly in SymPy/SymEngine
 - Plus: Don't need PF
 - Minus: Slow... need to do testing on 2-parameter families to see if it can ever work

Implementation

💮 ToricZeta (Private)		O Unwatch (2) ★ ♥ Fork (0) ★ ★ ☆ Star (0) ★			
🗜 main 🖌 🥲 1 Branch 📀 0 Tags	Q Go to file t Add file +	Code - About			
kuusela Code for computing the Frobenius ma	kuusela Code for computing the Frobenius matrix U added. 1d3/30c - 2 days ago 😗 108 Commits				
Current Testing	Data file needed to be uploaded manually	3 weeks ago Fano) toric varieties.			
Did Notebooks	Moved notebooks	3 weeks ago			
Periods	Moved notebooks	3 weeks ago			
PicardFuchs	Removed kappa from pfPeriodVector.py	4 days ago ⊙ 2 watching			
pAdicPolynomials	Code for computing the Frobenius matrix U added.	2 days ago 😵 0 forks			
gitignore	Rename gitignore.txt to .gitignore	5 months ago Releases			
From_Mathematica_to_Python_1.py	Code for computing the Frobenius matrix U added.	2 days ago No releases published			
README.md	Initial commit	5 months ago			
		Packages			
C README		No packages published Publish your first package			
ToricZeta		Contributors (3)			
	michaelstepniczka Michael Stepnic.				
Code for computing periods and Hasse-We Fano) toric varieties.	bly non- m-lathwood				

D 1

Mathematica Multiplication

• 1

There is some key benchmarking against CY3Zeta:

· •

1.. 1.

•	Polynomial multiplication in Mathematica
	In[1]= Clear[a]
	$\mathbf{a}[n_{-}] := \mathbf{a}[n] = \frac{5 \times (5 n - 1) \times (5 n - 2) \times (5 n - 3) \times (5 n - 4)}{n^{4}} \times \mathbf{a}[n - 1]$
	a[0] = 1;
	Clear[b]
	b [n_] :=
	$\mathbf{b}[n] = \frac{-4}{n} * \mathbf{a}[n] + \frac{1250 * (2 n - 1) * (5 n^2 - 5 n + 1)}{n^4} * \mathbf{a}[n - 1] + \frac{1}{n^4}$
	$\frac{5 * (5 n - 1) * (5 n - 2) * (5 n - 3) * (5 n - 4)}{n^4} * b[n - 1]$
	b[0] = 0;
	$\ln[7] = \text{poly1} = \text{Sum}[a[i] \star \phi^{\dagger}, \{i, 0, 5000\}];$
	$poly2 = Sum[b[i] \star \varphi^{i}, \{i, 0, 5000\}];$
	<pre>In(9):= Timing[poly1 * poly2;]</pre>
	Out(9)= {0.000392, Null}
	$\ln(10) = \operatorname{ser1} = \operatorname{Sum}[a[i] * \varphi^{i}, \{i, 0, 1000\}] + O[\varphi]^{1001};$
	ser2 = Sum $[b[i] \star \varphi^{i}, \{i, 0, 1000\}] \star O[\varphi]^{1001};$
	In(12)= Timing[ser1*ser2;]
	Dum(12)= (1.61314, Null)

is slow:

14 . 1 •

. .

Python Multiplication

Instead, we make use of FLINT (Fast Library for Number Theory) in Python:

fmpq polynomials

```
[2]: def period_coeffs_lterative_flint(n):
fund_period_coeffs = [fmq(1,1]]
for i in range(1, n):
fund_period_coeffs.append(fmpq(5*(5*i-1)*(5*i-2)*(5*i-3)*(5*i-4),i**4)*fund_period_coeffs[-1])
fund = fund_period_coeffs
log_period_coeffs = [fmq(0,1)]
for i n range(1, n):
log_period_coeffs.append(fmqq(-4,i)*fund[i]*fmpq(1250*(2*i-1)*(5*i**2-5*i+1),i**4)*fund[i-1]*fmpq(5*(5*i-1)*(5*i-2)*(5*i-3)*(5*
log_ceffs = log_period_coeffs
```

return [fund,logcoeffs]

[3]: n = 1000 periods_flint = period_coeffs_iterative_flint(n) p1 = fmpq_poly(periods_flint[0]) p2 = fmpq_poly(periods_flint[1])

```
[4]: start_time = time.time()
flint_mult = pixp2
end_time = time.time()
execution_time = end_time - start_time
print(execution_time)
```

0.09912896156311035

- FLINT can't be used just as-is for multiparameter cases... need to pip install python-flint==0.7.0a5 to have access to multivariate polynomials
- We needed to implement truncated polynomial multiplication
- We needed to implement Laurent series by hand (as we have rational functions in our *U* matrix, but currently only polynomials are supported)

- FLINT can't be used just as-is for multiparameter cases... need to pip install python-flint==0.7.0a5 to have access to multivariate polynomials
- We needed to implement truncated polynomial multiplication
- We needed to implement Laurent series by hand (as we have rational functions in our *U* matrix, but currently only polynomials are supported)

- FLINT can't be used just as-is for multiparameter cases... need to pip install python-flint==0.7.0a5 to have access to multivariate polynomials
- We needed to implement truncated polynomial multiplication
- We needed to implement Laurent series by hand (as we have rational functions in our U matrix, but currently only polynomials are supported)

Requisite Data

CY3Zeta

- Intersection numbers, inverse intersection numbers
- Conifold locus
- Other singular loci
- Period coefficients

ToricZeta

- (In theory) CYTools CalabiYau object
- (In practice) PF equation

Conclusions

- We have implemented the Dwork deformation method in Python, with significant speed improvements over the Mathematica implementation
- In particular, this Python implementation is built to be compatible with e.g. CYTools, giving us access to the largest collection of currently-known CY3s
- We will then (given the PF equation) be able find zeta functions of these families

Conclusions

- We have implemented the Dwork deformation method in Python, with significant speed improvements over the Mathematica implementation
- In particular, this Python implementation is built to be compatible with e.g. CYTools, giving us access to the largest collection of currently-known CY3s
- We will then (given the PF equation) be able find zeta functions of these families

Conclusions

- We have implemented the Dwork deformation method in Python, with significant speed improvements over the Mathematica implementation
- In particular, this Python implementation is built to be compatible with e.g. CYTools, giving us access to the largest collection of currently-known CY3s
- We will then (given the PF equation) be able find zeta functions of these families

Future Work

- As the controlled reduction method is suitable for calculating zeta functions of specific points in moduli space, we can use ToricZeta at low primes to find interesting points!
- It would be awesome to automate the finding of these Picard-Fuchs equations via Griffiths-Dwork reduction
- These methods can also be implemented for higher Calabi-Yau n-folds

Future Work

- As the controlled reduction method is suitable for calculating zeta functions of specific points in moduli space, we can use ToricZeta at low primes to find interesting points!
- It would be awesome to automate the finding of these Picard-Fuchs equations via Griffiths-Dwork reduction
- These methods can also be implemented for higher Calabi-Yau n-folds

Future Work

- As the controlled reduction method is suitable for calculating zeta functions of specific points in moduli space, we can use ToricZeta at low primes to find interesting points!
- It would be awesome to automate the finding of these Picard-Fuchs equations via Griffiths-Dwork reduction
- These methods can also be implemented for higher Calabi-Yau n-folds

Thank you for listening!