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Mirror symmetry
Number theory

Computing zeta functions

Main Question:

How can one obtain ζp(Xφ,T ) from ϑ1(P∆,X)?

“Zeta from theta”
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Toric Varieties
Toric varieties are algebraic varieties that contain an dense
algebraic torus [Dan78, CLS11].

Two constructions:
Newton polytope ∆⇝ P∆ (vertices ⇐⇒ monomials)
Fan or spanning polytope Σ⇝ PΣ (vectices ⇐⇒ divisors)

When Σ(1) are normal to facets of ∆, we have P∆
∼= PΣ.

Example 1.1 (P2 ∼= P∆
∼= PΣ)

∆

(2,−1)

(−1, 2)

(−1,−1)

∆⋆ = ConvΣ(1)

(1, 0)

(0, 1)

(−1,−1)
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Calabi-Yau hypersurfaces in toric varieties
In string compactifications, spacetime is of the form R3,1 × X
where X is a compact Calabi-Yau manifold [CHSW85].
By the adjunction formula, the anticanonical divisor
−KP∆

=
∑r

ρ=1 Dρ has trivial canonical class
and hence −KP∆

= X is a Calabi-Yau manifold.

Example 1.2 (Anticanonical hypersurfaces in projective space)

−KPn = (n + 1)H =⇒


−KP2 is the cubic elliptic curve
−KP3 is the quartic K3
−KP4 is the quintic CY3

...

where H is the hyperplane class.
Lathwood Non-Fano Zeta
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Gauged linear sigma models
Witten introduced gauged linear sigma models (GLSMs) –
U(1)s gauge theories whose charge matrix is given by the Mori
vectors of a toric variety [Wit93].

Definition 1.3 (Mori vectors of a toric variety)
Let Σ(1) = {v1, . . . , vr} be the 1 dimensional cones of a toric
variety. Let vi = (vi, 1) and v0 = 0⃗. Then the Mori vectors ℓ(a)i are
defined by

r∑
i=0

ℓ
(a)
i vi = 0

Example 1.4 (P2)

Σ
(1)
P2 = {(1, 0), (0, 1), (−1,−1)} =⇒ ℓ(1) = (−3; 1, 1, 1)

Lathwood Non-Fano Zeta
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Fano, Semi-Fano, Calabi-Yau, non-Fano
c1(P∆) is the Poincarè dual to −KP∆

. Write

−KP∆
=

h1,1(P∆)∑
a=1

(−ℓ(a)0 )Da

in a basis of ample divisors.

Definition 1.5 (Fano, Semi-Fano, Calabi-Yau, non-Fano)

If (−ℓ(a)0 ) > 0 then P∆ is Fano.
If (−ℓ(a)0 ) ≥ 0 then P∆ is semi-Fano.
If ℓ(a)0 = 0 then P∆ is Calabi-Yau.
If ℓ(a)0 ∈ Z then P∆ is “of general type” or non-Fano.

Lathwood Non-Fano Zeta
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Hirzebruch scrolls
The Hirzebruch scrolls F (n+1)

m = P(OPn(m)⊕OP1)are Pn

fibrations over P1.

−KF(n+1)
m

= (n + 1)S + (2− m)F
Non-Fano for m > 2

Mori vectors for F (2)
m :
ℓ(1) = ( −2; 1, 1, 0, 0)

ℓ(2) = ( −(2− m); −m, 0, 1, 1)

Lathwood Non-Fano Zeta
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Kreuzer-Skarke database of reflexive polytopes

The Kreuzer-Skarke database lists all reflexive polytopes in 3 and 4
dimensions [KS].

Definition 1.6
A polytope ∆ is reflexive if

All facets are supported by an affine hyperplane of the form
{m ∈ Rn | 〈m,n〉 = −1}
∆ has the orgin as its unique interior point.

Theorem 1.7
∆ is reflexive if and only if P∆ is Fano.

Lathwood Non-Fano Zeta



Mirror symmetry
Number theory

Computing zeta functions

Toric varieties
Sigma models and Landau-Ginzburg models
Non-Fano in the tropics

Numbers of reflexive polytopes

16 in two dimensions

4,319 in three dimensions
473,800,776 in four dimensions
?? in five+ dimensions

Lathwood Non-Fano Zeta
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Sigma models
GLSMs have phases, among which are NLSMs and LG models.
Definition 1.8 (Non-linear Sigma Model)
Given an embedding ϕ : WS → X into a Calabi-Yau,

SNLSM = i
∫ (

1

2
(gjk̄ + iBjk̄)∂τϕ

j∂τ̄ ϕ̄
k̄ +

1

2
(gjk̄ − iBjk̄)∂τ̄ϕ

j∂τ ϕ̄
k̄

+
i
2

gj̄jψ
j̄
−∇τψ

j
− +

i
2

gj̄jψ
j̄
+∇τ̄ψ

j
+

+
1

4
Rj̄jkk̄ψ

j
+ψ

j̄
+ψ

k
−ψ

k̄
−

)
dτ ∧ dτ̄ .
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LG models

Landau-Ginzburg models can be thought of as sigma models that
are deformed by a potential W which is a function of superfields.

Definition 1.9 (Landau-Ginzburg Model)
Given ϕ : WS → X and a superpotential W : (C∗)n → C,

SLG =

∫ (
∂τϕ

j∂τ̄ϕ
j̄
+ ∂τ̄ϕ

j∂τϕ
j̄

+ iψ j̄
−∇τψ

j
− + iψ j̄

+∇τ̄ψ
j
+

− 1

4
∂jW∂j̄W − 1

2
∂j∂kWψj

+ψ
k
− − 1

2
∂j̄∂k̄Wψ

j̄
−ψ

k̄
+

)
dτ ∧ dτ̄

Lathwood Non-Fano Zeta
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BRST cohomology

A sigma model has supersymmetry generated by

Q+ = ψjpj = i∂†

Q+ = ψ
j̄pj̄ = −i∂

Q− = ψ
jpj = −i∂

Q− = ψ j̄pj̄ = i∂†

Given a nilpotent supercharge Q2 = 0, construct the physical
operators in a “topologically twisted” theory

H∗
Q(Σ) = ker Q/im Q

Lathwood Non-Fano Zeta
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A-model and B-model
The A-model and the B-model are TQFTs that can be obtained
from topologically twisting a sigma model.

A-model
QA = −i(∂ + ∂) ∼= d =⇒ H∗

QA
∼= H∗

dR(X)

B-model

QB ∼= ∂ =⇒ H∗
QB

∼=
n⊕

p,q=0

H0,p(X,∧qTX) ∼= H∗
∂
(X)

Lathwood Non-Fano Zeta
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Invariants from correlation functions
The correlation functions in the A-model and the B-model are
topological invariants of the Calabi-Yau.

A-model: Gromov-Witten invariants

〈O1 . . .Os〉 =
∑

β∈H2(X,Z)

∫
MΣ(X,β)

e−(ω−iB)·βev∗1ωD1 ∧ · · · ∧ ev∗sωDs

=

∫
X
ω1 ∧ · · · ∧ ωs +

∑
β∈H2(X,Z)

β ̸=0

nβ,D1...Dse−(ω−iB)·β .

B-model: Period integrals

〈O1O2O3〉 =
∫

X
Ω ∧ (∇θ1∇θ2∇θ3Ω)

Lathwood Non-Fano Zeta
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Gromov-Witten invariants
GW invariants β are counts of stable maps whose image land
on a fixed curve class β ∈ H2(X,Z).
Defined as integrals over moduli spaces of maps

D0,1(P∆, β) =

∫
[M0,1((P∆,X),β)]virt

ψβ·X−2ev⋆[pt].

Lathwood Non-Fano Zeta
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Mirror symmetry in physics
Mirror symmetry was first discovered by Greene and Plesser
[GP90] for quintic threefold.
Used to count rational curves by Candelas, de la Ossa, Green,
Parkes [CDGP91].
Mirror symmetry is T-duality [SYZ96] in the large complex
structure limit.

Definition 1.10
Two Calabi-Yau manifolds X and X̌ are a mirror pair (in physics) if

A-model(X) ∼= B-model(X̌)

A-model(X̌) ∼= B-model(X)

which can be checked by comparing correlation functions.

Lathwood Non-Fano Zeta
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Mirror symmetry for Calabi-Yau manifolds
It is a necessary but not sufficent condition that the Hodge
diamonds of X and X̌ are reflections of each other.

1
0 0

0 h1,1 0
1 h2,1 h2,1 1

0 h1,1 0
0 0

1

˜7−→

1
0 0

0 ȟ2,1 0
1 ȟ1,1 ȟ1,1 1

0 ȟ2,1 0
0 0

1

Batyrev: mirror symmetry as polar duality ∆ ↔ ∆⋆ [Bat].
Can compute invariants of X in terms of invariants of X̌.

Ratios of periods are generating functions for GW invariants.
Deformation method for computing zeta functions [Dwo62].

Lathwood Non-Fano Zeta
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Mirror symmetry for Fano varieties

Hori and Vafa [HV] found mirror LG model to sigma models
with Fano toric variety target.

Definition 1.11
Let PΣ be a toric variety. Then the mirror Hori-Vafa potential is
given by

WΣ =
∑

ρ∈Σ(1)

φβρxmρ

where mρ = (m1, . . . ,mn) is the primitive ray generator,
xmρ = xm1

1 . . . xmn
n , and φ = (φ1, . . . , φs) are the complex structure

moduli of the mirror (s = h1,1(PΣ)).

Lathwood Non-Fano Zeta
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WΣ and curve classes
The powers of the complex structure moduli in WΣ are determined
by effective curve classes βρ:

If (ρ1, . . . , ρk) is a collection of rays with
∑k

i=1 mρi = 0, then∑k
i=1 φ

ρxmρ = φβ := φd1
1 · · ·φdr

r , where
β = d1β1 + . . .+ drβr is the effective curve class whose
intersections with toric divisors are given by (ρ1, . . . , ρk).

Example 1.12 (WΣP2
)

(1, 0)

(0, 1)

(−1,−1) WΣP2
= x + y + φ

xy

Lathwood Non-Fano Zeta
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Classical and quantum periods
Definition 1.13

The classical period of a Laurent polynomial
W ∈ C[φ][x±1

1 , . . . , x±1
n ] is

πW(φ) =

(
1

2πi

)n ∫
Γ0

d log x1 ∧ · · · ∧ d log xn
1− W =

∑
k>0

const(Wk),

where const is with respect to the variables x1, . . . , xn.

Definition 1.14

The regularized quantum period of X is

GX(φ) =
∑
β

(β · (−KX))!D0,1(X, β)φβ .

Lathwood Non-Fano Zeta
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Periods and Picard-Fuchs equations
The periods of a Calabi-Yau manifold satisfy a system of partial
differential equations Laϖ = 0 called the Picard-Fuchs operators

La ∈ Q
[
φb,

∂

∂φb

]
Example 1.15
The local Picard-Fuchs operators [CKYZ99] associated to the
canonical bundle KPΣ

are given by the Mori vectors:

La =
∏

ℓ
(a)
i >0

ℓ
(a)
i −1∏
j=0

( s∑
b=1

ℓ
(b)
i θb − j

)
−φa

∏
ℓ
(a)
i <0

−ℓ
(a)
i −1∏
j=0

( s∑
b=1

ℓ
(b)
i θb − j

)

where θa = φa∂φa (no summation).

Lathwood Non-Fano Zeta
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Picard-Fuchs equations for KF (2)
3

Example 1.16 (La for F (2)
3 )

The Picard-Fuchs operators for KF(2)
3

are

L1 = θ1(θ1 − 3θ2)− φ1(−2θ1 + θ2)(−2θ1 + θ2 − 1)

L2 = (−2θ1 + θ2)θ2 − φ2(θ1 − 3θ2)(θ1 − 3θ2 − 1)(θ1 − 3θ2 − 2)

They have the solutions (obtained by recursion)

F1 =
∑

n1,n2≥0
n1≥3n2

(−1)n2
Γ(2n1 − n2)

Γ(n1)Γ(n1 − 3n2 + 1)Γ2(n2 + 1)
φn1
1 φ

n2
2

F2 =
∑

n1,n2≥0
n1≤3n2

(−1)n1+n2
Γ(3n2 − n1)

Γ(n1 + 1)Γ(n2 − 2n1 + 1)Γ2(n2 + 1)
φn1
1 φ

n2
2

Lathwood Non-Fano Zeta
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Local GW invariants for non-Fano surfaces
A curve on a non-Fano surface can be perturbed away from
the zero locus away from the canonical bundle.

P∆

non-Fano

KP∆

Calabi-Yau

· ·

h ∈ M g,0(P∆, β)

To obtain the correct GW invariants, we need to include
corrections to WΣ account for such curves.

Lathwood Non-Fano Zeta
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Scattering diagrams
Obtain ϑ1(PΣ,X) = WΣ + W′ via Tim Gräfnitz’s
scattering.sage [Gra].

v3 = (−1, 0) •

v2 = (0, 1)
•

(1, 0) = v1•

v4 = (−3, 1)
•

2F + E

2

2

3

2F + E

Lathwood Non-Fano Zeta
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WΣ and ϑ1(PΣ,X)

Example 1.17 (Corrected superpotentials for Hirzebruch surfaces)

ϑ1(F (2)
0 ) = t ·

(
x + y +

φ1

x +
φ2

y

)
ϑ1(F (2)

1 ) = t ·
(

x + y +
φ1

x +
φ1φ2

xy

)
ϑ1(F (2)

2 ) = t ·
(

x + y +
φ1

x +
φ1φ2

x

(
1 +

φ1

xy

))
ϑ1(F (2)

3 ) = t ·
(

x + y +
φ1

x +
φ1φ2y

x

(
1 +

φ1

xy

)2
)

ϑ1(F (2)
4 ) = t ·

(
x + y +

φ1

x + φ1φ2y
(
1 +

φ1

xy

)
+
φ1φ2y2

x

(
1 +

φ1

xy

)3
)

Lathwood Non-Fano Zeta
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GW invariants for F (2)
3

x−1 x

y

x−3y−1
2x−2

x−1y

n1,n2 0 1 2 3 4 5 6 7 8
0 1 1 0 0 0 0 0 0 0
1 0 0 −2 −4 −6 −8 −10 −12 −14

2 0 0 0 0 5 35 135 385 910
3 0 0 0 0 0 0 −32 −400 −2592

Same as for F (2)
1 with n1 7→ n1 + n2! (F (n)

m ∼= F (n)
m mod n)

Lathwood Non-Fano Zeta
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Mirror symmetry for non-Fano varieties
Definition 1.18

A function W ∈ C[φ1, . . . , φr][x−1
1 , . . . , x−1

n ][[x1, . . . , xn]] is called
mirror dual to (X,D) if the classical period

πW(φ) =
∑
k>0

const(Wk) ∈ C[φ1, . . . , φr]

is equal to the regularized quantum period GX(φ) of X.

Theorem 1.19 ([BGL24])
For every point P inside a chamber in the scattering diagram,
t−1ϑ1(X,D)P is a mirror potential for (X,D), in the sense of
Definition 1.18,

πt−1ϑ1(X,D)P(φ) = G(φ).

Lathwood Non-Fano Zeta
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Mirror symmetry for non-Fano varieties

Theorem 1.20 ([BGL24])
Let (X,D) be a smooth log Calabi-Yau pair with mirror dual
potential W. Then, under the change of variables Qi = φi(t/y)di ,
with di = βi · D, we have

ϑ1(t, φ, y)∞ = yMW(Q),

where ϑ1(t, φ, y)∞ := ϑ1(X,D)∞ is the theta function at infinity
and MW is the open mirror map defined by W.

Lathwood Non-Fano Zeta
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Calabi-Yau manifolds over finite fields

Let Xφ be a one parameter family of algebraic varieties
defined by a polynomial Pφ ∈ Q[x1, . . . , xn+1] (xi ∈ Pn).
We clear denominators to get a defnining equation over Z.
Let Fq be the finite field with q = pk (p prime) elements and

Xφ(Fq) = |{x ∈ Fn+1
q |Pφ(x) = 0}|.

Lathwood Non-Fano Zeta
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Zeta functions
Definition 2.1
The local zeta function or the Hasse-Weil zeta function of the
manifold Xφ at the prime p is defined as

ζp(Xφ,T) = exp
( ∞∑

k=1

Xφ(Fpk)

k Tk

)

Example 2.2
For X = {pt}, we have∏

p
ζp({pt}, p−s) = ζ(s),

the Riemann zeta function.
Lathwood Non-Fano Zeta
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Weil conjectures
The Weil conjectures – proved by Dwork, Grothendieck, and
Deligne – are concerned with the form of local zeta functions.

Theorem 2.3 (Rationality of ζp)

ζp(Xφ,T) =
R(1)

p R(3)
p . . .R(2d−1)

p

R(0)
p R(2)

p R(4)
p . . .R(2d)

p

where R(i)
p ∈ Z[T] with deg R(i)

p = dim Hi(Xφ).

Example 2.4
Projective space only has even dimensional cohomology, so

ζp(Pn,T) =
1

(1− T)(1− pT) . . . (1− pnT)

Lathwood Non-Fano Zeta
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Weil conjectures

For a Calabi-Yau 3-fold Xφ, the Weil conjectures imply the local
zeta function is of the form

ζp(Xφ,T) =
Rp(Xφ,T)

(1− T)(1− pT)h11(1− p2T)h11(1− p3T)

In other words, the problem of computing ζp(Xφ,T) is reducted to
computing the polynomial Rp(Xφ,T), called the Frobenius
polynomial.

=⇒ This can be done with p-adic cohomology Hk(Xφ,Qp)

Lathwood Non-Fano Zeta
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Frobenius map

The Frobenius map acts on coordinates as

Frobp :Kn −→ Kn

x 7−→ (xp
1, x

p
2, . . . , xp

n)

This defines a map Frobp : Xφ/Fp → Xφ/Fp since

Pφ(xp) = Pφ(x)p = 0 mod p

Therefore
|{Fixed points of Frobp}| = Xφ(Fp)

Lathwood Non-Fano Zeta



Mirror symmetry
Number theory

Computing zeta functions

Calabi-Yau manifolds over finite fields
Hasse-Weil zeta functions
p-adic cohomology
Type IIB supergravity and the attractor mechanism

Lefschetz fixed-point theorem
The pullback of the Frobenius map gives an automorphism of

p-adic cohomology

Frp = (Frobp)∗ : Hk(Xφ,Qp) −→ Hk(Xφ,Qp)

and applying the Lefschetz fixed-point theorem to this map gives a
formula for the point counts

Xφ(Fpk) =

2n∑
ℓ=0

(−1)ℓTr
(

Frpk
∣∣Hℓ(Xφ,Qp)

)
The characteristic polynomial of the inverse Frobenius map acting
on the middle cohomology Hn(Xφ,Qp) is exactly the polynomial
Rp(Xφ,T):

Rp(Xφ,T) = det
(
I − TFr−1

p
∣∣Hn(Xφ,Qp)

)
Lathwood Non-Fano Zeta
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Computing Frobenius trace with periods

One can compute (following [CdlOK24])

Rp(Xφ,T) = det
(
I − T Fr−1

p
∣∣H3(Xφ,Qp)

)
= det (I − TUp(φ))

where

Up(φ) = Ẽ(φp)−1φ−pϵUp(0)φ
ϵẼ(φ).

and

E(φ) b
a =

(
θaϖb θaϖb

θaϖb θaϖb

)

is a matrix of periods Π = (ϖ0, ϖa, ϖa, ϖ0) in the derivative basis.

Lathwood Non-Fano Zeta
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Attactor mechanism

Four dimensional N = 2 black holes can be constructed by
compactifying IIB supergravity on a Calabi-Yau threefold Xφ

with complex structure parameter φ.
The charges of the black hole are determined by a 3-cycle

γ = qaAa − paBa ∈ H3(Xφ,Z),

which is wrapped by D3-branes.
The value of φ at the horizon of the black hole
is an attactor point φ = φ∗ [Moo07].

Lathwood Non-Fano Zeta



Mirror symmetry
Number theory

Computing zeta functions

Calabi-Yau manifolds over finite fields
Hasse-Weil zeta functions
p-adic cohomology
Type IIB supergravity and the attractor mechanism

Attactor mechanism
If X = Xφ∗ is an attactor variety, the middle cohomology splits as
a Hodge structure. This implies Fr−1

p becomes block diagonal and
hence Rp(X,T) factorizes.

ImΩ

ReΩ

Γ2

Γ1

Factorization of Rp(Xφ,T) independent of p =⇒ Rank 2
attractor point [CdlOEvS20].
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Computational methods

There exists various software to compute periods and zeta
functions

ore_algebra: periods of PF operators
CY3Zeta: zeta functions of CY3’s
controlledreduction: modified Griffiths-Dwork reduction
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controlledreduction
The package controlledreduction by Edgar Costa
computes ζp(Xφ,T) for non-degenerate fibers Xφ using a
special version of Griffiths-Dwork reduction.
Used this to generate training data for transformer (see my
String Data 2024 talk).
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Dwork pencil
Example 3.1
The Dwork pencil is the family of K3 surfaces with defined by

Pφ = x41 + x42 + x43 + x44 + φx1x2x3x4

Recall that for K3s dim H2(Xφ) = 22.

Used controlledreduction to compute Rp(Xφ,T) for all values
of φ at fixed p. For example:

R11(X1,T) = (1 + 11T)6(1− 11T)13(1 + 18T + 121T2)

Note that the Frobenius polynomial has degree 21 here since the
factor (1− pT) from the polarization was omitted.

Lathwood Non-Fano Zeta



Mirror symmetry
Number theory

Computing zeta functions

Code
New examples
Future directions

Training Dwork pencil
Example 3.2 (p = 7)

R7(X0,T) = (1 + 7T)10(1− 7T)11

R7(X1,T) = (7T + 1)6(1− 7T)13(49T2 + 10T + 1)

R7(X2,T) = (1− 7T)9(7T + 1)10(49T2 − 6T + 1)

R7(X5,T) = (1− 7T)9(7T + 1)10(49T2 − 6T + 1)
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ToricZeta
In collaboration with Pyry Kuusela at Mainz and Michael
Stepniczka at Cornell, we are developing a Python package to
compute zeta functions for families of Calabi-Yau
hypersurfaces Xφ in toric varieties P∆.
Motivation is to automate the Mathematica code CY3Zeta
from arXiv:2405.08067 and port to Python, then include in
CYTools.
Our computation involves the period vector Π and linear
algebra over Qp.
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New Picard-Fuchs operators

Recent work producted new PF operators for non-Fano toric
varieties [BGL24]. Compute their periods with recursion, then
feed to ToricZeta to compute new zeta functions.
Code up Griffiths-Dwork reduction in Macaulay2 to obtain a
map ∆ 7→ {La}

Example 3.3 (New {La} for F (2)
3 )

The new Picard-Fuchs system {Lϑ1a } for F (2)
3 is related to the old

system by θ1 7→ θ1 − θ2.
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New Picard-Fuchs operators

Example 3.4 (New {La} for Bl7P2 = dP2)
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Hirzebruch scrolls

Apply ideas of last slide to F (4)
3 , a non-Fano toric 4-fold with

Calabi-Yau 3-fold as anticanonical divisor
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Modularity and GW invariants

Ratios of weight-four special L-values are equal to an infinite series
whose summands are formed out of genus-0 Gromov–Witten
invariants [CdlOM25].

=⇒ Apply to invariants from ϑ1!

Lathwood Non-Fano Zeta



Mirror symmetry
Number theory

Computing zeta functions

Code
New examples
Future directions

Thank you!
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