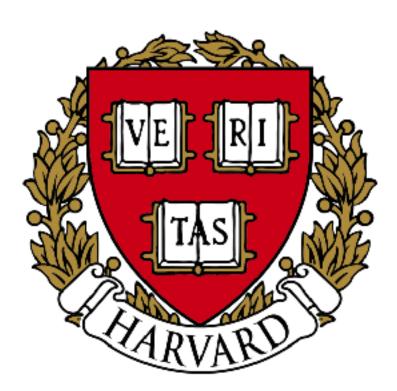
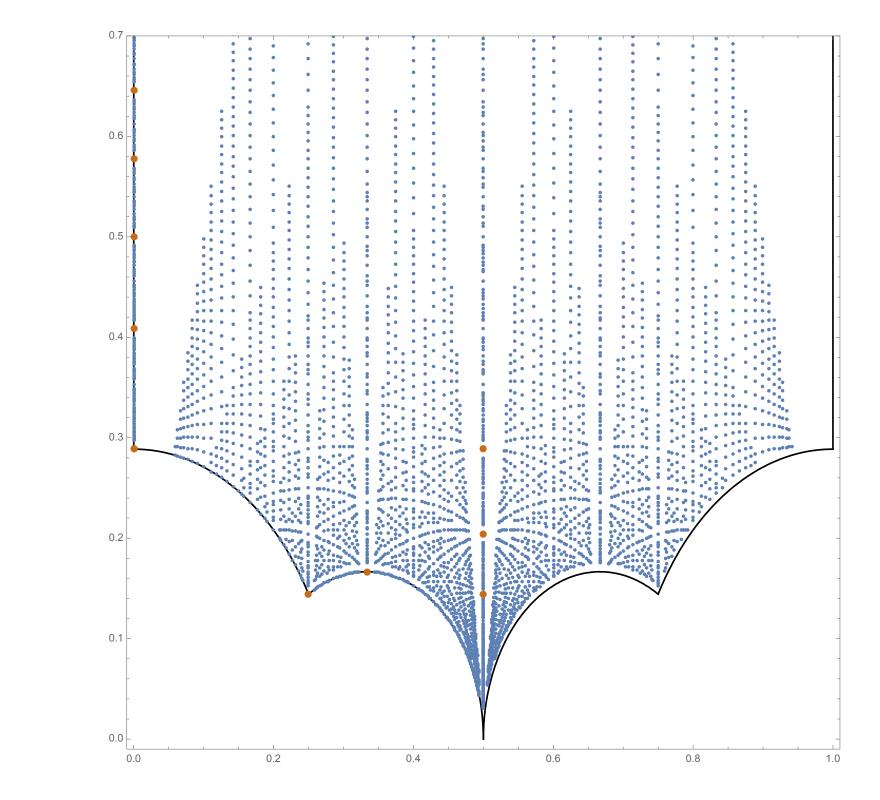
Charting F-theory landscapes



Damian van de Heisteeg

Based on: 2404.03456 2404.12422 with Thomas Grimm



MITP YOUNGST@RS - Physics and Number Theory

Effective Field Theories from String Theory

EFT from reducing string theory on a Calabi – Yau manifold Y_D :

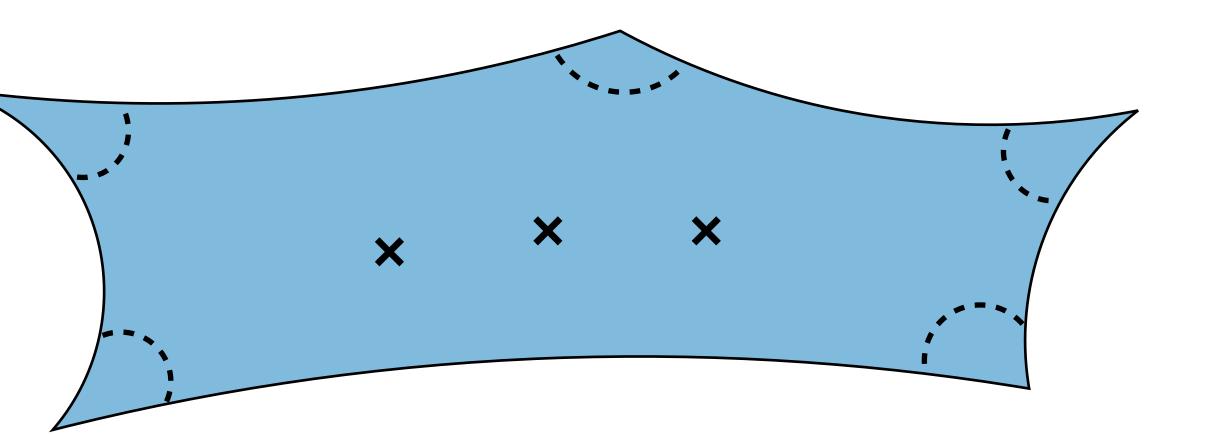
$$S_{\rm 4d} = \int d^4x \sqrt{g} \left(R - K(\phi) \partial_\mu \phi \, \partial^\nu \phi - \frac{1}{g^2(\phi)} F_{\mu\nu} F^{\mu\nu} - \theta(\phi) F_{\mu\nu} \tilde{F}^{\mu\nu} - V(\phi) \right)$$

Physical couplings $K(\phi), g(\phi), \theta(\phi), V(\phi)$

vary with Y_D -deformations ϕ

Much recent progress:

- Breakdown of EFT near boundaries
- special points/loci in the interior



F-theory on Calabi-Yau fourfolds

Kähler potential and flux superpotential:

$$e^{-K_{cs}} = \int_{Y_4} \bar{\Omega}(\bar{z}) \wedge \Omega(z) = \bar{\Pi}^T(\bar{z}) \Sigma \Pi(z)$$
$$W = \int_{Y_4} G_4 \wedge \Omega(z) = \mathbf{G}_4^T \Sigma \Pi(z)$$

Dependence on complex structure moduli encoded in period vector:

Monodromies

Circling a boundary point induces a monodromy:

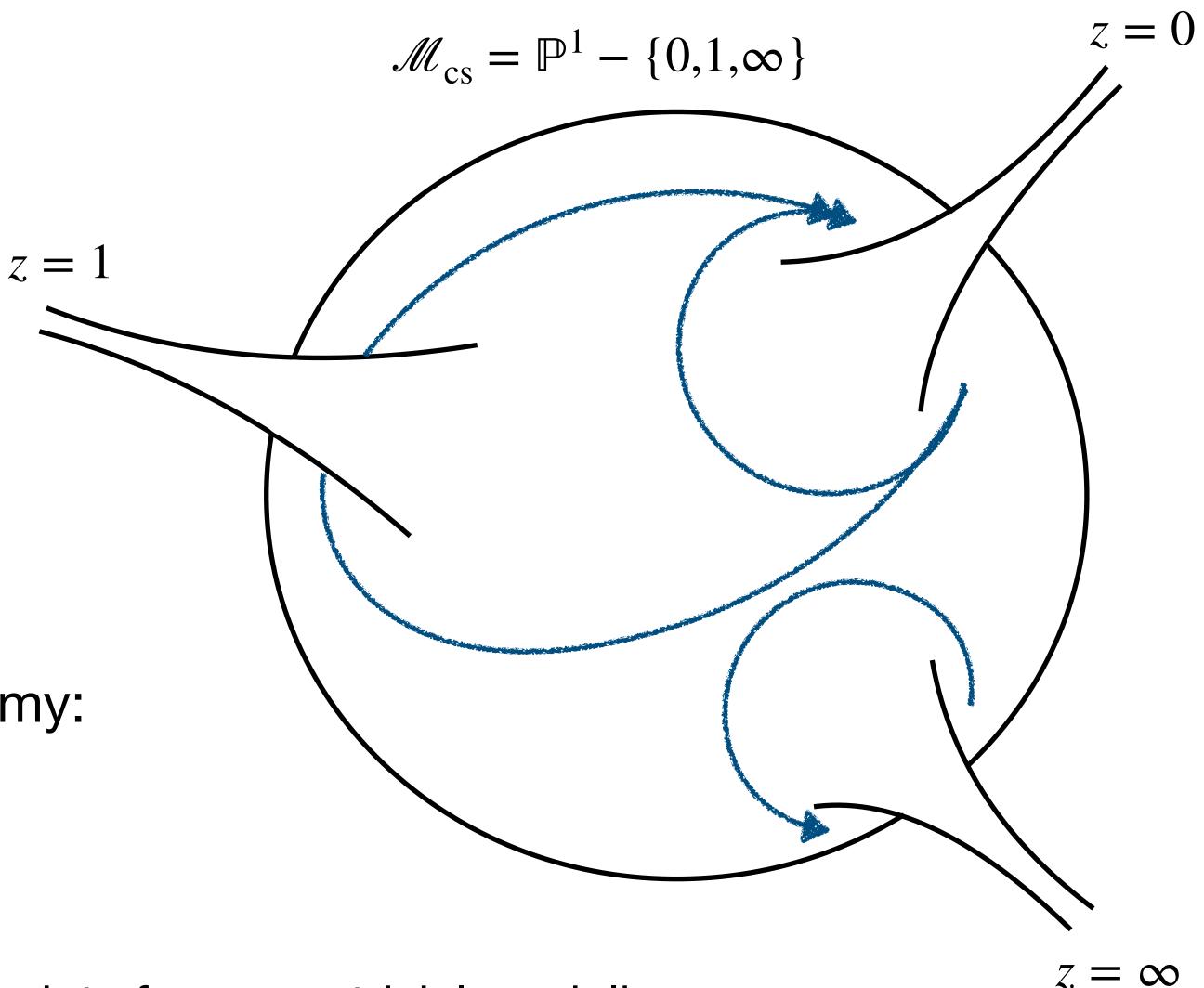
 $\mathbf{\Pi}(z) \mapsto \mathbf{\Pi}(e^{2\pi i}z) = M \cdot \mathbf{\Pi}(z)$

 $(M \in SL(2,\mathbb{Z}), Sp(2m,\mathbb{Z}), SO(m,n;\mathbb{Z}))$

Equivalent loops have same monodromy:

$$M_0 M_1 = (M_{\infty})^{-1}$$

Side-remark: need at least three singular points for a non-trivial moduli space (monodromy group must be infinite order and completely reducible [Griffiths, '70])



Large complex structure periods

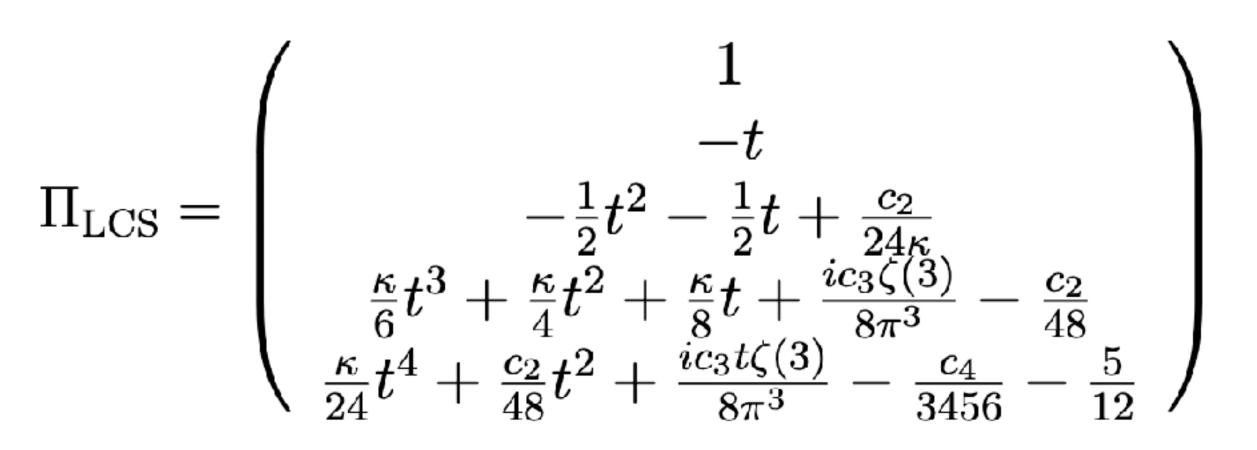
Periods in LCS regime:

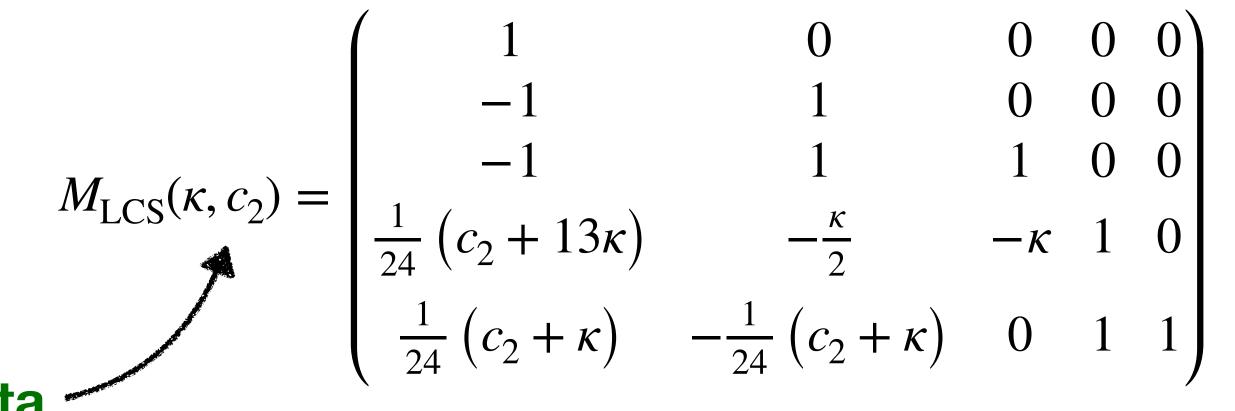
[Gerhardus, Jockers '16; Cota, Klemm, Schimannek '18; Marchesano, Prieto, Wiesner '21]

(covering coordinate: $z = e^{2\pi i t}$)

Monodromy under $t \mapsto t + 1$: $M_{LCS}(\kappa)$

Encode **topological data** for mirror Calabi-Yau





Plan for the talk

1. Landscape of moduli spaces:

Calabi-Yau fourfolds with $\mathcal{M}_{cs} = \mathbb{P}^1 \setminus \{0, 1, \infty\}$

2. Moduli space as a landscape:

Flux vacua with vanishing superpotentials in F-theory

1. Landscape of moduli spaces Calabi-Yau fourfolds with $\mathcal{M}_{cs} = \mathbb{P}^1 \setminus \{0, 1, \infty\}$

Finiteness of monodromy groups

• (Non-effective) Finiteness theorem by [Deligne '81]

For a given moduli space with fixed singularity structure, there are only finitely many monodromy groups possible.

- Effective method for enumerating Calabi-Yau threefolds with $\mathcal{M}_{cs} = \mathbb{P}^1 \setminus \{0, 1, \infty\}$ [Doran, Morgan '05] - Mirror symmetry constrains LCS and conifold monodromy 14 Calabi-Yau threefolds - Quasi-unipotence of monodromy around infinity

apply to Calabi-Yau fourfold moduli spaces [DvdH '24]

Quasi-unipotence of monodromies

Driving principle behind classification: quasi-unipotence

$$(M^l - \mathbb{I})^d \neq 0, \qquad (M^l - \mathbb{I})^{d+1}$$

- Nilpotence degree $d = 0, 1, \dots, 4$
- Finite order l = 1, 2, 3, 4, 5, 6, 8, 10, 12(possible orders for a $GL(5,\mathbb{Q})$ matrix)

- geometric proof by [Landman, '73] = 0,group-theoretic proof by [Schmid, '73]

(complex dimension of Calabi-Yau manifold)

Warm-up: T2 monodromies

• Monodromies in $SL(2,\mathbb{Z})$:

$$M_0 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \qquad \qquad M_1 = \begin{pmatrix} 1 & -\kappa \\ 0 & 1 \end{pmatrix}$$

An example, d = 0, l = 3: $M_{\infty}^3 - 1 = (\kappa - 1)^3$

$$M_{\infty} = (M_0 M_1)^{-1} = \begin{pmatrix} 1 - \kappa & \kappa \\ -1 & 1 \end{pmatrix}$$

• Check quasi-unipotence condition for degree d = 0,1, finite order l = 1,2,3,4,6,

$$\begin{array}{ccc} -3 \end{array} \left(\begin{array}{ccc} 2\kappa - \kappa^2 & \kappa^2 - \kappa \\ 1 - \kappa & \kappa \end{array} \right) = 0 \,,$$

Warm-up: T2 monodromies

• Monodromies in $SL(2,\mathbb{Z})$:

$$M_0 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \qquad \qquad M_1 = \begin{pmatrix} 1 & -\kappa \\ 0 & 1 \end{pmatrix}$$

$$\begin{split} M_{\infty}^{3} - 1 &= (\kappa - 3) \begin{pmatrix} 2\kappa - \kappa^{2} & \kappa^{2} - \kappa \\ 1 - \kappa & \kappa \end{pmatrix} = 0, \\ M_{\infty}^{4} - 1 &= (\kappa - 2) \begin{pmatrix} \kappa^{3} - 5\kappa^{2} + 5\kappa & -\kappa^{3} + 4\kappa^{2} - 2\kappa \\ \kappa^{2} - 4\kappa + 2 & 3\kappa - \kappa^{2} \end{pmatrix} = 0, \\ M_{\infty}^{6} - 1 &= (\kappa - 1)(\kappa - 3) \begin{pmatrix} \kappa^{4} - 7\kappa^{3} + 14\kappa^{2} - 7\kappa & -\kappa^{4} + 6\kappa^{3} - 9\kappa^{2} + 2\kappa \\ \kappa^{3} - 6\kappa^{2} + 9\kappa - 2 & -\kappa^{3} + 5\kappa^{2} - 5\kappa \end{pmatrix} = 0, \\ M_{\infty}^{2} - 1)^{2} &= (\kappa - 4) \begin{pmatrix} \kappa^{3} - 3\kappa^{2} + \kappa & 2\kappa^{2} - \kappa^{3} \\ \kappa^{2} - 2\kappa & \kappa - \kappa^{2} \end{pmatrix} = 0, \end{split}$$

 \implies solutions $\kappa = 3, 2, 1, 4$

$$M_{\infty} = (M_0 M_1)^{-1} = \begin{pmatrix} 1 - \kappa & \kappa \\ -1 & 1 \end{pmatrix}$$

• Check quasi-unipotence condition for degree d = 0,1, finite order l = 1,2,3,4,6,

Warm-up: T2 periods

Periods are solutions to the hypergeometric differential operator

$$L = \theta^2 - \mu z(\theta + a_1)(\theta + a_2)$$

 $\implies L \text{ fixed by eigenvalues of } M_{\infty}: e^{2\pi i a_1}, e^{2\pi i a_2}$

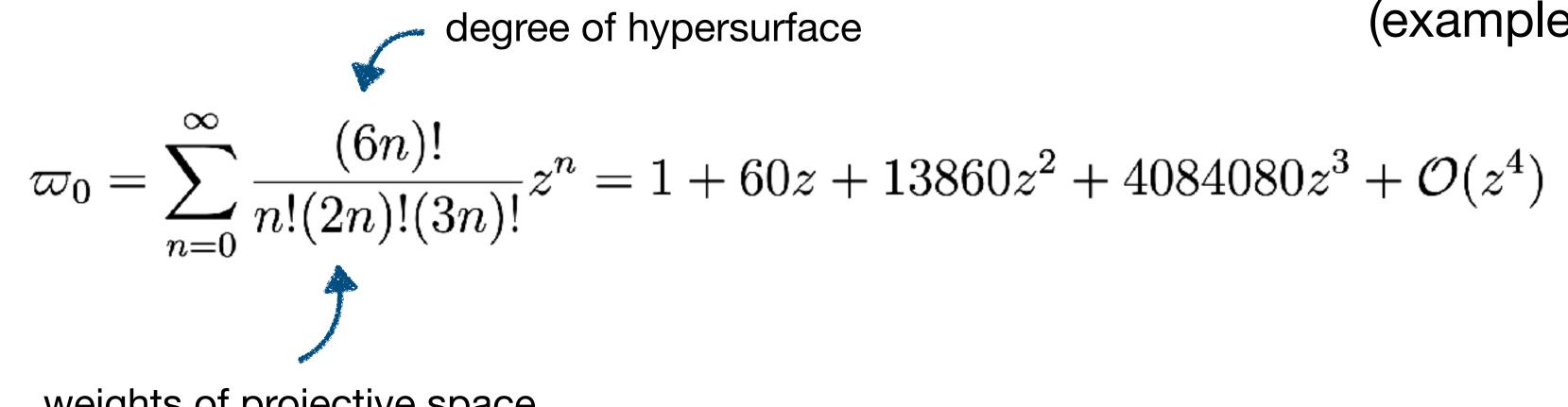
Periods are given by hypergeometric functions:

$$\varpi_0 = {}_2F_1(a_1, a_2; 1; \mu z) , \qquad \varpi_1 = \frac{\imath}{\sqrt{\kappa}} \cdot {}_2F_1(a_1, a_2; 1; 1 - \mu z)$$

$$\theta = z \frac{d}{dz}$$
$$2\pi i a_1 \quad 2\pi i$$

Reverse-engineer geometries [Hosono, Klemm, Theisen, Yau '93]

Expand fundamental period in large complex structure regime:



weights of projective space

- (example: $\kappa = 1$)

complete intersection Calabi-Yau $X_6(1,2,3)$: sextic in $\mathbb{P}^2[1,2,3]$

Warm-up: T2 landscape

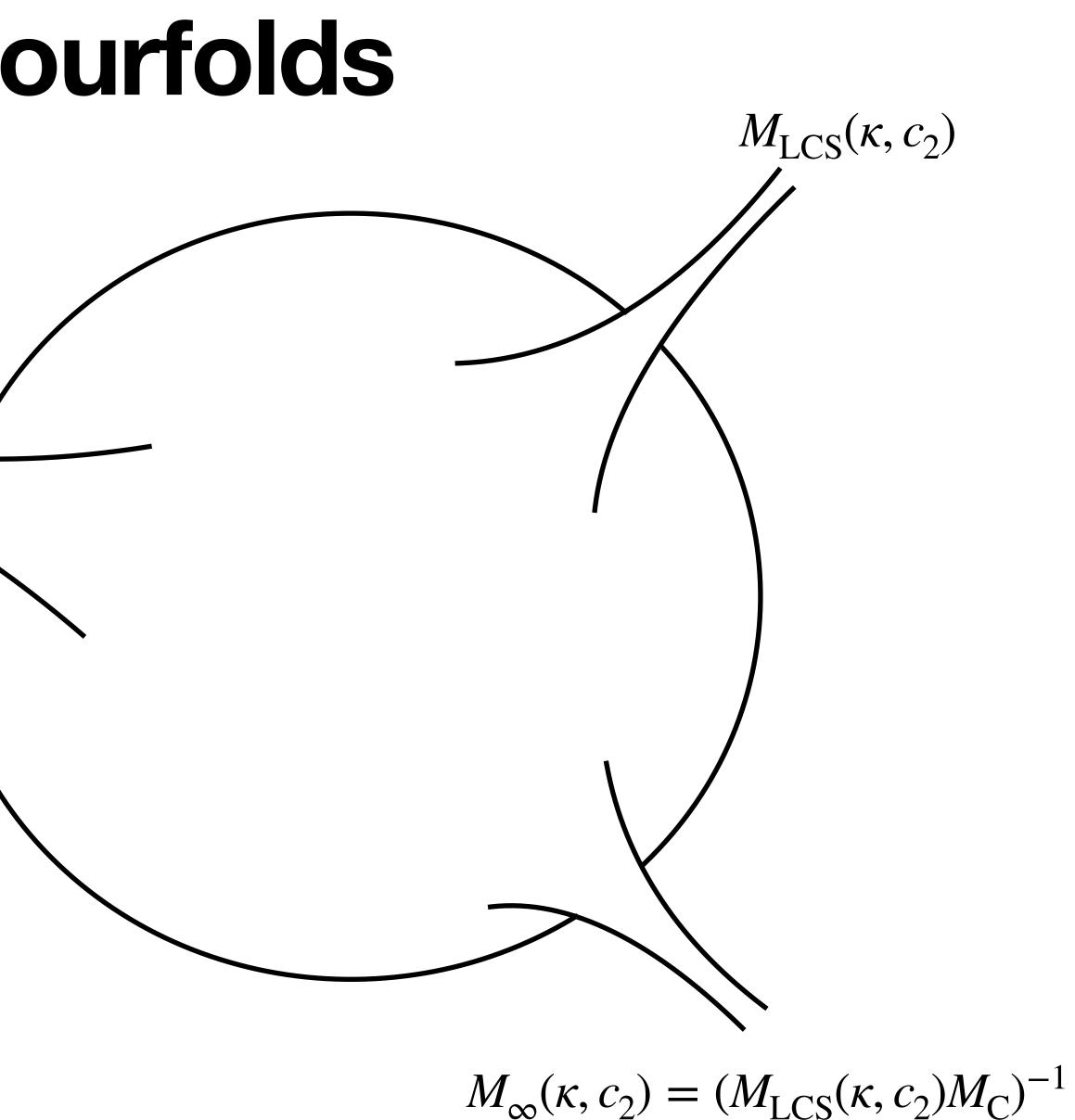
(a_1,a_2)	$\left(\frac{1}{6},\frac{5}{6}\right)$	$(rac{1}{4},rac{3}{4})$	$\left(rac{1}{3},rac{2}{3} ight)$	$(rac{1}{2},rac{1}{2})$
κ	1	2	3	4
μ	432	64	27	16
(d,l)	(0, 6)	(0,4)	(0,3)	(1, 2)
Modular group	$\Gamma_1(1)$	$\Gamma_1(2)$	$\Gamma_1(3)$	$\Gamma_1(4)$
Modular group Elliptic curve	$X_6(1, 2, 3)$	$X_4(1^2, 2)$	$X_{3}(1^{3})$	$X_{2,2}(1^4)$

Back to Calabi-Yau fourfolds

$$M_C = \begin{pmatrix} 0 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

[Grimm, Ha, Klemm, Klevers '09]

 \Rightarrow impose quasi-unipotence on $M_{\infty}(\kappa, c_2)$ and solve for topo. data



Example

Impose a finite order monodromy of order l = 6:

 $(M_{\infty}(\kappa, c_2))^6 - \mathbb{I} = 0$

 \implies polynomial set of equations for κ and c_2

Only 1 solution: $\kappa = 6$, $c_2 = 90$

 \implies data of the sextic in \mathbb{P}^5 , (without doing a geometrical computation)

Landscape of monodromy groups [DvdH, '24]

(κ, a)	(6,4)	(4, 4)	(2,3)	(10,5)	(
degree d				0	
order l	6	8	10		

(a) Finite order monodromies.

(κ, a)	(8,4)	(2,2)	(18, 6)	(16, 6)	(8,5)	(24,7)	(32, 8)
degree d	1				4		
order l	4	6		4	6		2

(b) Infinite order monodromies.

$$(2,4)$$
 $(4,3)$ $(12,5)$
12

$$a = (\kappa + c_2)/24$$

Computing the periods

Periods solve the hypergeometric equation:

$$L = \theta^5 - \mu z(\theta + a_1)(\theta + a_2)(\theta + a_3)(\theta + a_4)(\theta + a_5) \qquad \theta = z \frac{d}{dz}$$

Fundamental period solution:

$$\Pi^{0}(z) = {}_{5}F_{4}(a_{1}, \ldots, a_{5}; 1^{4}; \mu z)$$

- Can determine the CICY from series expansion of this period
- Other 4 periods have similar expressions in hypergeometric functions

Calabi-Yau fourfold landscape

a_1,a_2,a_3,a_4,a_5	Type	Mirror	μ	(κ,a)	c_2	<i>C</i> 3	c_4
$\frac{1}{5}, \frac{2}{5}, \frac{1}{2}, \frac{3}{5}, \frac{4}{5}$	F	$X_{2,5}(1^7)$	$2^{2}5^{5}$	(10, 5)	110	-420	2190
$\frac{1}{10}, \frac{3}{10}, \frac{1}{2}, \frac{7}{10}, \frac{9}{10}$	F	$X_{10}(1^5,5)$	$2^{10}5^{5}$	(2,3)	70	-580	5910
$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$	LCS	$X_{2^5}(1^{10})$	2^{10}	(32, 8)	160	-320	960
$\frac{1}{3}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{2}{3}$	CY3	$X_{2,3,3}(1^8)$	$2^{2}3^{6}$	(18, 6)	126	-324	1206
$\frac{1}{3}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{2}{3}$	С	$X_{2,2,2,3}(1^9)$	$2^{6}3^{3}$	(24, 7)	144	-336	1152
$\frac{1}{4}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{3}{4}$	C	$X_{2,2,4}(1^8)$	2^{12}	(16, 6)	128	-384	1632
$rac{1}{8},rac{3}{8},rac{1}{2},rac{5}{8},rac{7}{8}$	F	$X_{2,8}(1^6,4)^*$	2^{18}	(4, 4)	92	-600	4908
$\frac{1}{6}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{5}{6}$	F	$X_6(1^6)$	6 ⁶	(6, 4)	90	-420	2610
$\frac{1}{12}, \frac{5}{12}, \frac{1}{2}, \frac{7}{12}, \frac{11}{12}$	F	$X_{2,2,12}(1^6, 4, 6)^{**}$	$2^{14}3^{6}$	(2, 4)	94	-972	11814
$\frac{1}{4}, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, \frac{3}{4}$	CY3	$X_{4,4}(1^6,2)$	2^{14}	(8, 4)	88	-304	1464
$\frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}$	F	$X_{3,4}(1^7)$	$2^{8}3^{3}$	(12, 5)	108	-336	1476
$rac{1}{6},rac{1}{4},rac{1}{2},rac{3}{4},rac{5}{6}$	F	$X_{4,6}(1^5, 2, 3)^*$	$2^{12}3^{3}$	(4,3)	68	-320	2028
$rac{1}{6}, rac{1}{6}, rac{1}{2}, rac{5}{6}, rac{5}{6}$	CY3	$X_{6,6}(1^4,2,3^2)^*$	$2^{10}3^{3}$	(2, 2)	46	-244	1734
$rac{1}{6},rac{1}{2},rac{1}{2},rac{1}{2},rac{5}{6}$	С	$X_{2,2,6}(1^7,3)^*$	$2^{10}3^{6}$	(8, 5)	112	-528	3264

9 CY4 already known

[Cabo-Bizet, Klemm, Lopes '14]

• 5 CY4 are new

[DvdH '24]

Phases at infinity

- LCS point: another maximally unipotent point, d = 4

- Landau-Ginzburg point: finite order monodromy, d = 0

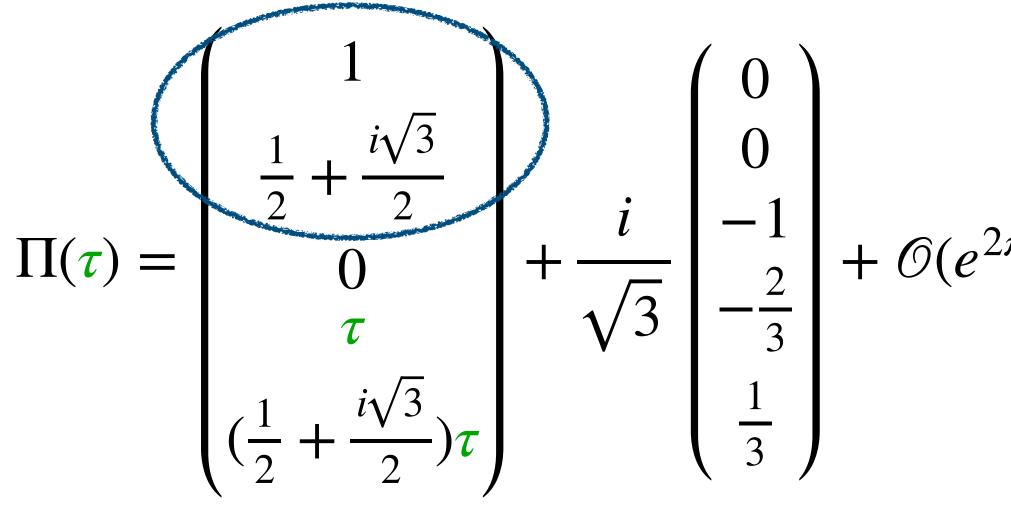
 \implies for each phase an example worked out in [DvdH, '24]

• **CY3-point:** weak string-coupling limit of a **rigid** Calabi-Yau orientifold, d = 1

• Conifold-point: finite distance point, but infinite order monodromy, d = 2

CY3-point of $X_{6.6}(1^4, 2, 3^2)$

Period expansion around the CY3-point:



- Rigid Calabi-Yau threefold with perio
- Complex structure coordinate parametrizes the string coupling

$$\tau^{2\pi i\tau}$$
) $\tau = \log[z]/2\pi i$

od vector
$$(1, \frac{1}{2} + \frac{i\sqrt{3}}{2})$$

D7-brane superpotential

Fourfold periods are known to encode open-string physics [Grimm-Ha-Klemm-Klevers '09; Alim-Hecht-Jockers-Mayr-Mertens-Soroush '09; Jockers-Mayr-Walcher '09; Clinghler-Donagi-Wijnholt '12]

Remaining period: superpotential induced by worldvolume flux of D7-branes

$$W_{\rm D7} = q_{\rm D7} \frac{\sqrt{z}}{\pi^2} {}_5F_4\left(\frac{1}{2};\frac{2}{3};\frac{4}{3};-2^{10}3^3z\right) = \frac{q_{\rm D}}{\pi^2}$$

$$=\frac{q_{\rm D7}}{\pi^2}\sqrt{z}\left(1-\frac{2187}{2}z+\frac{9298091736}{1225}z^2-\frac{423644}{2}z^2\right)$$

$\frac{\eta_{\text{D7}}}{\pi^2} \sqrt{z} \sum_{k=0}^{\infty} \frac{\Gamma\left(k+\frac{1}{2}\right)^5}{\sqrt{\pi}\Gamma(k+1)\Gamma\left(k+\frac{2}{3}\right)^2 \Gamma\left(k+\frac{4}{3}\right)^2} (-2^{10}3^3 z)^k$ $\frac{43047215}{49}z^3 + \mathcal{O}(z^4)$ $z = e^{2\pi i \tau}$

2. Moduli Space as a Landscape Flux vacua with vanishing superpotentials in F-theory

[Grimm, DvdH '24]

Special loci in Calabi-Yau moduli spaces

Rational CFTs & Complex Multiplication points •

• Moduli stabilization \implies flux vacua: $D_{z^I}W = \int_{V_i} G_4 \wedge D_{z^I}\Omega = 0$ $G_{\Lambda} \in H^4(Y_{\Lambda}, \mathbb{Z}) \cap (H^{4,0} \oplus H^{2,2} \oplus H^{0,4})$

Black hole physics \implies attractor points: $\partial_{z^{I}}|Z(Q)| = \int_{Y_{3}} Q \wedge D_{z^{I}}\Omega = 0$ $Q \in H^{3}(Y_{3}, \mathbb{Z}) \cap (H^{3,0} \oplus H^{0,3})$

Rank-two attractors: [Moore '98]

[Gukov, Vafa '02]

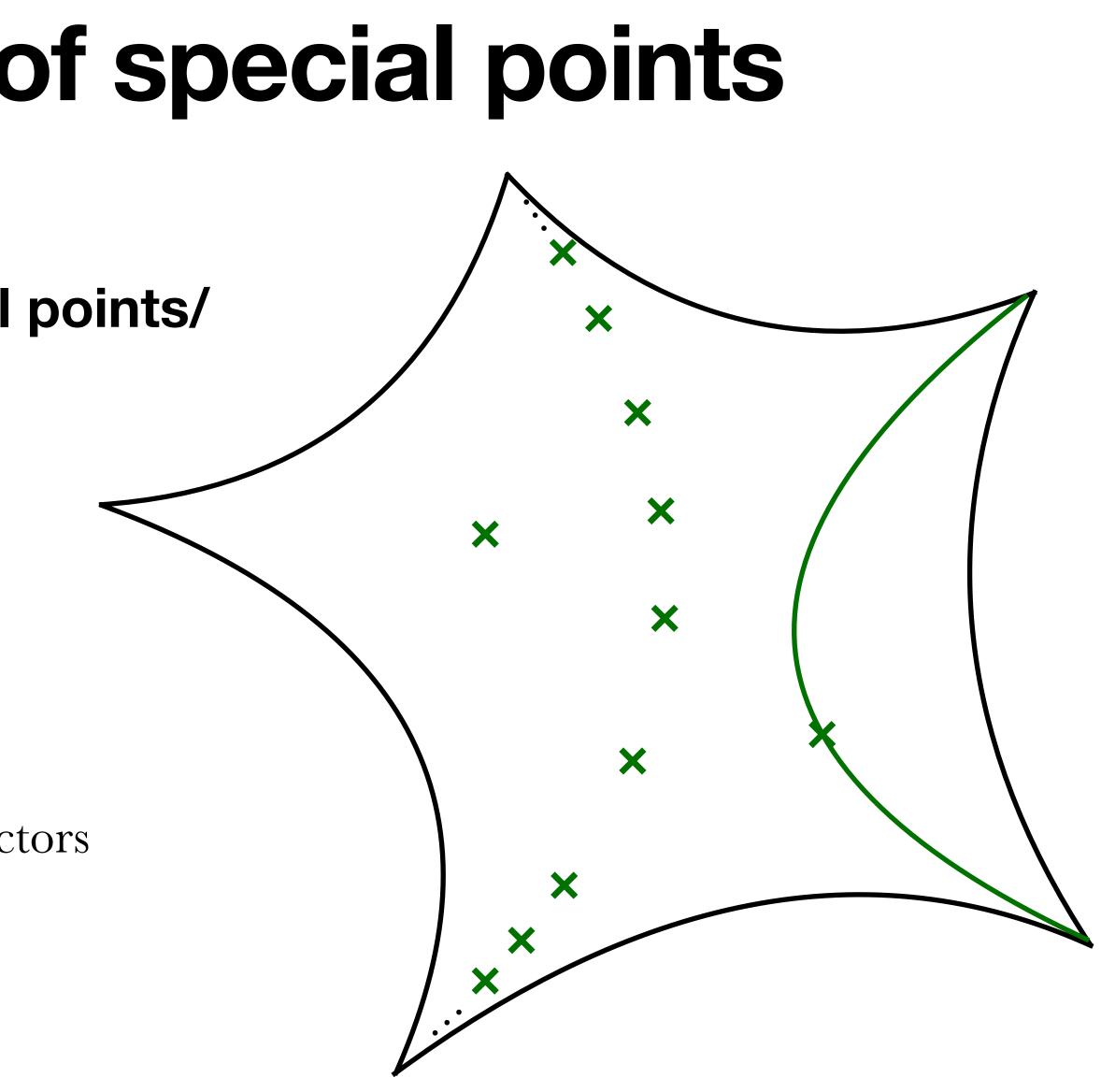
(Rough) distribution of special points

 Moduli spaces are littered with special points/ submanifolds of physical relevance

e.g. flux vacua and attractor points

"Special enough" loci are, generically,
 scarce in the moduli space

e.g. flux vacua with W = 0 and rank-two attractors



Flux potential

Scalar potential for moduli:

$$V = e^K K^{a\bar{b}} D_a W D_{\bar{b}} W = \int_{Y_4} G_4 \wedge \star G_4 - \int_{Y_4} G_4 \wedge G_4$$

- Global minima:
 - vanishing F-terms $D_a W = \partial_a W + \partial_a K W = 0$
 - self-dual fluxes $G_4 \in H^4(Y_4, \mathbb{Z}) \cap (H^{4,0} \oplus H^{2,2} \oplus H^{0,4})$
- Supersymmetric vacua
 - Vanishing superpotential $W = \partial_a W = 0$
 - $G_4 \in H^4(Y_4, \mathbb{Z}) \cap H^{2,2}$ - Hodge class

Current state of the flux landscape

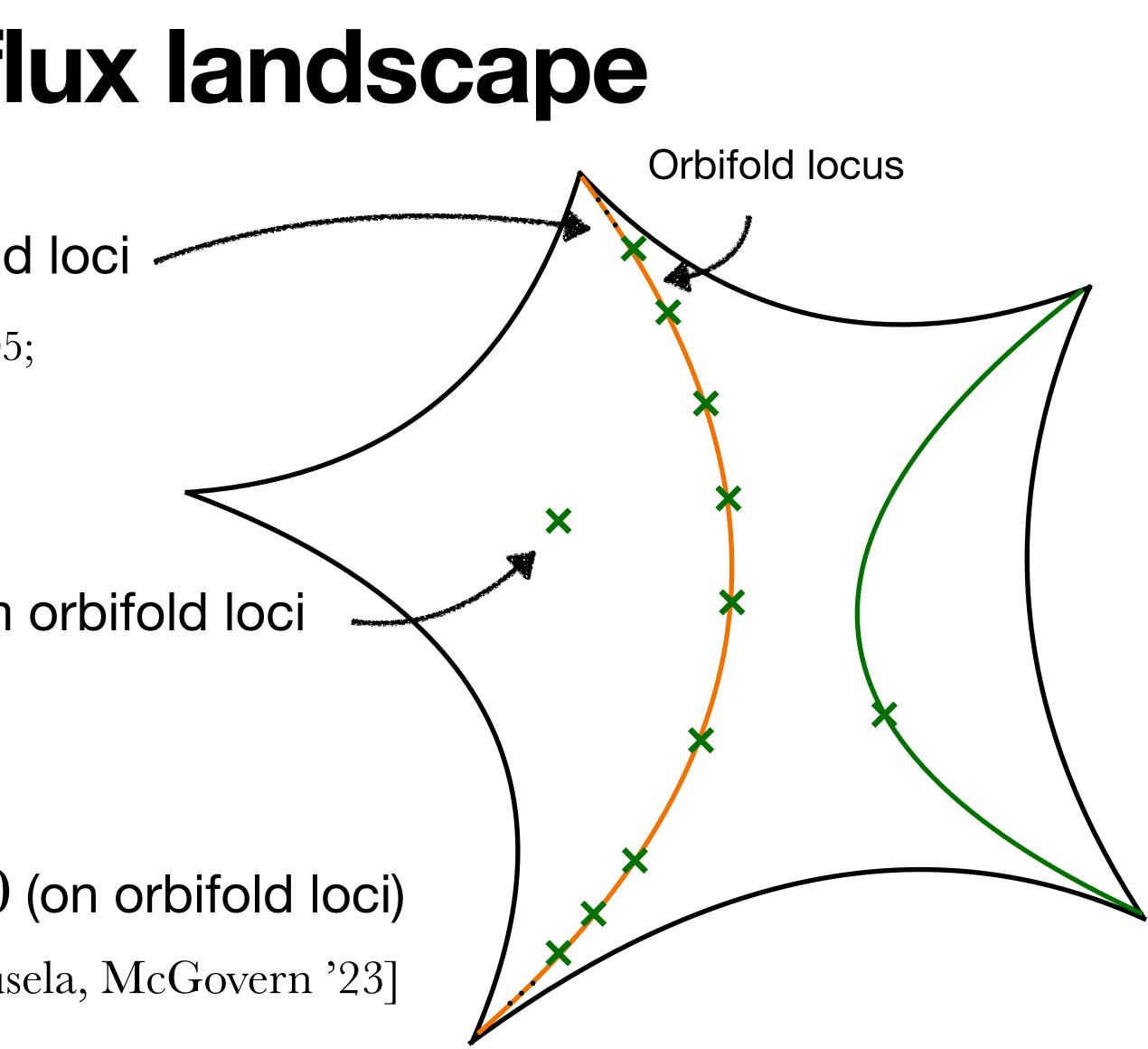
• Type IIB Flux vacua with W = 0 on orbifold loci

[DeWolfe, Giryavets, Kachru, Taylor '04; DeWolfe '05; Palti '06; ...; Rajaguru, Sengupta, Wrase '24; Becker, Brady, Graña, Morros, Sengupta '24]

• Type IIB flux vacua with W = 0 away from orbifold loci

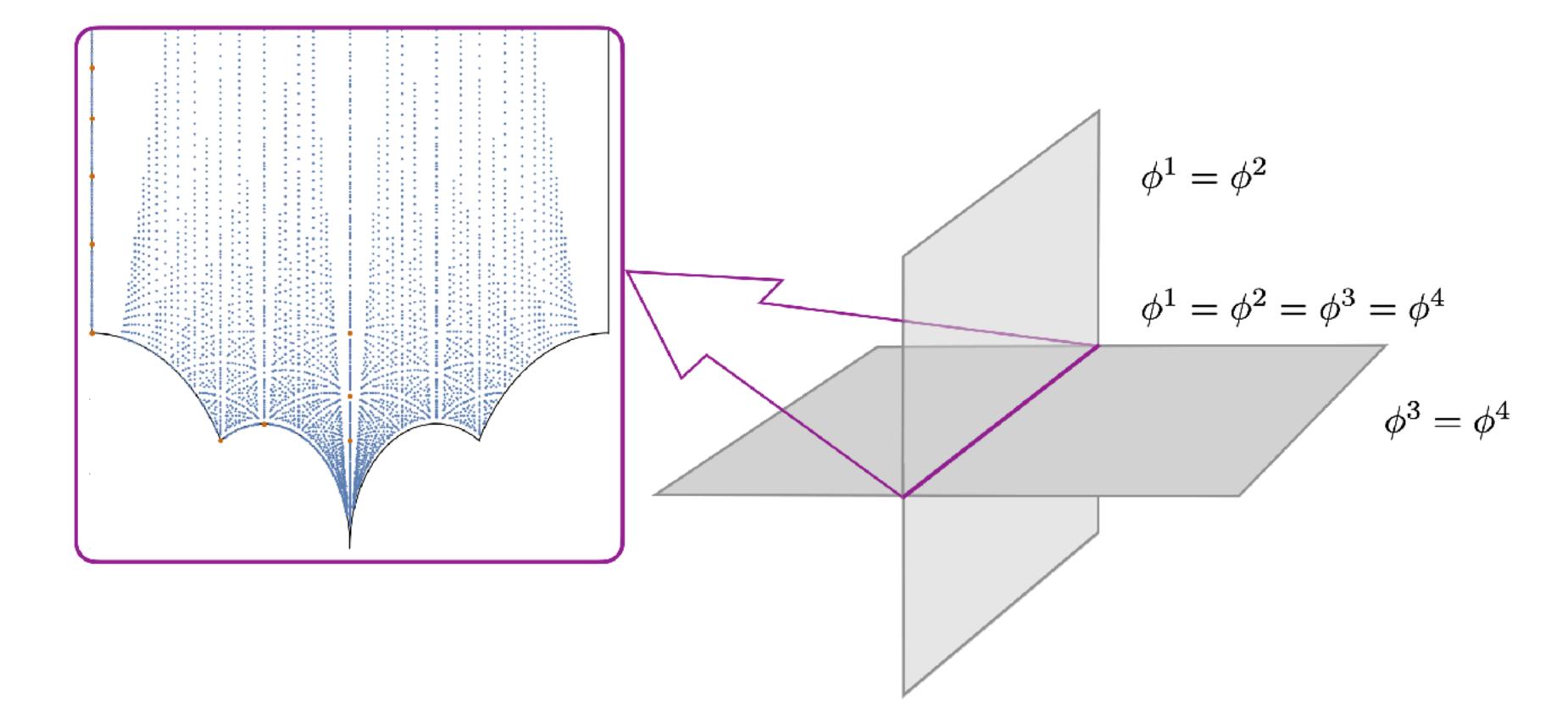
[Candelas, de la Ossa, Elmi, Van Straten '19; Bönisch, Elmi, Kashani-Poor, Klemm '22]

• Extended Type IIB flux vacua with W = 0 (on orbifold loci) [Kachru, Nally, Yang '20; Candelas, de la Ossa, Kuusela, McGovern '23]



Our goal: an F-theory flux landscape [Grimm, DvdH '24]

How? Search along the diagonal locus in moduli space:



Calabi-Yau fourfold of Hulek-Verrill

• Hulek-Verrill fourfold: $(X^1, \dots, X^6) \in \mathbb{T}^5 = \mathbb{P}^5 \setminus \{X_1 \cdots X_6 = 0\}$

$$\left(X^{1} + X^{2} + X^{3} + X^{4} + X^{5} + X^{6}\right)\left(\frac{\phi^{1}}{X^{1}} + \frac{\phi^{2}}{X^{2}} + \frac{\phi^{3}}{X^{3}} + \frac{\phi^{4}}{X^{4}} + \frac{\phi^{5}}{X^{5}} + \frac{\phi^{6}}{X^{6}}\right) = 1$$

 $\implies S_6$ permutation symmetry under exchanging moduli and coordinates

$$\mathbf{\Pi} = \begin{pmatrix} \Pi^{0} \\ \Pi^{I} \\ \Pi^{IJ} \\ \Pi_{I} \\ \Pi_{0} \end{pmatrix} \qquad \qquad \Pi^{0} = \sum_{\substack{n_{1}, \dots, n_{6} = 0}}^{\infty} \left(\frac{(n_{1} + \dots + n_{6})!}{n_{1}! \cdots n_{6}!} \right)^{2} (\phi^{1})^{n_{1}} \cdots (\phi^{6})^{n_{6}} \\ \Pi^{I} = \Pi^{0} \frac{\log \phi^{I}}{2\pi i} + 2 \sum_{\substack{n_{1}, \dots, n_{6} = 0}}^{\infty} \left(\frac{(n_{1} + \dots + n_{6})!}{n_{1}! \cdots n_{6}!} \right)^{2} (H_{n_{1} + \dots + n_{6}} - H_{n_{I}})(\phi^{1})^{n_{1}} \cdots (\phi^{6})^{n_{6}}$$

Periods: expanded in large complex structure regime [Jockers, Kotlewski, Kuusela '23]

Symmetry in the periods

Monodromy symmetry:

 $M_{
m swap}\cdot \mathbf{\Pi}(\phi^1,\phi^2,\phi^2)$

 \implies decompose based on orbifold charge:

$$\mathbf{\Pi}(\phi) = \mathbf{\Pi}_+(\phi) + \mathbf{\Pi}_-(\phi) \,,$$

On symmetry locus:

- K3 period vector: $\partial_{-}\Pi_{-}|_{\phi^{1}=\phi^{2}} = \varpi^{0}\mathbf{v}^{-} + \varpi^{i}\mathbf{v}_{i} \varpi_{0}\mathbf{v}_{-}$

$$\phi^i) = \mathbf{\Pi}(\phi^2, \phi^1, \phi^i)$$

$$\mathbf{\Pi}_{\pm}(\phi) = \frac{1}{2}(1 \pm M_{\text{swap}})\mathbf{\Pi}(\phi)$$

• Vanishing conditions: $\Pi_{-}(\phi)|_{\phi^{1}=\phi^{2}} = \partial_{+}\Pi_{-}(\phi)|_{\phi^{1}=\phi^{2}} = \partial_{i}\Pi_{-}(\phi)|_{\phi^{1}=\phi^{2}} = \partial_{-}\Pi_{+}(\phi)|_{\phi^{1}=\phi^{2}} = 0$

K3 surface inside Calabi-Yau fourfold

K3 fundamental period from Calabi-Yau fourfold period

$$\overline{\varpi}^{0} = \partial_{-}(\Pi^{1} - \Pi^{2}) \Big|_{\phi^{1} = \phi^{2}} = \sum_{n_{3}, n_{4}, n_{5}, n_{6}} \left(\frac{(n_{3} + \ldots + n_{6})!}{n_{3}! \cdots n_{6}!} \right)^{2} (\phi^{3})^{n_{3}} \cdots (\phi^{6})^{n_{6}}$$

 \implies other periods follow similarly

• K3 submanifold along $X_1 = -X_2$ and $\phi^1 = \phi^2$: $\left(X^{1} + X^{2} + X^{3} + X^{4} + X^{5} + X^{6}\right)\left(\frac{\phi^{1}}{X^{1}} + \frac{\phi^{2}}{X^{2}} + \frac{\phi^{3}}{X^{3}} + \frac{\phi^{4}}{X^{4}} + \frac{\phi^{5}}{X^{5}} + \frac{\phi^{6}}{X^{6}}\right) = 1$

 $(X_3 + X_4 + X_5 + X_6) \left(\frac{\phi_3}{X_3} + \frac{\phi_4}{X_4} + \frac{\phi_5}{X_5} + \frac{\phi_6}{X_6}\right) = 1$

Finding flux vacua

Turn on \mathbb{Z}_2 -odd flux: $\mathbf{G}_4 = q^0 \mathbf{v}^-$

Most F-terms and superpotential vanish automatically:

$$W|_{\phi^1 = \phi^2} = \partial_+ W|_{\phi^1 = \phi^2} = \partial_i W|_{\phi^1 = \phi^2} = 0$$

Remaining F-term reduces to K3 superpotential:

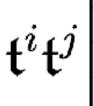
$$\partial_W|_{\phi^1 = \phi^2} = W_{\mathrm{K3}} = \varpi^0 \left(q_0 + 2q_i \mathfrak{t}^i + 2q^0 \sum_{i < j} \mathfrak{t}^i \mathfrak{t}^j \right)$$

exact by K3 mirror map

Scalar potential: $V|_{\phi^1=\phi^2} = \mathcal{V}_{\mathrm{b}}^{-2} e^{K_{\mathrm{K}3}}$

$$+ q^i \mathbf{v}_i - (q_0 + q^0) \mathbf{v}_-$$

$$|W_{\mathrm{K3}}|^2 = \frac{\mathcal{V}_{\mathrm{b}}^{-2}}{\sum_{i < j} \mathrm{Im} \mathfrak{t}^i \mathrm{Im} \mathfrak{t}^j} \left| q_0 + 2q_i \mathfrak{t}^i + 2q^0 \sum_{i < j} W_{\mathrm{K3}} \right|^2$$



Stabilizing all moduli – flux choice

Turn on most general flux compatible with S_6 -symmetry:

 $\mathbf{G}_{4}^{\mathrm{vac}} = (0, a_{I}, b_{I} + b_{J}, a_{I} + c_{I}, 0)$

• S_6 symmetry condition: $\sum_{i=1}^{6} a_I = \sum_{i=1}^{6} a_i$

- Same solution for all six moduli: (a)
- Minimal tadpole contribution: n_I =

$$\sum_{i=1}^{6} b_I = \sum_{I=1}^{6} c_I = 0$$

$$a_I, b_I, c_I) = n_I(a, b, c)$$

$$= (1, -1, 1, -1, 1, -1)$$

Flux vacua

VEV for diagonal modulus: t = -

Tadpole contribution of fluxes: L

- Physical solution requires positive tadpole contribution

Generally proven by: [Cattani, Deligne, Kaplan '95] for W = 0[Bakker, Grimm, Schnell, Tsimerman '21] for $W \neq 0$

$$\frac{b}{a} \pm i \frac{\sqrt{ac - 12b^2}}{2\sqrt{3}a}$$

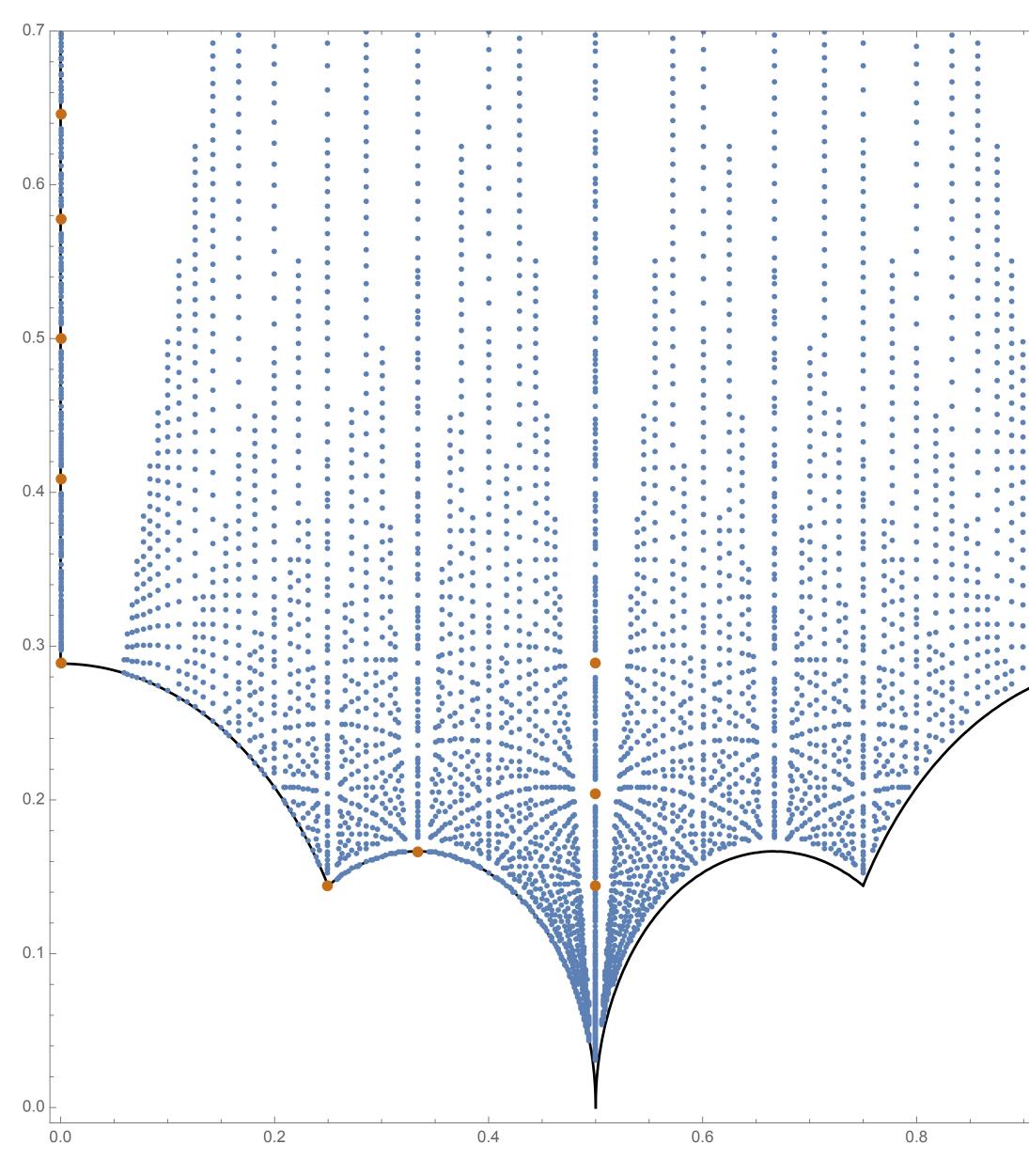
$$\Sigma^{\rm vac} = 12(ac - 12b^2)$$

 $(L = \frac{1}{2} \int_{V} G_4 \wedge G_4 \leq \frac{\chi(Y_4)}{24})$

• Finiteness of vacua follows from: – Imposing the tadpole bound $L^{\rm vac} \leq 60$

- Restricting to fundamental domain determined in [Verrill '96]

Flux vacuum landscape of HV4



$$\hat{L}^{\rm vac} = L^{\rm vac}/12$$

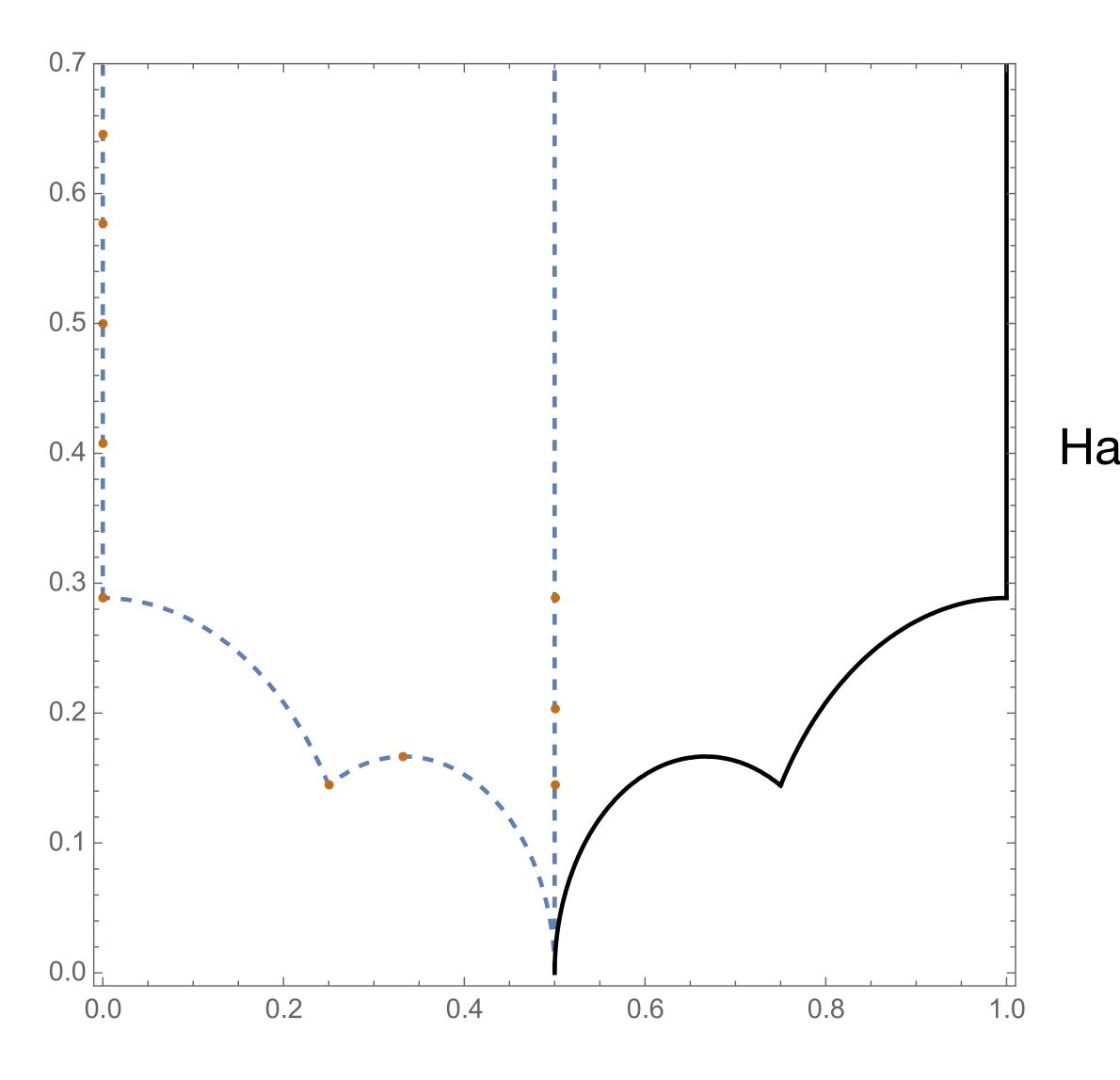
- Red dots: $\hat{L}^{\text{vac}} \leq 5$
- Blue dots: $\hat{L}^{\text{vac}} \leq 300$

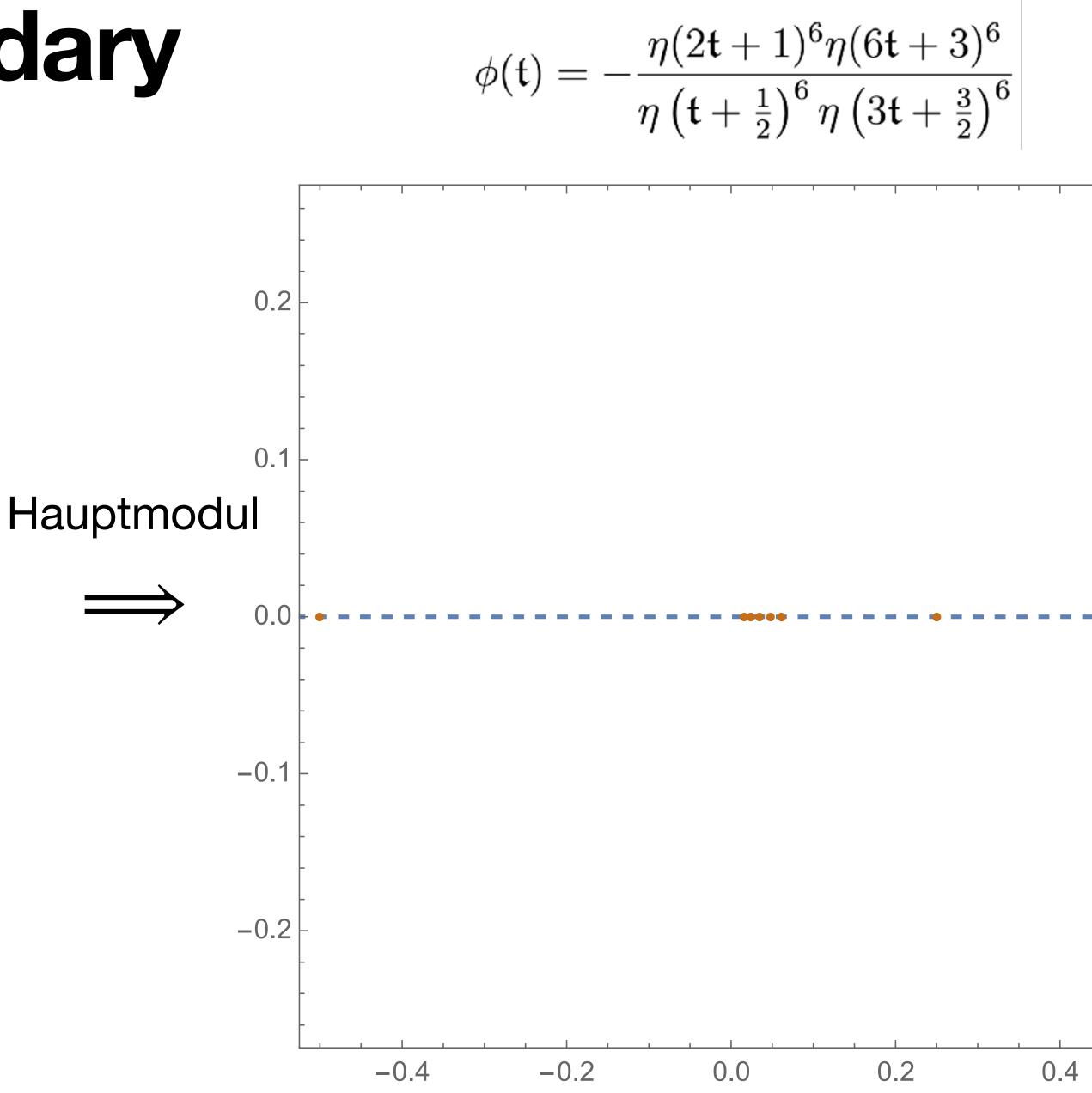
Landscape below tadpole bound

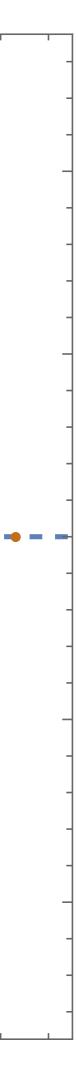
ť	$\frac{i}{2\sqrt{3}}^*$	$\frac{i}{\sqrt{6}}$	$\frac{1}{2} + \frac{i}{2\sqrt{6}}$	$rac{i}{2}$	$\frac{1}{3} + \frac{i}{6}$	$\frac{i}{\sqrt{3}}$	$\frac{1}{4} + \frac{i}{4\sqrt{3}}^*$	$\frac{1}{2} + \frac{i}{4\sqrt{3}}$	$\frac{1}{2} + \frac{i}{2\sqrt{3}}$	$\frac{i\sqrt{15}}{6}$
ϕ	$\frac{1}{16}$	$\frac{3\sqrt{3}-5}{4}$	$-\frac{5+3\sqrt{3}}{4}$	$\frac{1}{4} - \frac{\sqrt{3}}{8}$	$\frac{1}{4} + \frac{\sqrt{3}}{8}$	$\frac{1}{22+9\sqrt{6}}$	$\frac{1}{4}$	$-rac{22+9\sqrt{6}}{2}$	$-\frac{1}{2}$	$\frac{1}{64}$
a	1	2	7	3	5	4	4	13	8	5
b	0	0	1	0	1	0	1	2	1	0
c	1	1	2	1	3	1	4	4	2	1
\hat{L}^{vac}	1	2	2	3	3	4	4	4	4	5

*located at a conifold point

Vacua on the boundary







CP invariance of the CY landscape

- Theta angle in effective action:
- CP invariance

- N=2 rigid supergravity theories have theta-angle $\text{Re}(t) = 0, \frac{1}{2}$ [Cecotti, Vafa '18] • Vacua of Hulek-Verrill fourfold below tadpole bound: $\text{Re}(t) = 0, \frac{1}{4}, \frac{1}{2}, \frac{1}{2}$ See also: [Bönisch, Elmi, Kashani-Poor, Klemm '22]

Underlying structure: inverse mirror map takes real values $\phi(t) \in \mathbb{R}$

$$f_4 \supset \int \sqrt{g} d^4 x \operatorname{Re}(\mathfrak{t}) F_{\mu\nu} \tilde{F}^{\mu\nu}$$

 \implies only certain rational values allowed for Re(t)

Exponential corrections and symmetries

Supersymmetric Genericity Conjecture [Palti, Vafa, Weigand '20]

Whenever certain corrections are allowed by supersymmetry considerations in a given theory, the vanishing of these terms is due to some relation to a **higher-supersymmetric** theory

How does this fit with our flux landscape?

- Presence of discrete symmetries \iff polynomial K3 periods
- A third avatar: density of the flux vacua in moduli space [Grimm, DvdH '24]

Mathematical underpinnings

Algebraicity of Hodge loci: [Cattani, Deligne, Kaplan '95]

Locus of vacua with W = 0 must be algebraic in moduli space

- This algebraicity appears in the algebraic coordinates ϕ^I on the moduli space
- We observe something stronger: algebraicity in mirror coordinates $t^{I}(\phi)$

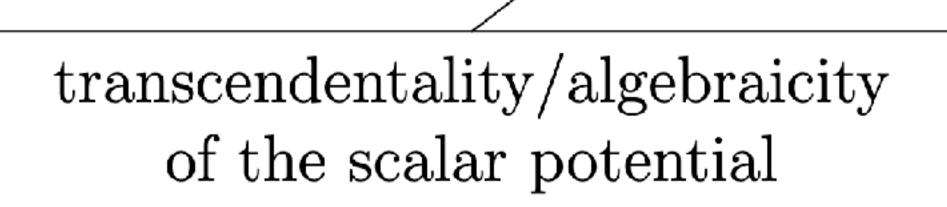
Distribution of Hodge loci: [Baldi, Klingler, Ullmo '21]

• Crucial measure of transcendentality: level ℓ of the Hodge structure

 $\ell = 1$: elliptic curves, K3; $\ell \geq 3$: Calabi-Yau threefolds and higher

- Dense vacua must lie on a higher-symmetry locus in moduli space with $\ell = 1,2$

Conclusions



Thank you for your attention!

