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Effective Field Theories from String Theory

• Breakdown of EFT near boundaries 


• special points/loci in the interior

S4d = ∫ d4x g(R − K(ϕ) ∂μϕ ∂νϕ −
1

g2(ϕ)
FμνFμν − θ(ϕ)FμνF̃μν − V(ϕ))

EFT from reducing string theory on a Calabi—Yau manifold :YD

Physical couplings
K(ϕ), g(ϕ), θ(ϕ), V(ϕ)

vary with -deformations YD ϕ⟹

Much recent progress:



F-theory on Calabi-Yau fourfolds
Kähler potential and flux superpotential:

e−Kcs = ∫Y4

Ω̄(z̄) ∧ Ω(z) = Π̄T(z̄)ΣΠ(z)

W = ∫Y4

G4 ∧ Ω(z) = GT
4ΣΠ(z)

Dependence on complex structure moduli encoded in period vector:

ΠI(z) = ∫ΓI

Ω(z)

ΓI ∈ H4(Y4, ℤ)

Ω(z) ∈ H4,0



Monodromies

Π(z) ↦ Π(e2πiz) = M ⋅ Π(z)

Circling a boundary point 
induces a monodromy:

Equivalent loops have same monodromy:

z = 0

z = 1

z = ∞

M0M1 = (M∞)−1

ℳcs = ℙ1 − {0,1,∞}

Side-remark: need at least three singular points for a non-trivial moduli space
(monodromy group must be infinite order and completely reducible [Griffiths, ’70])

(M ∈ SL(2,ℤ), Sp(2m, ℤ), SO(m, n; ℤ))



Large complex structure periods

[Gerhardus, Jockers ’16;  
Cota, Klemm, Schimannek ’18; 
Marchesano, Prieto, Wiesner ’21]

MLCS(κ, c2) =

1 0 0 0 0
−1 1 0 0 0
−1 1 1 0 0

1
24 (c2 + 13κ) − κ

2 −κ 1 0
1
24 (c2 + κ) − 1

24 (c2 + κ) 0 1 1

Periods in LCS regime:

Monodromy under :t ↦ t + 1

Encode topological data 
of mirror Calabi-Yau

(covering coordinate: )z = e2πit



Plan for the talk

1. Landscape of moduli spaces:                                          

Calabi-Yau fourfolds with 


2. Moduli space as a landscape:                                               

Flux vacua with vanishing superpotentials in F-theory

ℳcs = ℙ1\{0,1,∞}



1. Landscape of moduli spaces

Calabi-Yau fourfolds with ℳcs = ℙ1\{0,1,∞}
[DvdH ’24]



Finiteness of monodromy groups

• (Non-effective) Finiteness theorem by [Deligne ’81]
For a given moduli space with fixed singularity structure, there are only finitely many 
monodromy groups possible. 

[Doran, Morgan ’05]
ℳcs = ℙ1\{0,1,∞}

- Mirror symmetry constrains LCS and conifold monodromy
- Quasi-unipotence of monodromy around infinity }14 Calabi-Yau threefolds

• Effective method for enumerating Calabi-Yau threefolds with

apply to Calabi-Yau fourfold moduli spaces [DvdH ’24]



Quasi-unipotence of monodromies

[Schmid, ’73]
[Landman, ’73]geometric proof by 

group-theoretic proof by 

• Finite order l = 1,2,3,4,5,6,8,10,12

Driving principle behind classification: quasi-unipotence

• Nilpotence degree d = 0,1,…,4 (complex dimension of Calabi-Yau manifold)

(possible orders for a  matrix)GL(5,ℚ)



Warm-up: T2 monodromies

M0 = (1 0
1 1) M1 = (1 −κ

0 1 ) M∞ = (M0M1)−1 = (1 − κ κ
−1 1)

• Monodromies in :SL(2,ℤ)

• Check quasi-unipotence condition for degree  finite order d = 0,1, l = 1,2,3,4,6,

An example, :d = 0, l = 3



Warm-up: T2 monodromies

M0 = (1 0
1 1) M1 = (1 −κ

0 1 ) M∞ = (M0M1)−1 = (1 − κ κ
−1 1)

• Monodromies in :SL(2,ℤ)

 solutions ⟹ κ = 3,2,1,4

• Check quasi-unipotence condition for degree  finite order d = 0,1, l = 1,2,3,4,6,



Warm-up: T2 periods
Periods are solutions to the hypergeometric differential operator

 fixed by eigenvalues of :⟹ L M∞ e2πia1, e2πia2

Periods are given by hypergeometric functions:



Reverse-engineer geometries

Expand fundamental period in large complex structure regime:

weights of projective space 

degree of hypersurface 

[Hosono, Klemm, Theisen, Yau ’93]

 complete intersection Calabi-Yau : sextic in ⟹ X6(1,2,3) ℙ2[1,2,3]

(example: ) κ = 1



Warm-up: T2 landscape



Back to Calabi-Yau fourfolds
MLCS(κ, c2)

M∞(κ, c2) = (MLCS(κ, c2)MC)−1

[Grimm, Ha, Klemm, Klevers ’09]

 impose quasi-unipotence on  

and solve for topo. data

⟹ M∞(κ, c2)



Example

Impose a finite order monodromy of order :l = 6

(M∞(κ, c2))6 − 𝕀 = 0

 polynomial set of equations for  and ⟹ κ c2

Only 1 solution: κ = 6, c2 = 90

 data of the sextic in , (without doing a geometrical computation) ⟹ ℙ5



Landscape of monodromy groups [DvdH, ’24]



Computing the periods

L = θ5 − μz(θ + a1)(θ + a2)(θ + a3)(θ + a4)(θ + a5)

• Periods solve the hypergeometric equation:

Fundamental period solution:

• Can determine the CICY from series expansion of this period


• Other 4 periods have similar expressions in hypergeometric functions

θ = z
d
dz



Calabi-Yau fourfold landscape

• 9 CY4 already known


• 5 CY4 are new
[Cabo-Bizet, Klemm, Lopes ’14] 

[DvdH ’24] 



Phases at infinity
• LCS point: another maximally unipotent point, d = 4

• CY3-point: weak string-coupling limit of a rigid Calabi-Yau orientifold, d = 1

• Conifold-point: finite distance point, but infinite order monodromy, d = 2

• Landau-Ginzburg point: finite order monodromy, d = 0

 for each phase an example worked out in⟹ [DvdH, ’24] 



CY3-point of X6,6(14,2,32)

Π(τ) =

1
1
2 +

i 3
2

0
τ

( 1
2 +

i 3
2 )τ

+
i

3

0
0

−1
− 2

3
1
3

+ 𝒪(e2πiτ)

Period expansion around the CY3-point:

Π(τ) = A

1
1
2 +

i 3
2

− i

3

τ− 2i

3 3

i

3 3
− ( 1

2 +
i 3

2 )τ

−
3i

21/3π2
e2πiτ

0
0
3
4

−2

−
27 3

22/3π3A
e4πiτ

1
1
2 −

i 3
2

i

3

τ− 1
πi + 2i

3 3

( 1
2 −

i 3
2 )(τ− 1

πi ) − i

3 3

+ … ,

• Rigid Calabi-Yau threefold with period vector (1, 1
2 +

i 3
2 )

• Complex structure coordinate parametrizes the string coupling

τ = log[z]/2πi



D7-brane superpotential
Fourfold periods are known to encode open-string physics

Remaining period: superpotential induced by worldvolume flux of D7-branes

WD7 = qD7
z

π2 5F4(1
2

5
; 2

3

2
, 4

3

2
; − 21033z)

=
qD7

π2
z (1− 2187

2 z+ 9298091736
1225 z2− 4236443047215

49 z3 + 𝒪(z4))

[Grimm-Ha-Klemm-Klevers ’09; Alim-Hecht-Jockers-Mayr-Mertens-Soroush ’09;  
Jockers-Mayr-Walcher ’09; Clinghler-Donagi-Wijnholt ’12]

z = e2πiτ

=
qD7

π2
z

∞

∑
k=0

Γ (k + 1
2 )

5

πΓ(k + 1)Γ (k + 2
3 )

2
Γ (k + 4

3 )
2 (−21033z)k



2. Moduli Space as a Landscape

Flux vacua with vanishing superpotentials in F-theory
[Grimm, DvdH ’24]



Special loci in Calabi-Yau moduli spaces

• Black hole physics  attractor points:⟹

• Moduli stabilization  flux vacua:⟹

• Rational CFTs & Complex Multiplication points
[Gukov, Vafa ’02] 

Q ∈ H3(Y3, ℤ) ∩ (H3,0 ⊕ H0,3)

G4 ∈ H4(Y4, ℤ) ∩ (H4,0 ⊕ H2,2 ⊕ H0,4)

Rank-two attractors: [Moore ’98] 

∂zI |Z(Q) | = ∫Y3

Q ∧ DzIΩ = 0

DzIW = ∫Y4

G4 ∧ DzIΩ = 0



(Rough) distribution of special points

• Moduli spaces are littered with special points/
submanifolds of physical relevance

e.g. flux vacua and attractor points

• “Special enough” loci are, generically, 
scarce in the moduli space  

e.g. flux vacua with  and rank-two attractorsW = 0

…

…



Flux potential

• Global minima:

V = eK Kab̄ DaW Db̄W = ∫Y4

G4 ∧ ⋆G4 − ∫Y4

G4 ∧ G4

Scalar potential for moduli:

- vanishing F-terms   DaW = ∂aW + ∂aK W = 0

- self-dual fluxes   G4 ∈ H4(Y4, ℤ) ∩ (H4,0 ⊕ H2,2 ⊕ H0,4)

• Supersymmetric vacua
- Vanishing superpotential W = ∂aW = 0

- Hodge class                    G4 ∈ H4(Y4, ℤ) ∩ H2,2



Current state of the flux landscape

…

…

Orbifold locus 

• Type IIB Flux vacua with  on orbifold lociW = 0
[DeWolfe, Giryavets, Kachru, Taylor ’04; DeWolfe ’05; 
 Palti ’06; …; Rajaguru, Sengupta, Wrase ’24; 
Becker, Brady, Graña, Morros, Sengupta ’24]

• Type IIB flux vacua with  away from orbifold loci W = 0
[Candelas, de la Ossa, Elmi, Van Straten ’19;  
Bönisch, Elmi, Kashani-Poor, Klemm ‘22]

[Kachru, Nally, Yang ’20; Candelas, de la Ossa, Kuusela, McGovern ’23]
• Extended Type IIB flux vacua with  (on orbifold loci)W = 0



Our goal: an F-theory flux landscape
How? Search along the diagonal locus in moduli space:

[Grimm, DvdH ’24]



• Hulek-Verrill fourfold:

Calabi-Yau fourfold of Hulek-Verrill
(X1, …, X6) ∈

 permutation symmetry under exchanging moduli and coordinates⟹ S6

[Jockers, Kotlewski, Kuusela ’23]• Periods: expanded in large complex structure regime



Symmetry in the periods
Monodromy symmetry:

 decompose based on orbifold charge:⟹

• Vanishing conditions:

On symmetry locus:

• K3 period vector:



K3 surface inside Calabi-Yau fourfold

• K3 submanifold along  and :X1 = − X2 ϕ1 = ϕ2

ϖ0 = ∂−(Π1 − Π2)
ϕ1=ϕ2

=

• K3 fundamental period from Calabi-Yau fourfold period 

⟹

 other periods follow similarly⟹



Finding flux vacua
Turn on -odd flux:ℤ2 G4 = q0v− + qivi − (q0 + q0)v−

• Most F-terms and superpotential vanish automatically:

W |ϕ1=ϕ2 = ∂+W |ϕ1=ϕ2 = ∂iW |ϕ1=ϕ2 = 0

• Remaining F-term reduces to K3 superpotential:

∂−W |ϕ1=ϕ2 = WK3

exact by K3 mirror map

Scalar potential:



Stabilizing all moduli — flux choice
Turn on most general flux compatible with -symmetry:S6

•  symmetry condition:S6

• Same solution for all six moduli:

• Minimal tadpole contribution:



Flux vacua

VEV for diagonal modulus: 𝔱 = −
b
a

± i
ac − 12b2

2 3a

Tadpole contribution of fluxes:

• Physical solution requires positive tadpole contribution

- Imposing the tadpole bound 


- Restricting to fundamental domain

Lvac ≤ 60

determined in [Verrill ’96]Generally proven by: 
 [Cattani, Deligne, Kaplan ’95] for  
 [Bakker, Grimm, Schnell, Tsimerman ’21] for 

W = 0
W ≠ 0

• Finiteness of vacua follows from:

(L =
1
2 ∫Y4

G4 ∧ G4 ≤
χ(Y4)

24
)



Flux vacuum landscape of HV4
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• Red dots:  


• Blue dots:  

L̂vac ≤ 5

L̂vac ≤ 300

L̂vac = Lvac/12



Landscape below tadpole bound

*located at a conifold point
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Hauptmodul 

Vacua on the boundary
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CP invariance of the CY landscape

• N=2 rigid supergravity theories have theta-angle Re(𝔱) = 0, 1
2

[Cecotti, Vafa ’18]

Underlying structure: inverse mirror map takes real values ϕ(𝔱) ∈ ℝ

• Vacua of Hulek-Verrill fourfold below tadpole bound: Re(𝔱) = 0, 1
4 , 1

3 , 1
2

See also: [Bönisch, Elmi, Kashani-Poor, Klemm ’22]

Theta angle in effective action: S4 ⊃ ∫ gd4x Re(𝔱)FμνF̃μν

CP invariance         only certain rational values allowed for  ⟹ Re(𝔱)



Exponential corrections and symmetries

Whenever certain corrections are allowed by supersymmetry considerations in a given theory, 

the vanishing of these terms is due to some relation to a higher-supersymmetric theory

[Palti, Vafa, Weigand ’20]Supersymmetric Genericity Conjecture

How does this fit with our flux landscape?

• Presence of discrete symmetries   polynomial K3 periods⟺

• A third avatar: density of the flux vacua in moduli space [Grimm, DvdH ’24]



Mathematical underpinnings
[Cattani, Deligne, Kaplan ’95]Algebraicity of Hodge loci:

Locus of vacua with  must be algebraic in moduli spaceW = 0

• This algebraicity appears in the algebraic coordinates  on the moduli spaceϕI

• We observe something stronger: algebraicity in mirror coordinates 𝔱I(ϕ)

[Baldi, Klingler, Ullmo ’21]Distribution of Hodge loci:
Dense vacua must lie on a higher-symmetry locus in moduli space with ℓ = 1,2

• Crucial measure of transcendentality: level  of the Hodge structureℓ
: elliptic curves, K3; : Calabi-Yau threefolds and higherℓ = 1 ℓ ≥ 3



Conclusions

Thank you for your attention!


