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Calabi-Yau Manifolds
From Physics

• Let spacetime have a product structure M10 = M4 ×X6 with
X6 a compact 6-dimensional manifold

◦ To solve the 10D-vacuum Einstein equations, we require that
X6 be Ricci flat

◦ The only known examples are Calabi-Yau threefolds (CY3s)!
In addition to being Ricci flat, the manifold is also Kähler

• Type IIB string theory contains data about even-dimensional
forms. We can then study the structure using complex
algebraic geometry (i.e. over C)

◦ More specifically, IIB comes with data including: 2-forms
B2, C2 and corresponding field strengths H3 = dB2, F3 = dC2.
Together with the axiodilaton τ , these are packaged as
G3 = F3 − τH3
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Calabi-Yau Manifolds
From Physics

• Better than complex algebraic geometry, the largest-known
collection of CY3s comes from toric geometry [Batyrev;
alg-geom/9310003]

◦ CY3s are found as hypersurfaces in toric varieties
◦ These toric varieties are obtained from (suitable

triangulations of) 4D reflexive polytopes

⋆ Combinatorial in nature!
⋆ Question: How much of the CY data can be obtained purely

from this combinatorial data?

◦ Polytopal construction lends itself to computer-based studies
via e.g. CYTools
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Calabi-Yau Manifolds
From Mathematics

• More generally, a Calabi-Yau n-fold can be defined to be a
compact Kähler manifold with vanishing first Chern class

• Examples:

◦ n = 1 : Complex Tori ↔ Elliptic Curves
◦ n = 2 : K3 surfaces
◦ n = 3 : CY3s!

• As with elliptic curves, CYs can be studied via arithmetic
geometry

◦ Example: finding point counts over finite fields
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Elliptic Curve Modularity

• Elliptic curves over Q can be written in Weierstrass form
E : y2 = x3 + ax+ b with a, b ∈ Z

◦ These curves can then be considered over finite field, e.g. Fp

◦ The number of solutions of the elliptic curve E over these
finite fields are related to Fourier coefficients of a weight-2
modular form via ap = p+ 1−#E(Fp)

• Example: y2 = x3 + x
◦ Over F3, we have solutions (x, y) = (0, 0), (2, 1), (2, 2), and a

point at infinity

⋆ a3 = 3 + 1− 4 = 0

◦ Over F5, we have solutions (x, y) = (0, 0), (2, 0), (3, 0), and a
point at infinity

⋆ a5 = 5 + 1− 4 = 2

◦ Compare to 64.2.a.a: f(q) = q + 2q5 − 3q9 + · · ·
• Modularity then says elliptic curves E/Q have associated to
them such modular forms f .
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Towards Higher Modularity

• More generally, this story can be told in terms of
representations of Gal(Q/Q):

◦ The middle cohomology of an elliptic curve E/Q provides us
with a 2-dimensional representation ρ2(E).

◦ On the other hand, cusp forms f that are simultaneous
eigenvectors of all Hecke operators are also associated to
2-dimensional representations ρ2(f)

◦ It is then the modularity theorem which associates to every
E/Q such an f for which the representations coincide

• This story can be generalized to Calabi-Yau n-folds X.
Modularity can arise, for instance, when the representation
decomposes into a 2-dimensional subrepresentation and a
(bn − 2)-dimensional component.

◦ Singular K3s
◦ Rigid CY3s
◦ SUSY Flux Vacua
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(Local) Zeta Functions
Definition

Let X/Q be a smooth projective variety. As before, we can clear
denominators and view X/Z. Furthermore, we can reduce
modulo p to view this as X/Fp. As Fp is a subfield of Fpn , we can
finally study X/Fpn .

Definition

For X/Q as above and for good primes p, define the local zeta
function to be:

ζp(X,T ) = exp

( ∞∑
n=1

#X(Fpn)T
n

n

)
,

with #X(Fpn) denoting the point count over Fpn .
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Zeta Functions
Example: Riemann Zeta Function

Example

Let X be a point. Clearing denominators, #X(Fpn) = 1. Then:

ζp({pt}, T ) = exp

( ∞∑
n=1

Tn

n

)
=

1

1− T

From the local zeta functions, construct:

ζ(X, s) =
∏
p

ζp(X, p−s),

and find the usual Riemann zeta function

ζ({pt}, s) =
∏
p

1

1− p−s
= ζ(s).
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Zeta Functions
Weil Conjectures [Dwork, Grothendieck, Deligne]

Theorem (Rationality)

ζp(X,T ) is a rational function of T . Specifically:

ζp(X,T ) =
R

(1)
p (X,T ) · · ·R(2n−1)

p (X,T )

R
(0)
p (X,T ) · · ·R(2n)

p (X,T )
,

where each R
(i)
p (T ) has integral coefficients and is of degree bi, the

i’th Betti number.

There are other nice properties that these zeta functions satisfy:
namely, a functional equation and a Riemann hypothesis.
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Zeta Functions
Weil Conjectures

To prove this, Dwork used p-adic cohomological techniques.
• First, the numbers #X(Fp) can be determined as follows:

◦ Recall the Frobenius endomorphism:

Frobp : (x1, . . . , xk) 7→ (xp
1, . . . , x

p
k)

◦ As xp ≡ x mod p for all x ∈ Fp, the fixed points of Frobp over
any field extension are exactly those in Fp

◦ You can repeat this for Fpn

• Now think of a family of CY3s Xφ. One can define a p-adic
cohomology theory Hk(Xφ,Qp) and pullback the Frobenius
map:

Frp : H
k(Xφ,Qp) → Hk(Xφ,Qp)

• Apply the Lefschetz fixed point theorem:

#Xφ(Fpn) =

6∑
m=0

(−1)mTr(Frpn |Hm(Xφ,Qp))
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Zeta Functions
Weil Conjectures

• The characteristic polynomial of the inverse of the Frobenius
map is then:

R(m)
p (Xφ, T ) = det(I − TFr−1

p |Hm(Xφ,Qp))

= det(I − TUp(φ))

• The Hodge diamond for a CY3s is:
1

0 0
0 h1,1 0

1 h2,1 h2,1 1
0 h1,1 0

0 0
1

• This tells us b0 = b6 = 1, b1 = b5 = 0, b2 = b4 = h1,1, and
b3 = 2 + 2h2,1.
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Zeta Functions
Weil Conjectures

• Now our zeta function is:

ζp(Xφ, T ) =
R

(1)
p (Xφ, T )R

(3)
p (Xφ, T )R

(5)
p (Xφ, T )

R
(0)
p (Xφ, T )R

(2)
p (Xφ, T )R

(4)
p (Xφ, T )R

(6)
p (Xφ, T )

=
R

(3)
p (Xφ, T )

(1− T )(1− pT )h1,1(1− p2T )h1,1(1− p3T )
,

where I have glossed over a few details.

• In this case, we only need to care about R
(3)
p (Xφ, T )

◦ We’ll get back to this point later!
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Zeta Functions
Use in Physics

• BH modularity/rank-2 attractor points [e.g. Candelas, de la
Ossa, Elmi, van Straten 1912.06146v1]

• Supersymmetric flux vacua and F-theory/M-theory
modularity [e.g. Kachru, Nally, Yang 2001.06022v2,
2010.07285v2; Jockers, Kotlewski, Kuusela 2312.07611v3]

• Ratio of L-functions to GWs [Candelas, de la Ossa,
McGovern 2410.07107v1]

3π

2

L54.4.a.c(1)

L54.4.a.c(2)
=

√
69−

√
2

π3

∑
j∈Z>0

p∈pt(j)

(−1)jÑp

(
j

3π
√
69

)l(p)−1/2

∗Kl(p)−1/2

(
πj

√
69

3

)
• Arithmetic geometry finds points of interest in complex
geometry?
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Computing Zeta Functions
Method: Point Counts

• Description: Work from the definition of the zeta function

ζp(Xφ, T ) = exp

( ∞∑
n=1

#Xφ(Fpn)T
n

n

)

and compute these point counts explicitly.

• Advantages:

◦ Straightforward to implement

• Disadvantages:

◦ Slow
◦ Fixes a point in CS moduli space
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Computing Zeta Functions
Method: Dwork Deformation

• See e.g. 0705.2056v1; 2104.07816v1; 2405.08067v1.
(Candelas, de la Ossa, Kuusela, van Straten)

• As mentioned earlier, we have reduced the computation of
the zeta function to the computation of

R
(3)
p (Xφ, T ) = det(I − TUp(φ)), where Up(φ) is the action of

Fr−1
p on the middle cohomology H3(Xφ,Qp).
◦ Therefore, if we can determine Up(φ), we can compute the

zeta function!

• Due to Dwork, Up(φ) = E(φp)−1Up(0)E(φ), where E is a
matrix depending on the periods

◦ We like 0 – LCS point!
◦ Subtleties exist: if we chose φ such that φp = φ, then it would

seem that ζ is independent of φ
◦ Instead, it turns out that the periods converge when

||φ||p < 1, and we need to follow p-adic analytic continuation
to define U(φ) for ||φ||p = 1
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Computing Zeta Functions
Periods: Introduction

• Now the problem has been (largely) reduced to solving for
the periods ϖ (\varpi) of our CY3.

• Recall that dimH3 = b3 = 2 + 2h2,1. Our holomorphic top
form: Ω ∈ H(3,0)(Xφ,C), and Griffiths transversality tells us:

Ω ∈ H(3,0)(Xφ,C),

∂φiΩ ∈ H(3,0)(Xφ,C)⊕H(2,1)(Xφ,C),

∂φi∂φjΩ ∈ H(3,0)(Xφ,C)⊕H(2,1)(Xφ,C)⊕H(1,2)(Xφ,C),

∂φi∂φj∂φkΩ ∈ H(3,0)(Xφ,C)⊕H(2,1)(Xφ,C)⊕H(1,2)(Xφ,C)⊕H(0,3)(Xφ,C)

• As the space is 2 + 2h2,1-dimensional, choosing a basis then
gives us relations between the other derivatives and these
basis elements. This then gives a system of differential
equations that Ω satisfies, the Picard-Fuchs system.
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form: Ω ∈ H(3,0)(Xφ,C), and Griffiths transversality tells us:

Ω ∈ H(3,0)(Xφ,C),

∂φiΩ ∈ H(3,0)(Xφ,C)⊕H(2,1)(Xφ,C),

∂φi∂φjΩ ∈ H(3,0)(Xφ,C)⊕H(2,1)(Xφ,C)⊕H(1,2)(Xφ,C),

∂φi∂φj∂φkΩ ∈ H(3,0)(Xφ,C)⊕H(2,1)(Xφ,C)⊕H(1,2)(Xφ,C)⊕H(0,3)(Xφ,C)

• As the space is 2 + 2h2,1-dimensional, choosing a basis then
gives us relations between the other derivatives and these
basis elements. This then gives a system of differential
equations that Ω satisfies, the Picard-Fuchs system.

Michael Stepniczka Computing Zeta Functions of Calabi-Yau Threefolds



Computing Zeta Functions
Method: Dwork Deformation

• Integrating, this can then be stated in terms of the periods;
namely, Lϖ = 0.

• These may be seen in different bases. One important one for
our purposes is, extracting around the LCS point φ = 0, the
Frobenius basis:

ϖ =


f

f i + fli
1
2!Yijk(f

ij + 2f jlk + fljlk)
1
3!Yijk(f

ijk + 3f ijlk + 3f iljlk + fliljlk)


• Defining (ϑ0, ϑi, ϑ

i, ϑ0) =
(
1, θi, Ŷ

ijkθjθk,
Ŷ ijk

m θiθjθk

)
, we

then have

E(φ)ba =

(
ϑaϖ

b ϑaϖb

ϑaϖb ϑaϖb

)
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Computing Zeta Functions
Method: Dwork Deformation

• It turns out Up(φ) = Ẽ(φp)−1Up(0)Ẽ(φ), where

Ẽ(φ) := E(φ)|log(φi)→0.

◦ We don’t have to deal with log terms!

• Advantages:

◦ Tackles the whole family of CY3s
◦ Relatively quick to evaluate
◦ Can be evaluated at conifold loci
◦ Convergence in p-adics

• Disadvantages:

◦ Can’t reach as high of primes as e.g. controlled reduction (see
for instance
https://github.com/edgarcosta/pycontrolledreduction)
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Computing Zeta Functions
Periods: Computations

Method 1: Picard-Fuchs Equation

Given the Picard-Fuchs equation, create power series ansätze for
the periods and higher periods in terms of the complex structure
parameters; e.g. f =

∑∞
n=0 cnφ

n. As we are expanding around
φ = 0, set c0 = 1 as an initial condition. Apply the differential
operators to the ansatz, and obtain recurrence relations.

This of course generalizes to higher parameter families.

Michael Stepniczka Computing Zeta Functions of Calabi-Yau Threefolds



Computing Zeta Functions
Periods: Computations

Example

Given a one-parameter differential operator:

L =

d∑
k=0

Pk(φ)θ
k,

with Pk(φ) ∈ Z[φ] integral polynomials and θ = φ∂φ, then we
know θφn = nφn. Apply the operator to the ansatz, find the
recurrence, and use the initial condition to solve for these
coefficients cn.

Michael Stepniczka Computing Zeta Functions of Calabi-Yau Threefolds



Computing Zeta Functions
Periods: Computations

Example

Consider the Picard-Fuchs for the quintic:

L = θ4 − 5φ(5θ + 1)(5θ + 2)(5θ + 3)(5θ + 4)

= θ4 − 3125φθ4 − 6250φθ3 − 4375φθ2 − 1250φθ − 120φ

Apply this to f =
∑∞

n=0 cnφ
n:

Lf =

∞∑
n=0

n4c(n)φn − 3125

∞∑
n=0

n4c(n)φn+1 + · · ·

= 0.

This gives a recurrence between c(n) and c(n+ 1).
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Computing Zeta Functions
Periods: Computations

• We note that for the higher periods, as they also satisfy the
Picard-Fuchs system, we can find them via standard methods
to solve differential equations. In our case, we use the
Frobenius method.

◦ We have f(z) =
∑

c(n)φn.
◦ To find further solutions from this initial solution, take

f(z, ρ) =
∑

c(n+ ρ)φn+ρ. Then we can look at ∂ρf |ρ=0.
◦ This strategy gives us one way to compute the coefficients f i,

f ij , and f ijk from before!
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Computing Zeta Functions
Periods: Computations
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Computing Zeta Functions
Periods: Computations

Method 2: Toric Data

Given the GLSM data/Mori vectors, one can construct the
fundamental period [Hosono, Klemm, Theisen, Yau
hep-th/9406055v2]. We can do this with SymPy and take the
appropriate derivatives to find the higher periods.
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Computing Zeta Functions
Periods: Computations
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Computing Zeta Functions
Periods: Computations

We can then (in a misleading way) compute the periods:
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Computing Zeta Functions
Periods: Computations
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Computing Zeta Functions
Periods: Computations

• This is slow*, even compared to what can be done in
Mathematica!

◦ Note, that this is already after having made a number of
optimizations. Namely, we use an old version of SymPy
(1.11.1) which allows us to cache the evaluations of these
polygammas automatically, and we use SymEngine, a backend
written in C. SymPy 1.11.1 by itself took O(20s), and 1.13.3 by
itself took more than 10min before I aborted the evaluation.
1.13.3 and SymEngine brought the time to O(480s).

• However, as an upside, we don’t need the Picard-Fuchs
equation to compute the periods in this way.
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Computing Zeta Functions
Periods: Further Applications

Knowing the periods is also needed for countless other
applications:

• Mirror map: ti = 1
2πi

ϖi

ω0 ∼ log(zi) +O(z)

◦ ϖi ∼ log(zi) +O(z)
◦ ϖ0 ∼ 1 +O(z)

• GVs/GWs [cygv (Andres Rios Tascon), 2303.00757]

• Moduli stabilization
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Implementation

We have implemented* both methods in Python, and are
preparing to release the code as ToricZeta.

• Method 1: PFs

◦ Plus: Fast; can handle multi-parameter families

• Method 2: Directly in SymPy/SymEngine

◦ Plus: Don’t need PF
◦ Minus: Slow... need to do testing on 2-parameter families to

see if it can ever work

Michael Stepniczka Computing Zeta Functions of Calabi-Yau Threefolds



Implementation

We have implemented* both methods in Python, and are
preparing to release the code as ToricZeta.

• Method 1: PFs

◦ Plus: Fast; can handle multi-parameter families

• Method 2: Directly in SymPy/SymEngine

◦ Plus: Don’t need PF
◦ Minus: Slow... need to do testing on 2-parameter families to

see if it can ever work

Michael Stepniczka Computing Zeta Functions of Calabi-Yau Threefolds



Implementation
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Implementation
Mathematica Multiplication

There is some key benchmarking against CY3Zeta:

• Polynomial multiplication in Mathematica is slow:
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Implementation
Python Multiplication

Instead, we make use of FLINT (Fast Library for Number Theory)
in Python:
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Implementation
Python Multiplication

• FLINT can’t be used just as-is for multiparameter cases...
need to pip install python-flint==0.7.0a5 to have
access to multivariate polynomials

• We needed to implement truncated polynomial multiplication

• We needed to implement Laurent series by hand (as we have
rational functions in our U matrix, but currently only
polynomials are supported)
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Implementation
Requisite Data

CY3Zeta

• Intersection numbers,
inverse intersection numbers

• Conifold locus

• Other singular loci

• Period coefficients

ToricZeta

• (In theory) CYTools
CalabiYau object

• (In practice) PF equation
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Conclusions

• We have implemented the Dwork deformation method in
Python, with significant speed improvements over the
Mathematica implementation

• In particular, this Python implementation is built to be
compatible with e.g. CYTools, giving us access to the largest
collection of currently-known CY3s

• We will then (given the PF equation) be able find zeta
functions of these families
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Future Work

• As the controlled reduction method is suitable for calculating
zeta functions of specific points in moduli space, we can use
ToricZeta at low primes to find interesing points!

• It would be awesome to automate the finding of these
Picard-Fuchs equations via Griffiths-Dwork reduction

• These methods can also be implemented for higher
Calabi-Yau n-folds
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Thank you for listening!
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