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Calabi-Yau Manifolds

From Physics

e Let spacetime have a product structure My = My x Xg with
X a compact 6-dimensional manifold
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X a compact 6-dimensional manifold
o To solve the 10D-vacuum Einstein equations, we require that
Xg be Ricci flat
o The only known examples are Calabi-Yau threefolds (CY3s)!
In addition to being Ricci flat, the manifold is also Kéahler
e Type IIB string theory contains data about even-dimensional

forms. We can then study the structure using complex
algebraic geometry (i.e. over C)
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Calabi-Yau Manifolds

From Physics

e Let spacetime have a product structure My = My x Xg with
X a compact 6-dimensional manifold
o To solve the 10D-vacuum Einstein equations, we require that
Xg be Ricci flat
o The only known examples are Calabi-Yau threefolds (CY3s)!
In addition to being Ricci flat, the manifold is also Kéahler

e Type IIB string theory contains data about even-dimensional
forms. We can then study the structure using complex
algebraic geometry (i.e. over C)

o More specifically, IIB comes with data including: 2-forms
B,y, Cy and corresponding field strengths Hs = dBs, F3 = dCs.
Together with the axiodilaton 7, these are packaged as
G3 = F3 - THg
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Calabi-Yau Manifolds

From Physics

e Better than complex algebraic geometry, the largest-known
collection of CY3s comes from toric geometry [Batyrev;
alg-geom/9310003]
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e Better than complex algebraic geometry, the largest-known
collection of CY3s comes from toric geometry [Batyrev;
alg-geom/9310003]

o CY3s are found as hypersurfaces in toric varieties
o These toric varieties are obtained from (suitable
triangulations of) 4D reflexive polytopes
+ Combinatorial in nature!
* Question: How much of the CY data can be obtained purely
from this combinatorial data?
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Calabi-Yau Manifolds

From Physics

e Better than complex algebraic geometry, the largest-known
collection of CY3s comes from toric geometry [Batyrev;
alg-geom/9310003]

o CY3s are found as hypersurfaces in toric varieties
o These toric varieties are obtained from (suitable
triangulations of) 4D reflexive polytopes
+ Combinatorial in nature!
* Question: How much of the CY data can be obtained purely
from this combinatorial data?
o Polytopal construction lends itself to computer-based studies
via e.g. CYTools
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Calabi-Yau Manifolds

From Mathematics

e More generally, a Calabi-Yau n-fold can be defined to be a
compact Kéahler manifold with vanishing first Chern class
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Calabi-Yau Manifolds

From Mathematics

e More generally, a Calabi-Yau n-fold can be defined to be a
compact Kéahler manifold with vanishing first Chern class
e Examples:
o n=1: Complex Tori
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Calabi-Yau Manifolds

From Mathematics

e More generally, a Calabi-Yau n-fold can be defined to be a
compact Kéahler manifold with vanishing first Chern class
e Examples:
o n=1: Complex Tori ++» Elliptic Curves
o n = 2: K3 surfaces
on=3:CY3s!
e As with elliptic curves, CYs can be studied via arithmetic
geometry
o Example: finding point counts over finite fields
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Elliptic Curve Modularity

e Elliptic curves over Q can be written in Weierstrass form
E:y*=2%+ax +bwithabeZ

Michael Stepniczka Computing Zeta Functions of Calabi-Yau Threefolds



Elliptic Curve Modularity

e Elliptic curves over Q can be written in Weierstrass form
E:y*=2%+ax +bwithabeZ
o These curves can then be considered over finite field, e.g. F,

Michael Stepniczka Computing Zeta Functions of Calabi-Yau Threefolds



Elliptic Curve Modularity

e Elliptic curves over Q can be written in Weierstrass form
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e Elliptic curves over Q can be written in Weierstrass form
E:y*=2%+ax +bwithabeZ
o These curves can then be considered over finite field, e.g. F,
o The number of solutions of the elliptic curve E over these
finite fields are related to Fourier coefficients of a weight-2
modular form via a, =p+ 1 — #E(F,)

e Example: % = 23 4+ 2
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Elliptic Curve Modularity

e Elliptic curves over Q can be written in Weierstrass form
E:y*=2%+ax +bwithabeZ
o These curves can then be considered over finite field, e.g. F,
o The number of solutions of the elliptic curve E over these
finite fields are related to Fourier coefficients of a weight-2
modular form via a, =p+ 1 — #E(F,)
e Example: 3% =23 + o
o Over F3, we have solutions (z,y) = (0,0),(2,1),(2,2), and a
point at infinity
* a3=3+1—-4=0
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Elliptic Curve Modularity

e Elliptic curves over Q can be written in Weierstrass form
E:y*=2%+ax +bwithabeZ
o These curves can then be considered over finite field, e.g. F,
o The number of solutions of the elliptic curve E over these
finite fields are related to Fourier coefficients of a weight-2
modular form via a, =p+ 1 — #E(F,)
e Example: % = 23 4+ 2
o Over F3, we have solutions (z,y) = (0,0),(2,1),(2,2), and a
point at infinity
* a3=3+1—-4=0
o Over Fy, we have solutions (z,y) = (0,0), (2,0),(3,0), and a
point at infinity
* a5 =5+4+1—-4=2
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Elliptic Curve Modularity

e Elliptic curves over Q can be written in Weierstrass form
E:y*=2%+ax +bwithabeZ
o These curves can then be considered over finite field, e.g. F,
o The number of solutions of the elliptic curve E over these
finite fields are related to Fourier coefficients of a weight-2
modular form via a, =p+ 1 — #E(F,)
e Example: % = 23 4+ 2
o Over F3, we have solutions (z,y) = (0,0),(2,1),(2,2), and a
point at infinity
* a3=3+1—-4=0
o Over Fy, we have solutions (z,y) = (0,0), (2,0),(3,0), and a
point at infinity
* a5 =5+4+1—-4=2
o Compare to 64.2.a.a: f(q) = q+2¢° —3¢° + - --
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Elliptic Curve Modularity

e Elliptic curves over Q can be written in Weierstrass form
E:y*=2%+ax +bwithabeZ
o These curves can then be considered over finite field, e.g. F,
o The number of solutions of the elliptic curve E over these
finite fields are related to Fourier coefficients of a weight-2
modular form via a, =p+ 1 — #E(F,)
e Example: % = 23 4+ 2
o Over F3, we have solutions (z,y) = (0,0),(2,1),(2,2), and a
point at infinity
* a3=3+1—-4=0
o Over Fy, we have solutions (z,y) = (0,0), (2,0),(3,0), and a
point at infinity
* a5 =5+4+1—-4=2
o Compare to 64.2.a.a: f(q) = q+2¢° —3¢° + - --

e Modularity then says elliptic curves E/Q have associated to
them such modular forms f.
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Towards Higher Modularity

e More generally, this story can be told in terms of
representations of Gal(Q/Q):
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e More generally, this story can be told in terms of
representations of Gal(Q/Q):
o The middle cohomology of an elliptic curve E/Q provides us
with a 2-dimensional representation ps(E).
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Towards Higher Modularity

e More generally, this story can be told in terms of
representations of Gal(Q/Q):

o The middle cohomology of an elliptic curve E/Q provides us
with a 2-dimensional representation ps(E).

o On the other hand, cusp forms f that are simultaneous
eigenvectors of all Hecke operators are also associated to
2-dimensional representations ps(f)
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E/Q such an f for which the representations coincide
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Towards Higher Modularity

e More generally, this story can be told in terms of
representations of Gal(Q/Q):

o The middle cohomology of an elliptic curve E/Q provides us
with a 2-dimensional representation ps(E).

o On the other hand, cusp forms f that are simultaneous
eigenvectors of all Hecke operators are also associated to
2-dimensional representations ps(f)

o It is then the modularity theorem which associates to every
E/Q such an f for which the representations coincide

e This story can be generalized to Calabi-Yau n-folds X.
Modularity can arise, for instance, when the representation
decomposes into a 2-dimensional subrepresentation and a
(by, — 2)-dimensional component.
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with a 2-dimensional representation ps(E).

o On the other hand, cusp forms f that are simultaneous
eigenvectors of all Hecke operators are also associated to
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e More generally, this story can be told in terms of
representations of Gal(Q/Q):

o The middle cohomology of an elliptic curve E/Q provides us
with a 2-dimensional representation ps(E).

o On the other hand, cusp forms f that are simultaneous
eigenvectors of all Hecke operators are also associated to
2-dimensional representations ps(f)

o It is then the modularity theorem which associates to every
E/Q such an f for which the representations coincide

e This story can be generalized to Calabi-Yau n-folds X.
Modularity can arise, for instance, when the representation
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(by, — 2)-dimensional component.
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Towards Higher Modularity

e More generally, this story can be told in terms of
representations of Gal(Q/Q):

o The middle cohomology of an elliptic curve E/Q provides us
with a 2-dimensional representation ps(E).

o On the other hand, cusp forms f that are simultaneous
eigenvectors of all Hecke operators are also associated to
2-dimensional representations ps(f)

o It is then the modularity theorem which associates to every
E/Q such an f for which the representations coincide

e This story can be generalized to Calabi-Yau n-folds X.
Modularity can arise, for instance, when the representation
decomposes into a 2-dimensional subrepresentation and a
(by, — 2)-dimensional component.

o Singular K3s
o Rigid CY3s
o SUSY Flux Vacua
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(Local) Zeta Functions

Definition

Let X/Q be a smooth projective variety. As before, we can clear
denominators and view X/Z. Furthermore, we can reduce
modulo p to view this as X/F,. As F, is a subfield of Fj», we can
finally study X/Fpn.
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(Local) Zeta Functions

Definition

Let X/Q be a smooth projective variety. As before, we can clear
denominators and view X/Z. Furthermore, we can reduce
modulo p to view this as X/F,. As F, is a subfield of Fj», we can
finally study X/Fpn.

Definition

For X/Q as above and for good primes p, define the local zeta
function to be:

(X, T) = exp (Z M) ,
n=1

with #X (Fp») denoting the point count over Fpn.
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Zeta Functions

Example: Riemann Zeta Function

Let X be a point. Clearing denominators, #X (F,n») = 1. Then:

o0

G{pth T) = exp (Z %) - —

n=1

From the local zeta functions, construct:

C(Xv 3) = H CP(X7p_S)7

and find the usual Riemann zeta function

c(foth, ) = [T == = <)

—s
. p

Michael Stepniczka Computing Zeta Functions of Calabi-Yau Threefolds



Zeta Functions
Weil Conjectures [Dwork, Grothendieck, Deligne]

Theorem (Rationality)
(X, T) is a rational function of T'. Specifically:

rRY(x,T)--- R YV(x,T)

X,T) = ,
P RO(X,T). - R?(X,T)

()

where each Ry’ (T) has integral coefficients and is of degree b;, the
1’th Betti number.

There are other nice properties that these zeta functions satisfy:
namely, a functional equation and a Riemann hypothesis.
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Zeta Functions

Weil Conjectures

To prove this, Dwork used p-adic cohomological techniques.
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Weil Conjectures

To prove this, Dwork used p-adic cohomological techniques.
e First, the numbers # X (F,,) can be determined as follows:
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Zeta Functions

Weil Conjectures

To prove this, Dwork used p-adic cohomological techniques.
e First, the numbers # X (F,,) can be determined as follows:
o Recall the Frobenius endomorphism:

Froby, : (@1,...,2x) — (2f,...,2})

Michael Stepniczka Computing Zeta Functions of Calabi-Yau Threefolds



Zeta Functions

Weil Conjectures

To prove this, Dwork used p-adic cohomological techniques.
e First, the numbers # X (F,,) can be determined as follows:
o Recall the Frobenius endomorphism:
Froby, : (@1,...,2x) — (2f,...,2})

o As zP =z mod p for all x € I, the fixed points of Frob,, over
any field extension are exactly those in I,
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Zeta Functions

Weil Conjectures

To prove this, Dwork used p-adic cohomological techniques.
e First, the numbers # X (F,,) can be determined as follows:
o Recall the Frobenius endomorphism:

Froby, : (@1,...,2x) — (2f,...,2})

o As zP =z mod p for all x € I, the fixed points of Frob,, over
any field extension are exactly those in I,
o You can repeat this for F,»
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Zeta Functions

Weil Conjectures

To prove this, Dwork used p-adic cohomological techniques.
e First, the numbers # X (F,,) can be determined as follows:
o Recall the Frobenius endomorphism:

Froby, : (@1,...,2x) — (2f,...,2})

o As zP =z mod p for all x € I, the fixed points of Frob,, over
any field extension are exactly those in I,
o You can repeat this for F,»

e Now think of a family of CY3s X,. One can define a p-adic
cohomology theory H*(X,,Q,) and pullback the Frobenius
map:

% Hk(Xem Qp) — Hk(Xem Qp)
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Zeta Functions

Weil Conjectures

To prove this, Dwork used p-adic cohomological techniques.
e First, the numbers # X (F,,) can be determined as follows:
o Recall the Frobenius endomorphism:

Froby, : (@1,...,2x) — (2f,...,2})

o As zP =z mod p for all x € I, the fixed points of Frob,, over
any field extension are exactly those in I,
o You can repeat this for F,»

e Now think of a family of CY3s X,. One can define a p-adic
cohomology theory H*(X,,Q,) and pullback the Frobenius
map:

% Hk(Xem Qp) — Hk(Xem Qp)
e Apply the Lefschetz fixed point theorem:
6
#HXp(Fpn) = Y (= 1)"Tr(Fryn| gm (x,.0,))

m=0
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Zeta Functions

Weil Conjectures

e The characteristic polynomial of the inverse of the Frobenius
map is then:

R{™ (X, T) = det(I = TFr [m(x,0,)
det(I — TUy(¢))
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Zeta Functions

Weil Conjectures
e The characteristic polynomial of the inverse of the Frobenius
map is then:
RI™(X,,T) = det(I — TFr, gm(x, q,)
— det(I - TU,())
e The Hodge diamond for a CY3s is:

1
0 0
0 hbt 0
1 h2,1 h2’1 1
0 hbt 0
0 0
1
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Zeta Functions

Weil Conjectures
e The characteristic polynomial of the inverse of the Frobenius
map is then:
RI™(X,,T) = det(I — TFr, gm(x, q,)
— det(I - TU,())
e The Hodge diamond for a CY3s is:

1
0 0
0 hbt 0
1 h2,1 h2’1 1
0 hbt 0
0 0
1
e This tells us bo = b6 = 1, b1 = b5 = 0, b2 == b4 = hl’l, and

by =2+ 2n%1
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Zeta Functions

Weil Conjectures

e Now our zeta function is:

RI(’l) (XSDa T)RI(D3) (XSD7 T)RI(J5) (XS07 T)
4
RY (X, T)RY (X, T) RS (X, T)RY (X, T)
3
RZ(? )(X<P7 T)
(1= T)(1 — pT)P" (1 — p2T)P" (1 — p3T)’

Cp(XsmT) =

where I have glossed over a few details.
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Zeta Functions

Weil Conjectures

e Now our zeta function is:

RI(’l) (XSDa T)RI(D3) (XSD7 T)RI(J5) (XS07 T)
4
RY (X, T)RY (X, T) RS (X, T)RY (X, T)
3
RZ(? )(X<P7 T)
(1= T)(1 — pT)P" (1 — p2T)P" (1 — p3T)’

Cp(XsmT) =

where I have glossed over a few details.

e In this case, we only need to care about R,(f”) (Xo, T)
o We'll get back to this point later!
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Zeta Functions

Use in Physics

e BH modularity /rank-2 attractor points [e.g. Candelas, de la
Ossa, Elmi, van Straten 1912.06146v1]
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Zeta Functions

Use in Physics

e BH modularity /rank-2 attractor points [e.g. Candelas, de la
Ossa, Elmi, van Straten 1912.06146v1]

e Supersymmetric flux vacua and F-theory/M-theory
modularity [e.g. Kachru, Nally, Yang 2001.06022v2,
2010.07285v2; Jockers, Kotlewski, Kuusela 2312.07611v3]
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Zeta Functions

Use in Physics

e BH modularity /rank-2 attractor points [e.g. Candelas, de la
Ossa, Elmi, van Straten 1912.06146v1]

e Supersymmetric flux vacua and F-theory/M-theory
modularity [e.g. Kachru, Nally, Yang 2001.06022v2,
2010.07285v2; Jockers, Kotlewski, Kuusela 2312.07611v3]

e Ratio of L-functions to GWs [Candelas, de la Ossa,
McGovern 2410.07107v1]

) )—1/2

37 Lsa.a.ac(l) NG 2 P < J )l(p

Of Zsddac\t) /6o ] 2 YN[
2 Lsaaac(2) 73 Z (=17, 3769
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Zeta Functions

Use in Physics

e BH modularity /rank-2 attractor points [e.g. Candelas, de la
Ossa, Elmi, van Straten 1912.06146v1]

e Supersymmetric flux vacua and F-theory/M-theory
modularity [e.g. Kachru, Nally, Yang 2001.06022v2,
2010.07285v2; Jockers, Kotlewski, Kuusela 2312.07611v3]

e Ratio of L-functions to GWs [Candelas, de la Ossa,
McGovern 2410.07107v1]

) )—1/2

37 Lsa.a.ac(l) NG 2 P < J )l(p

Of Zsddac\t) /6o ] 2 YN[
2 Lsaaac(2) 73 Z (=17, 3769

e Arithmetic geometry finds points of interest in complex
geometry?
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Computing Zeta Functions

Method: Point Counts

e Description: Work from the definition of the zeta function

G0 ) o (3 #X )T
n=1

and compute these point counts explicitly.

Michael St iczka Computing Zeta Functions of Calabi-Yau Threefolds



Computing Zeta Functions

Method: Point Counts

e Description: Work from the definition of the zeta function

G0 ) o (3 #X )T
n=1

and compute these point counts explicitly.
e Advantages:
o Straightforward to implement
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Computing Zeta Functions

Method: Point Counts

e Description: Work from the definition of the zeta function

G0 ) o (3 #X )T
n=1

and compute these point counts explicitly.
e Advantages:
o Straightforward to implement
e Disadvantages:

o Slow
o Fixes a point in CS moduli space
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Computing Zeta Functions

Method: Dwork Deformation

e See e.g. 0705.2056v1; 2104.07816v1; 2405.08067v1.
(Candelas, de la Ossa, Kuusela, van Straten)
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Computing Zeta Functions

Method: Dwork Deformation

e See e.g. 0705.2056v1; 2104.07816v1; 2405.08067v1.
(Candelas, de la Ossa, Kuusela, van Straten)

e As mentioned earlier, we have reduced the computation of
the zeta function to the computation of

Rz(f') (X, T) = det(I — TUy,(y)), where Up(p) is the action of

Fr;1 on the middle cohomology H?(X,,Q,).

Michael Stepniczka Computing Zeta Functions of Calabi-Yau Threefolds



Computing Zeta Functions

Method: Dwork Deformation

e See e.g. 0705.2056v1; 2104.07816v1; 2405.08067v1.
(Candelas, de la Ossa, Kuusela, van Straten)

e As mentioned earlier, we have reduced the computation of
the zeta function to the computation of

Rz(f') (X, T) = det(I — TUy,(y)), where Up(p) is the action of
Fr;1 on the middle cohomology H?(X,,Q,).
o Therefore, if we can determine U, (), we can compute the
zeta function!
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Computing Zeta Functions

Method: Dwork Deformation

e See e.g. 0705.2056v1; 2104.07816v1; 2405.08067v1.
(Candelas, de la Ossa, Kuusela, van Straten)

e As mentioned earlier, we have reduced the computation of
the zeta function to the computation of
Rz(f') (X, T) = det(I — TUy,(y)), where Up(p) is the action of
Fr;1 on the middle cohomology H?(X,,Q,).

o Therefore, if we can determine U, (), we can compute the
zeta function!

e Due to Dwork, Uy,(p) = E(¢P)"1U,(0)E(p), where E is a
matrix depending on the periods
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Computing Zeta Functions

Method: Dwork Deformation

e See e.g. 0705.2056v1; 2104.07816v1; 2405.08067v1.
(Candelas, de la Ossa, Kuusela, van Straten)
e As mentioned earlier, we have reduced the computation of
the zeta function to the computation of
Rz(f') (X, T) = det(I — TUy,(y)), where Up(p) is the action of
Fr;1 on the middle cohomology H?(X,,Q,).
o Therefore, if we can determine U, (), we can compute the
zeta function!
e Due to Dwork, Uy,(p) = E(¢P)"1U,(0)E(p), where E is a
matrix depending on the periods
o We like 0 — LCS point!
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Computing Zeta Functions

Method: Dwork Deformation

e See e.g. 0705.2056v1; 2104.07816v1; 2405.08067v1.
(Candelas, de la Ossa, Kuusela, van Straten)
e As mentioned earlier, we have reduced the computation of
the zeta function to the computation of
Rz(f') (X, T) = det(I — TUy,(y)), where Up(p) is the action of
Fr;1 on the middle cohomology H?(X,,Q,).
o Therefore, if we can determine U, (), we can compute the
zeta function!
e Due to Dwork, Uy,(p) = E(¢P)"1U,(0)E(p), where E is a
matrix depending on the periods
o We like 0 — LCS point!
o Subtleties exist: if we chose ¢ such that P = ¢, then it would
seem that ( is independent of ¢
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Computing Zeta Functions

Method: Dwork Deformation

e See e.g. 0705.2056v1; 2104.07816v1; 2405.08067v1.
(Candelas, de la Ossa, Kuusela, van Straten)

e As mentioned earlier, we have reduced the computation of
the zeta function to the computation of
Rz(f') (X, T) = det(I — TUy,(y)), where Up(p) is the action of
Fr;1 on the middle cohomology H?(X,,Q,).
o Therefore, if we can determine U, (), we can compute the
zeta function!
e Due to Dwork, Uy,(p) = E(¢P)"1U,(0)E(p), where E is a
matrix depending on the periods
o We like 0 — LCS point!
o Subtleties exist: if we chose ¢ such that P = ¢, then it would
seem that ( is independent of ¢
o Instead, it turns out that the periods converge when
ll¢llp < 1, and we need to follow p-adic analytic continuation
to define U(y) for ||¢|l, =1
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Computing Zeta Functions

Periods: Introduction

e Now the problem has been (largely) reduced to solving for
the periods @ (\varpi) of our CY3.
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Computing Zeta Functions

Periods: Introduction

e Now the problem has been (largely) reduced to solving for
the periods @ (\varpi) of our CY3.

e Recall that dim H? = b3 = 2 4+ 2h>!. Our holomorphic top
form: Q € H3Y (X, C), and Griffiths transversality tells us:

Q e HBYX,,0),
0,9 € H®O(X, C)eH®Y(X,,0),
0,i0,;Q € HBY(X,,C)eH*Y(X,,C) o HI?(X,,0),
010,092 € HOO(X,,C) o H*V(X,,C) & HED (X, C) @ HOP (X, C)
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Computing Zeta Functions

Periods: Introduction

e Now the problem has been (largely) reduced to solving for
the periods @ (\varpi) of our CY3.

e Recall that dim H? = b3 = 2 4+ 2h>!. Our holomorphic top
form: Q € H3Y (X, C), and Griffiths transversality tells us:

Q e HBYX,,0),
0,9 € H®O(X, C)eH®Y(X,,0),
0,i0,;Q € HBY(X,,C)eH*Y(X,,C) o HI?(X,,0),
0,:0,i0,,Q € H®Y(X,,C)e H®V(X,,C) e HYY(X,,C) e H"I(X,,C)

e As the space is 2 + 2h*!-dimensional, choosing a basis then
gives us relations between the other derivatives and these
basis elements. This then gives a system of differential
equations that () satisfies, the Picard-Fuchs system.
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Computing Zeta Functions

Method: Dwork Deformation

e Integrating, this can then be stated in terms of the periods;
namely, Lo = 0.
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Computing Zeta Functions

Method: Dwork Deformation

e Integrating, this can then be stated in terms of the periods;
namely, Lo = 0.

e These may be seen in different bases. One important one for
our purposes is, extracting around the LCS point ¢ = 0, the
Frobenius basis:

.
fZ+le
51 Vi (f9 + 2f91% + fUIIF)
51 Yijk (F% + 3fH1F 4 3f91F + fIIIIF)
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Computing Zeta Functions

Method: Dwork Deformation

e Integrating, this can then be stated in terms of the periods;
namely, Lo = 0.

e These may be seen in different bases. One important one for
our purposes is, extracting around the LCS point ¢ = 0, the
Frobenius basis:

.
fZ+le
51 Vi (f9 + 2f91% + fUIIF)
51 Yijk (F% + 3fH1F 4 3f91F + fIIIIF)

e Defining (do, Vi, %, 9°) = (1,0, V90,04, L20,6,6. ), we

then have ) )
b [(Vaw” V'@
E(‘P)a - <19awb 0awb>
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Computing Zeta Functions

Method: Dwork Deformation

e It turns out Up(p) = E(@p)_lUp(O)E(go), where

E((p) = E(‘P) llog(tpi)—>0'
o We don’t have to deal with log terms!
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Computing Zeta Functions

Method: Dwork Deformation

e It turns out Up(p) = E(@p)_lUp(O)E(go), where
E((p) = E(‘P) llog(tpi)—>0'
o We don’t have to deal with log terms!
e Advantages:

Tackles the whole family of CY3s
Relatively quick to evaluate

Can be evaluated at conifold loci
Convergence in p-adics

O O O o

Michael St iczka Computing Zeta Functions of Calabi-Yau Threefolds



Computing Zeta Functions

Method: Dwork Deformation

e It turns out Up(p) = E(@p)_lUp(O)E(go), where
E((p) = E(‘P) llog(tpi)—>0'
o We don’t have to deal with log terms!
e Advantages:

Tackles the whole family of CY3s
Relatively quick to evaluate

Can be evaluated at conifold loci
Convergence in p-adics

O O O o

e Disadvantages:
o Can’t reach as high of primes as e.g. controlled reduction (see
for instance
https://github.com/edgarcosta/pycontrolledreduction)
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Computing Zeta Functions

Periods: Computations

Method 1: Picard-Fuchs Equation

Given the Picard-Fuchs equation, create power series ansatze for
the periods and higher periods in terms of the complex structure
parameters; e.g. f =Y 2 cpe"™. As we are expanding around

o =0, set ¢cg = 1 as an initial condition. Apply the differential
operators to the ansatz, and obtain recurrence relations.

This of course generalizes to higher parameter families.

Michael Stepniczka Computing Zeta Functions of Calabi-Yau Threefolds



Computing Zeta Functions

Periods: Computations

Given a one-parameter differential operator:

d

with Py (¢) € Z[p] integral polynomials and 6 = 0, then we
know O™ = ne™. Apply the operator to the ansatz, find the
recurrence, and use the initial condition to solve for these
coefficients c,,.
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Computing Zeta Functions

Periods: Computations

Consider the Picard-Fuchs for the quintic:

L = 60*—50(50+1)(50 + 2)(50 + 3)(50 + 4)
= 0% — 312500 — 625000% — 4375002 — 1250060 — 1204

Apply this to f =D cre™
(0.9}
Lf = Zn4c( —3125271 c(n)p™ ™t +
n=0
= 0.

This gives a recurrence between c¢(n) and ¢(n + 1).
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Computing Zeta Functions

Periods: Computations

e We note that for the higher periods, as they also satisfy the
Picard-Fuchs system, we can find them via standard methods
to solve differential equations. In our case, we use the
Frobenius method.

o We have f(z) =3 c(n)e™.

o To find further solutions from this initial solution, take
f(z,p) => c(n+ p)e™t?. Then we can look at 8, f|,—o.

o This strategy gives us one way to compute the coefficients £,
f¥, and f“* from before!
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Computing Zeta Functions

Periods: Computations

In [267- | | quintio = theta**4-5+as(5*thetatl)s(5*chetat2)*(5+thetas3)* (S thetard)

P
max_n = 1000

periods_quintic - pf_speedrun(L_quintic,kappa,max_n)

The operator
0" —52(56+ 1) (50+2) (56+ 3) 50+ 4)

satisfies the recurrence relation

~8125n*c(n) — 6250n3¢(n) — 4375n2c(n) — 1250nc(n) + (n + 1)*c(n + 1) — 120c(n)

It took 2.4455952644348145 seconds to compute 1000 terms of the solution.

c(5) = 623360743125120
1370874167589326400
3177459078523411968000
7656714453153197981835000
19010638202652030712978200000
0

770

3745679000/3

4627120640625/2

4776890809748904
10589914735183563780

d(7) = 24687653993108095017600
238994525146844285287808625/4
1339662446153766674378966491250/9
0

21040875/4
84822610000/9

900108233890625/48

40360182167406990

91943921656621615700
10706723300003047945287000/49
1682274029589364861124198026875/3136
d2(9) = 6129440113413577251707286214540625/4536
0

-5750

-16491875/4

-233308099375/54

-1626647874546875/288
-67140623450467993/8

= -5803135656533650259615/432
-68839905199851646538471800/3087
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Computing Zeta Functions

Periods: Computations

Method 2: Toric Data

Given the GLSM data/Mori vectors, one can construct the
fundamental period [Hosono, Klemm, Theisen, Yau
hep-th/9406055v2]. We can do this with SymPy and take the
appropriate derivatives to find the higher periods.

Imports

#pip install symengine

#pip uninstall symengine —-yes
#pip uninstall sympy —-yes
#pip install sympy==1.11.1

import generate_periods_updated_sp as generate_periods
from cytools import Polytope, fetch_polytopes

import flint

import numpy as np

import symengine as se

import sympy as sp

import time

mputing Zeta Functions



Computing Zeta Functions

Periods: Computations

Quintic
Setup

g = fetch_polytopes(h11=1,lattice="N",as_list=True)

poly = g[1]
poly.vertices() # picking mirror quintic
array([[-1, -1, -1, -1],

[o, o, o, 1],

[eo, o, 1, o],

[eo, 1, o, o],

[1, o, o, 0]])

t = poly.triangulate()
cy = t.get_cy()

print(cy.h11())

print(cy.h21())

1

101

intnums = cy.intersection_numbers(in_basis=True, format='dense').tolist()
print(intnums)

[[rs111

glsm_charge = cy.glsm_charge_matrix(include_origin=True).tolist()
print(glsm_charge)

(-5, 1, 1, 1, 1, 111

Zeta Functi



Computing Zeta Functions

Periods: Computation:s

We can then (in a misleading way) compute the periods:

Scratch Work with SymPy

start_tine = time.tine()
6, n_vars = generate_periods. FunPeriod_se(glsn_charge)

1,2,13 = generate_periods.get_higher_periods(f0,n_vars)

end_tine = time. tine()

print(f'Conputing the periods takes {end_time-start_tine} seconds')

Computing the periods takes 0.0021300315856933594 seconds
f0._synpy_(). rewrite(sp.harmonic)

T'(Sni +1)

IS(m +1)

f110]._synpy_()

ST (Sm + 1) polygamma 0, m +1) ST (Sm + 1) polygamma (0, Sy + 1)
TS (m +1) TS (m +1)

f2[0](0]._sympy_()
25T'(5m, +1) polygamma’ 0,y +1) _ 50T (S + 1) polygamma (0.m + 1) polygamma (0,5m + 1) 25T (Sm; + 1) polygamma? 0, 5m +1)

T +1) T +1) TS +1)
_ SI"(5n; + 1) polygamma (1, n; + 1) i 250" (5n; + 1) polygamma (1, 51y + 1)
TS +1) 5 (n +1)

3101101 [0]._sympy_()

125T"(5m, + 1) polygamma® O, +1) 375 (Sm + 1) polygamma® (0, + 1) polygamma (0,5m +1)

TS(m +1) T3 (m +1)
_ 375T(5my + 1) polygamma (0, + 1) polygamma’ (0, 5n, +1) 75T (5m + 1) polygamma (0,m, + 1) polygamma (1,m, +1)
TS(m +1) T (n +1)
_ 35T Gm + 1) polygamma O, m + 1) polygamma 1, 5m, +1) 1257 (Sm + 1) polygamma’ (0,5 +1)
Ty +1) 5 (m +1)

75T (S + 1) polygamma (0, 5 + 1) polygamma (1,n; + 1) 375T (Sm + 1) polygamma 0, 5n, + 1) polygamma (1, Sm +1)
Ty YTy




Computing Zeta Functions

Periods: Computations

order = 1000

generate_periods.get_rational_coefficients(cy, order=order, as
end_time = time.time(

print(f'Total time: {end_time-start_tine} seconds to go to order={order}') # can already see it is slow with the quintic.

Please have SynEngine and SynPy v1.11.1 installed.
Total time: 12.733577251434326 seconds to go to order=1000

fol:10],f1(0] [:10], f2[0] (6] [:10], f3[0] (0] [0] [:10]

«a,
120,
113400,
168168000,
305540235000,
623360743125120,
1370874167589326400,
3177459078523411968000,
7656714453153197981835000,
19010638202652030712978200000] ,
o,
770,
810225,
3745679000/3,
4627120640625/2,
4776890809748904,
10589914735183563780,
24687653993108095017600,
238994525146844285287808625/4,
1339662446153766674378966491250/9] ,
o,
1150,
4208175/2,
33929044000/9,
180021646778125/24,
16144072866962796,
36777568662648646260,
4282689320001219178114800/49,
336454805917872972224839605375/1568,
1225888022682715450341457242908125/22681 ,

o,
6900,

Zeta Function



Computing Zeta Functions

Periods: Computations

e This is slow*, even compared to what can be done in
Mathematica!

o Note, that this is already after having made a number of
optimizations. Namely, we use an old version of SymPy
(1.11.1) which allows us to cache the evaluations of these
polygammas automatically, and we use SymEngine, a backend
written in C. SymPy 1.11.1 by itself took O(20s), and 1.13.3 by
itself took more than 10min before I aborted the evaluation.
1.13.3 and SymEngine brought the time to O(480s).
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Computing Zeta Functions

Periods: Computations

e This is slow*, even compared to what can be done in
Mathematica!

o Note, that this is already after having made a number of
optimizations. Namely, we use an old version of SymPy
(1.11.1) which allows us to cache the evaluations of these
polygammas automatically, and we use SymEngine, a backend
written in C. SymPy 1.11.1 by itself took O(20s), and 1.13.3 by
itself took more than 10min before I aborted the evaluation.
1.13.3 and SymEngine brought the time to O(480s).

e However, as an upside, we don’t need the Picard-Fuchs
equation to compute the periods in this way.
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Computing Zeta Functions

Periods: Further Applications

Knowing the periods is also needed for countless other
applications:

e Mirror map: t' = ﬁf—; ~ log(2) + O(2)

o w' ~log(z;) + O(z)
o w’~1+0(2)
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Computing Zeta Functions

Periods: Further Applications

Knowing the periods is also needed for countless other
applications:

e Mirror map: t' = ﬁf—; ~ log(2) + O(2)

o w' ~log(z;) + O(z)
o w’~1+0(2)

e GVs/GWs [cygv (Andres Rios Tascon), 2303.00757]
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Computing Zeta Functions

Periods: Further Applications

Knowing the periods is also needed for countless other
applications:
e Mirror map: t' = ﬁf—; ~ log(2) + O(2)
o w' ~log(z;) + O(z)
o w’~1+0(2)
e GVs/GWs [cygv (Andres Rios Tascon), 2303.00757]

e Moduli stabilization
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Implementation

We have implemented* both methods in Python, and are
preparing to release the code as ToricZeta.
e Method 1: PFs

o Plus: Fast; can handle multi-parameter families
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Implementation

We have implemented* both methods in Python, and are
preparing to release the code as ToricZeta.
e Method 1: PFs
o Plus: Fast; can handle multi-parameter families
e Method 2: Directly in SymPy/SymEngine
o Plus: Don’t need PF

o Minus: Slow... need to do testing on 2-parameter families to
see if it can ever work
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Implementation

@ ToriczZeta (rivate) (@ unmwateh (2) ~ | [ % Fork <)% star -
¥ main - \ # 1Branch © 0 Tags Q Go tofile \ Add file - H <> Code ~ \ About

Code for computing periods and
@ Kuusela Code for computing the Frobenius matrix U added. 1d3f30¢ - 2 days ago () 106 Commits Hasse-Weil zeta functions of Calabi-

Yau hypersurfaces in (possibly non-
M Current Testing Data file needed to be uploaded manually 3weeksago | Fano) toric varieties.

M Old Notebooks Moved notebooks 3 weeks ago [ Readme

M Periods Moved notebooks 3 weeks ago Activity

W PicardFuchs Removed kappa from pfPeriodVector.py 4 days ago LT

A
¥ Ostars
®
¥

B8 pAdicPolynomials Code for computing the Frobenius matrix U added. 2 days ago 0 forks

[ .gitignore Rename gitignore.txt to .gitignore 5 months ago Releases

From_Mathematica_to_Python_1.py Code for computing the Frobenius matrix U added 2 days ago et
Create a new release
README.md Initial commit 5 months ago

README z No packages published

Publish your first package

ToricZeta Contributors (3)

. michaelstepniczka Michael Stepnic...

Code for computing periods and Hasse-Weil zeta functions of Calabi-Yau hypersurfaces in (possibly non-
Fano) toric varieties. . m-lathwood

.”
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Implementation

Mathematica Multiplication

There is some key benchmarking against CY3Zeta:

e Polynomial multiplication in Mathematica is slow:

= Clear [a]

5%(5n-1)%(5n-2)%(5n-3)%(5n-4)
= wa[n-1]

7
n

Clear[b]
bin_] :=
_a 1250% (2n-1) # (5% -5n+1)
b[n] = —+a[n] 4 ———— —————————————«a[n-1] +
n

=

5% (5n-1)%(5n-2) % (5n-3) % (5n-4)

I

*b[n-1]

b[o] = 0;
7= polyl = Sum[a[i]1 ¢, {i, 0, 5000}];
poly2 = sum[b[i]+¢', {i, 0, 5000}];
o= Timing [polyl «poly2;]
ouig= {0.000392, Null}
riio}= serl=Sum[a[i]*¢', {i, 0, 1000}] +0[¢]'**;
ser2 = sum[b[i]%¢', {i, 0, 1000}] +0[0]'*";
2= Timing[serlsser2;]

oulizi- {1.61314, Null}

ing Zeta Functi



Implementation

hon Multiplication

Instead, we make use of FLINT (Fast Library for Number Theory)
in Python:

fmpg polynomials

def period_coeffs_iterative_flint(n):
fund_period_coeffs = [fmpq(1,1)
for 1 in range(1, n):
fund_period_coeffs.append(fmpg(5x(5ki=1)* (5%i-2)%(5%i-3)*(5%i~4) , i%*4)xfund_period_coeffs[-1])
fund = fund_period_coeffs

log_period_coeffs = [fmpq(0,1)]
for i in range(1, n):

Tog_period_coeffs.append(fmpq(~4,1)*fund [1]+fmpq (1250 (2%i-1)%(Siks2-5+i+1) , Loxd)%fund [i-11+Fmpa (5k (5xi-1)(5%i-2)% (5i-3)#(5%
logcoeffs = log_period_coeffs

return [fund, logcoeffs]

n = 1000

periods_flint = period_coeffs_iterative_flint(n)
pl = fmpg_poly(periods_flint[0])

p2 = fmpq_poly(periods_flint[1])

start_time = time.time()

flint_mult = plip2

end_time = time.time()

execution_time = end_time - start_time
print (execution_time)

0.09912896156311035




Implementation

Python Multiplication

e FLINT can’t be used just as-is for multiparameter cases...
need to pip install python-flint==0.7.0ab to have
access to multivariate polynomials

Michael Stepniczka Computing Zeta Functions of Calabi-Yau Threefolds



Implementation

Python Multiplication

e FLINT can’t be used just as-is for multiparameter cases...
need to pip install python-flint==0.7.0ab to have
access to multivariate polynomials

e We needed to implement truncated polynomial multiplication
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Implementation

Python Multiplication

e FLINT can’t be used just as-is for multiparameter cases...
need to pip install python-flint==0.7.0ab to have
access to multivariate polynomials

e We needed to implement truncated polynomial multiplication

e We needed to implement Laurent series by hand (as we have
rational functions in our U matrix, but currently only
polynomials are supported)
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Implementation

Requisite Data

CY3Zeta ToricZeta
e Intersection numbers, e (In theory) CYTools
inverse intersection numbers CalabiYau object
e Conifold locus e (In practice) PF equation
e Other singular loci

Period coefficients
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Conclusions

e We have implemented the Dwork deformation method in
Python, with significant speed improvements over the
Mathematica implementation
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Conclusions

e We have implemented the Dwork deformation method in
Python, with significant speed improvements over the
Mathematica implementation

e In particular, this Python implementation is built to be

compatible with e.g. CYTools, giving us access to the largest
collection of currently-known CY3s
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Conclusions

e We have implemented the Dwork deformation method in
Python, with significant speed improvements over the
Mathematica implementation

e In particular, this Python implementation is built to be
compatible with e.g. CYTools, giving us access to the largest
collection of currently-known CY3s

e We will then (given the PF equation) be able find zeta
functions of these families
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Future Work

e As the controlled reduction method is suitable for calculating
zeta functions of specific points in moduli space, we can use
ToricZeta at low primes to find interesing points!
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e [t would be awesome to automate the finding of these
Picard-Fuchs equations via Griffiths-Dwork reduction
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e As the controlled reduction method is suitable for calculating
zeta functions of specific points in moduli space, we can use
ToricZeta at low primes to find interesing points!

e [t would be awesome to automate the finding of these
Picard-Fuchs equations via Griffiths-Dwork reduction

e These methods can also be implemented for higher
Calabi-Yau n-folds
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Thank you for listening!
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