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Main Question:
How can one obtain (,(X,, T') from ¥ (Pa, X)?

“Zeta from theta”
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Toric Varieties

Toric varieties are algebraic varieties that contain an dense
algebraic torus [Dan78, CLS11].
@ Two constructions:
o Newton polytope A ~» Pa (vertices <= monomials)
e Fan or spanning polytope ¥ ~» Py, (vectices < divisors)
e When X are normal to facets of A, we have Px & Ps..

Example 1.1 (P2 = PA = Py)

(=1,2) A* = Convz(®)
A (0,1)

(1,0)
(—-1,-1) (2,-1) | (-1,-1)

Lathwood Non-Fano Zeta



Mirror symmetry Toric varieties
Number theory Sigma models and Landau-Ginzburg models
Computing zeta functions Non-Fano in the tropics

Calabi-Yau hypersurfaces in toric varieties

e In string compactifications, spacetime is of the form R3! x X
where X is a compact Calabi-Yau manifold [CHS\W85].

@ By the adjunction formula, the anticanonical divisor
—Kp, = Z;Zl D, has trivial canonical class
and hence —Kp, = X is a Calabi-Yau manifold.

Example 1.2 (Anticanonical hypersurfaces in projective space)

— Kp2 is the cubic elliptic curve
— Kps is the quartic K3

—Kpn =(n+1)H = — Kpa is the quintic CY3

where H is the hyperplane class.
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Mirror symmetry Toric varieties
Number theory Sigma models and Landau-Ginzburg models
Computing zeta functions Non-Fano in the tropics

Gauged linear sigma models

Witten introduced gauged linear sigma models (GLSMs) —
U(1)® gauge theories whose charge matrix is given by the Mori
vectors of a toric variety [Wit93].

Definition 1.3 (Mori vectors of a toric variety)

Let (W) = {vy,..., v} be the 1 dimensional cones of a toric
variety. Let v; = (v;, 1) and vy = 0. Then the Mori vectors éga) are

defined by
Zé a),

Example 1.4 (P?)

=) = {(1,0),(0,1), (-1, -1)} = ¢M = (=3;1,1,1)
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Fano, Semi-Fano, Calabi-Yau, non-Fano

c1(Pa) is the Poincare dual to —Kp,. Write

hl’l(PA)
“Kpy = Y (—6")D,

a=1

in a basis of ample divisors.

Definition 1.5 (Fano, Semi-Fano, Calabi-Yau, non-Fano)

If (—E(()a)) > 0 then P is Fano.
If (—Eéa)) > 0 then Pa is semi-Fano.
If £{”) = 0 then P, is Calabi-Yau.

If Eéa) € Z then Pa is “of general type” or non-Fano.

Lathwood Non-Fano Zeta
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Hirzebruch scrolls

o The Hirzebruch scrolls Forth) = P(Opn(m) & Op1 )are P"
fibrations over P!.

@ —K_ oy =(n+1)5+(2-m)F

e Non-Fano for m > 2

Mori vectors for ]-",53):

(M = ( -2; 1,1,0,0)
K(Q) = ( _(2 - m)7 —m, 07 17 1)

Lathwood Non-Fano Zeta
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Kreuzer-Skarke database of reflexive polytopes

The Kreuzer-Skarke database lists all reflexive polytopes in 3 and 4
dimensions [KS].

Definition 1.6

A polytope A is reflexive if

@ All facets are supported by an affine hyperplane of the form
{m e R"|(m,n) = -1}
@ A has the orgin as its unique interior point.

A is reflexive if and only if Pa is Fano.

Lathwood Non-Fano Zeta




@ 16 in two dimensions

LH v Y
ARV IO

St
i irave
@ 4,319 in three dimensions

@ 473,800,776 in four dimensions

@ 77 in five+ dimensions



Mirror symmetry Toric varieties
Number theory Sigma models and Landau-Ginzburg models
Computing zeta functions Non-Fano in the tropics

Sigma models
GLSMs have phases, among which are NLSMs and LG models.

Definition 1.8 (Non-linear Sigma Model)
Given an embedding ¢ : WS — X into a Calabi-Yau,

[(1 . o , -
Snism = i / (2(97% + iBy)0r$10:0" + = (g5 — iBjp) - ¢0r 6"
R S S S

+ S 9gP- VUL + gl Vil

1 =7 ko _
+ 4Rjjkwwwﬁ¢_) dr A dF.

Lathwood Non-Fano Zeta



Mirror symmetry Toric varieties
Number theory Sigma models and Landau-Ginzburg models
Computing zeta functions Non-Fano in the tropics

LG models

Landau-Ginzburg models can be thought of as sigma models that
are deformed by a potential W which is a function of superfields.

Definition 1.9 (Landau-Ginzburg Model)
Given ¢ : WS — X and a superpotential W: (C*)" — C,

SLG = /<aﬂ'¢ﬂ.a7'¢j+af¢ja7'¢j
+ i+ W Ve,
1 1
— L0, WOsW — 20,0, Wi, ok —

5:0 W¢_¢i> dr A dF

M\H
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BRST cohomology

A sigma model has supersymmetry generated by
Q+ = ”Lﬂjp]’ = lgT Q= E]pj = —130
Q= U'pj=—i0 Q= p =0

Given a nilpotent supercharge > = 0, construct the physical
operators in a “topologically twisted” theory

Hy(x) =ker @ /im

Lathwood Non-Fano Zeta
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A-model and B-model

The and the B-model are TQFTs that can be obtained
from topologically twisting a sigma model.
°

Qr=—i(0+0)=2d = Hp, = Hyr(X)

o B-model

Qp=0 = H, = @Hﬂ X, N1TX) = HL(X)

P,q=0

Lathwood
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Invariants from correlation functions

The correlation functions in the and the B-model are
topological invariants of the Calabi-Yau.

° Gromov-Witten invariants

(O01...04) = / e~ @WmB) Bevtwp A Aeviwp,
ﬁEHQ XZ ME Xﬁ)

/ Wi A ANwg + Z N3 D,...Dy 6_(w_iB)'B.

B€Hy(X,Z)
B0

@ B-model: Period integrals

(0,0,05) = / QA (Yo, Vo, Vo, )
X

Lathwood Non-Fano Zeta
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Gromov-Witten invariants

@ GW invariants § are counts of stable maps whose image land
on a fixed curve class 5 € Ha(X,Z).
@ Defined as integrals over moduli spaces of maps

Do (Pa,B) = / 7 X 2ev*pt].

[Mo,1((Pa,X),B)]virt

Lathwood Non-Fano Zeta
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Mirror symmetry in physics

@ Mirror symmetry was first discovered by Greene and Plesser
[GP90] for quintic threefold.

@ Used to count rational curves by Candelas, de la Ossa, Green,
Parkes [CDGPO91].

@ Mirror symmetry is T-duality [SYZ96] in the large complex
structure limit.

Definition 1.10

Two Calabi-Yau manifolds X and X are a mirror pair (in physics) if

(X) = B-model(X)
(X) = B-model(X)

which can be checked by comparing correlation functions.

Lathwood Non-Fano Zeta
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Mirror symmetry for Calabi-Yau manifolds

@ It is a necessary but not sufficent condition that the Hodge
diamonds of X and X are reflections of each other.

1 1
0 0 0 0
0 R0 0 h2t
h,2’1 h2’1 1 |;> 1 hl,l hl’l
0 R0 0 B2t
0 0 0 0
1 1

@ Batyrev: mirror symmetry as polar duality A < A* [Bat].

e Can compute invariants of X in terms of invariants of X.

e Ratios of periods are generating functions for GW invariants.
o Deformation method for computing zeta functions [Dwo62].

Lathwood Non-Fano Zeta



Mirror symmetry Toric varieties
Number theory Sigma models and Landau-Ginzburg models
Computing zeta functions Non-Fano in the tropics

Mirror symmetry for Fano varieties

@ Hori and Vafa [HV] found mirror LG model to sigma models
with Fano toric variety target.

Definition 1.11
Let Py; be a toric variety. Then the mirror Hori-Vafa potential is
given by

Wy = Z pPe g

pez(l)
where m, = (m4, ..., my,) is the primitive ray generator,
™ =" oo, and @ = (@1, ..., @) are the complex structure

moduli of the mirror (s = '} (Py)).

v

Lathwood Non-Fano Zeta
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Ws and curve classes

The powers of the complex structure moduli in Wy, are determined
by effective curve classes 3,:

e If (p1,...,pk) is a collection of rays with Zle my, = 0, then

Zle Spp:[,‘mp — (’Dﬁ = (p(lil e (’Dgrv Where
B =dip1+ ...+ d.B, is the effective curve class whose
intersections with toric divisors are given by (p1, ..., pk).

Example 1.12 (Wy,,)

(0,1)

(1,0)

Ws,, =z+y+ 5

Lathwood Non-Fano Zeta
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Classical and quantum periods

Definition 1.13

The classical period of a Laurent polynomial

We (C[gp][acfl,...,xﬁl] is
1\" dlogz A - Adlo T,
TrW(SO) = () /Fo L = e Zconst

211

where const is with respect to the variables z;, . .., ;.

Definition 1.14

The regularized quantum period of X is

Gx(p) = S (8- (—Kx))!Do1(X, B¢
B

Lathwood Non-Fano Zeta
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Periods and Picard-Fuchs equations

The periods of a Calabi-Yau manifold satisfy a system of partial
differential equations £, = 0 called the Picard-Fuchs operators

0
L,eQ [Wn &,DJ

The local Picard-Fuchs operators [CKYZ99] associated to the
canonical bundle Kp, are given by the Mori vectors:

891 4 O
I (D&%—j) o I 1T (Ze&%b—j
b=1

¢9>0 =0 69« =0

where 0, = ¢,0,, (no summation).

Lathwood Non-Fano Zeta
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Picard-Fuchs equations for K]_.(z)
3

Example 1.16 (£, for .7-"3(2))

The Picard-Fuchs operators for KJ__(z) are
3

L1 =0 (91 = 302) = (,01(—291 + 92)(—291 + 6y — 1)
£2 = (*291 + 92)92 — @2(91 — 3(92)(91 — 302 — 1)(91 — 302 — 2)

They have the solutions (obtained by recursion)

F(in - TL2)
F — —1 n2 ny _n2
1 n1n22>0( ) F(nl)r(nl — 3ng + 1)F2(n2 + 1) P17
1 >3ns
I'(3ng — m)
Fy = —1)mtnz n ma
= 3 O G T - 2 T 7
n17§352

Lathwood Non-Fano Zeta
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Local GW invariants for non-Fano surfaces

@ A curve on a non-Fano surface can be perturbed away from
the zero locus away from the canonical bundle.

Kp A

Calabi-Yau

non-Fano

@ To obtain the correct GW invariants, we need to include
corrections to Wy account for such curves.

Lathwood Non-Fano Zeta



Obtain 91 (Px, X) = Wx + W via Tim Grafnitz's

scattering.sage [Gral.

(1, 0) = 0N

P
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WE and 191 (Pz], X)

Example 1.17 (Corrected superpotentials for Hirzebruch surfaces)

x+y++@;>

I+y++901¢2)
zy

=
(
e (x+ y+ 24 22 <1+ i;))
(
-

= jo

t-

e g <1+901>

14+ 44
7y

v

=t- x+y++cp1902y(1+90> S0‘1“02‘1/(

X
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GW invariants for .7-"352)

H ni, no Ho 1 2 3 4 5 6 7 8 H
0 1 1 0 0 0 0 0 0 0
1 0 0 2 —4 —6 -8 —10 -12 —14
2 0 0 0 O 5 35 13 385 910
3 00 0 0O O 0 —32 —400 —2592
2)

Same as for ]:1( with ny — nq + ng! (}“g‘) o ]-“(")

m mod n)
Lathwood Non-Fano Zeta
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Mirror symmetry for non-Fano varieties

Definition 1.18

A function W€ Clp1, ..., o[z, ..., 2,  [z1, - .., 2] is called

rn

mirror dual to (X, D) if the classical period

Tw(p) = Zconst(Wk) € Clp, - .-, @1

k>0

is equal to the regularized quantum period Gx(y) of X.

\

Theorem 1.19 ([ )

For every point P inside a chamber in the scattering diagram,
t=191(X, D) p is a mirror potential for (X, D), in the sense of
Definition 1.18,

Wtfllgl(X,D)p(go) = G(SO)

\

Lathwood Non-Fano Zeta
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Mirror symmetry for non-Fano varieties

Theorem 1.20 (| 1)

Let (X, D) be a smooth log Calabi-Yau pair with mirror dual
potential W. Then, under the change of variables Q; = w;(t/y)%,
with d; = B; - D, we have

91(t, 0, Y)oo = yMw(Q),

where V1 (t, ¢, Y)oo := V1(X, D) is the theta function at infinity
and Myy is the open mirror map defined by W.

Lathwood Non-Fano Zeta
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Calabi-Yau manifolds over finite fields

@ Let X, be a one parameter family of algebraic varieties
defined by a polynomial P, € Q[z1,. .., 2y11] (z; € P7).
@ We clear denominators to get a defnining equation over Z.

o Let F, be the finite field with ¢ = p* (p prime) elements and

Xo(Fy) = {z € Fg' | Py(z) = 0}

Lathwood Non-Fano Zeta
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Zeta functions

Definition 2.1

The local zeta function or the Hasse-Weil zeta function of the
manifold X, at the prime p is defined as

> Xy (F
(p(Xp, T) = exp Z w(kp)Tk
k=1

For X = {pt}, we have

[T &Wpthp) = ¢(s),

the Riemann zeta function.

¢

Lathwood Non-Fano Zeta



Calabi-Yau manifolds over finite fields

Hasse-Weil zeta functions

p-adic cohomology

Type |IB supergravity and the attractor mechanism

Mirror symmetry
Number theory
Computing zeta functions

Weil conjectures

The Weil conjectures — proved by Dwork, Grothendieck, and
Deligne — are concerned with the form of local zeta functions.

Theorem 2.3 (Rationality of ()

RPRY ... pEY

p( Xy, T) =
P RORPRW  Rp2Y

where Rg) € Z[T] with deg R;,i) = dim H'(X,,).

€

Example 2.4

Projective space only has even dimensional cohomology, so

1
(1-701-pT)...(1—p"T)

CP (an T) =

.

Lathwood Non-Fano Zeta
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Weil conjectures

Calabi-Yau manifolds over finite fields
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For a Calabi-Yau 3-fold X, the Weil conjectures imply the local

zeta function is of the form

Cp(Xsm T) =

RP(X<P7 T)

(1-T)(1—-pDM" (1 - D) (1 - pT)

In other words, the problem of computing (,(X,, T) is reducted to
computing the polynomial R, (X, T), called the Frobenius

polynomial.

= This can be done with p-adic cohomo/ongk(Xsp, Qyp)

Lathwood
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The Frobenius map acts on coordinates as

Frob, :K" — K"
z— (2, 2b, ... 2b)

This defines a map Frob,, : X, /F, — X, /I, since
Py(2") = Py(z)? =0 mod p

Therefore
|{Fixed points of Frob, }| = X, (IF,)
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Lefschetz fixed-point theorem

The pullback of the Frobenius map gives an automorphism of
p-adic cohomology

Fr, = (Froby,). : H*(X,,Q,) — H*(X,,Q,)
and applying the Lefschetz fixed-point theorem to this map gives a
formula for the point counts

2n

Xp(Fye) = S 2(=1)Tr (Fr | H' (X, Q)

=0

The characteristic polynomial of the inverse Frobenius map acting
on the middle cohomology H"(X,,Q,) is exactly the polynomial

Rp(Xsp, Tv): [Jou've been eigenvalued.
Rp(Xp, T) = det (I — TFr, ' | H*(X,,Q,)) |}

Lathwood Non-Fano Zeta
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Computing Frobenius trace with periods

One can compute (following [CdIOK24])

Ry(X,, T) = det (I— TFr, ' |H* (X, Qp)) = det (I — TUp(yp))

where

and

0,000 0%
E(p), = ;
ooy 0%y
is a matrix of periods IT = (w®, w?, w@,, @) in the derivative basis.

Lathwood Non-Fano Zeta
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Attactor mechanism

e Four dimensional AV = 2 black holes can be constructed by
compactifying 1I1B supergravity on a Calabi-Yau threefold X,
with complex structure parameter .

@ The charges of the black hole are determined by a 3-cycle
Y= qua - paBa € H3(XL,07Z)>

which is wrapped by D3-branes.

@ The value of ¢ at the horizon of the black hole
is an attactor point ¢ = p, [Moo07].

Lathwood Non-Fano Zeta
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Attactor mechanism

If X= X_, is an attactor variety, the middle cohomology splits as
a Hodge structure. This implies Fr]j1 becomes block diagonal and
hence R,(X, T) factorizes.

ReQ2

ImQ)
I't

Iy

Factorization of R,(X,, T) independent of p = Rank 2
attractor point [CdIOEVS20].

Lathwood Non-Fano Zeta
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Computing zeta functions
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Computational methods

There exists various software to compute periods and zeta
functions

@ ore_algebra: periods of PF operators
@ CY3Zeta: zeta functions of CY3's
@ controlledreduction: modified Griffiths-Dwork reduction

Lathwood Non-Fano Zeta
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controlledreduction

@ The package controlledreduction by Edgar Costa
computes (,(X,, T) for non-degenerate fibers X, using a
special version of Griffiths-Dwork reduction.

e Used this to generate training data for transformer (see my
String Data 2024 talk).

#) controlledreduction  Fuic

P omaster - PO Gotofile  +

@) edgarcosta Merge pull request #5 from edgarcostajntiset @@
m conv

. o

W dnd

| examples

W hypersurface

B hypersurface_nd

W matrix

I solve_system

I tools

I vec_int64

Lathwood Non-Fano Zeta
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Dwork pencil

The Dwork pencil is the family of K3 surfaces with defined by

P, = i+ 15+ a:§ + 1} + pmmazay

Recall that for K3s dim H?*(X,,) = 22.

Used controlledreduction to compute R,(X,, T) for all values
of ¢ at fixed p. For example:

Ri(X,T)= (1 +117)51 — 117)3(1 + 18 T+ 121 7%)

luction controlledreduction

g P) 1trolledre
: Ru<x,y,z,w> = ZZ[]
: controlledreduction(x®4 + y* + z*4 + w4 + xkykzkw, 11, ). factor()

¥ (11%T + 1)76 * (11¥T - 1)713 * (121%T"2 + 18%T + 1)

Note that the Frobenius polynomial has degree 21 here since the
factor (1 — pT) from the polarization was omitted.

Lathwood Non-Fano Zeta
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Training Dwork pencil

Example 3.2 (p =7)

R:(Xo, T) = (1+7D)"°01 - 77)!!

Ri(X1, T) = (TT+1)51 - 7D)13(49T% + 10T+ 1)
Ri(Xo, T) = (1 —=7TT)°(TT+ 1)1°49T% — 6T+ 1)
Ri( X5, T) = (1 —7D)°(7TT+1)°49T% — 6T+ 1)

12/10/24 12:28: : .64 equations/s .72 words/s — ARITHMETIC: . .0000e-04
12/10/24 12:29: B .90 equations/s .76 words/s — ARITHMETIC: . .0000e-04
12/10/24 12:29: H .98 equations/s .93 words/s — ARITHMETIC: . .0000e-04
12/10/24 12:29: HH .74 equations/s .79 words/s - ARITHMETIC: . : 1.0000e-04
12/10/24 130: H . equations/s .98 words/s — ARITHMETIC: . .0000e-04
12/10/24 130: H . equations/s .25 words/s — ARITHMETIC: . .0000e-04
12/10/24 12:30: : .00 equations/s .41 words/s — ARITHMETIC: . .0000e-04

12/10/24 12:31: : .71 equations/s .88 words/s — ARITHMETIC: . .0000e-04
12/10/24 12:31: B .62 equations/s .74 words/s — ARITHMETIC: . .0000e-04
12/10/24 12:31: B .86 equations/s .88 words/s — ARITHMETIC: . .0000e-04
12/10/24 12:32: 104: .64 equations/s .70 words/s - ARITHMETIC: . : 1.0000e-04
12/10/24 12:32: A .95 equations/s .11 words/s - ARITHMETIC: N .0000e-04
12/10/24 132: H . equations/s .18 words/s — ARITHMETIC: . .0000e-04
12/10/24 :33: :05: . equations/s .30 words/s — ARITHMETIC: . : 1.0000e-04

Lathwood Non-Fano Zeta
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ToricZeta

@ In collaboration with Pyry Kuusela at Mainz and Michael
Stepniczka at Cornell, we are developing a Python package to
compute zeta functions for families of Calabi-Yau
hypersurfaces X, in toric varieties Pa.

@ Motivation is to automate the Mathematica code CY3Zeta
from arXiv:2405.08067 and port to Python, then include in
CYTools.

@ Our computation involves the period vector II and linear
algebra over Q.

Lathwood Non-Fano Zeta
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New Picard-Fuchs operators

@ Recent work producted new PF operators for non-Fano toric
varieties [BGL24]. Compute their periods with recursion, then
feed to ToricZeta to compute new zeta functions.

@ Code up Griffiths-Dwork reduction in Macaulay?2 to obtain a
map A — {L,}

Example 3.3 (New {L,} for ]:352))

The new Picard-Fuchs system {£91} for ]:352) is related to the old
system by 61 — 61 — 6.

Lathwood Non-Fano Zeta
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New Picard-Fuchs operators

Code
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Example 3.4 (New {£,} for BI'P? =

Lathwood

Non-Fano Zeta
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Hirzebruch scrolls

Apply ideas of last slide to ]-"354), a non-Fano toric 4-fold with
Calabi-Yau 3-fold as anticanonical divisor




Mirror symmetry Code
Number theory New examples
Computing zeta functions Future directions

Modularity and GW invariants

Ratios of weight-four special L-values are equal to an infinite series
whose summands are formed out of genus-0 Gromov—Witten
invariants [CdIOM?25].

—> Apply to invariants from ;!
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