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Motivation: Why should we study String Theory?

String theory is a candidate for a Grand unification theory as it
» provides a UV complete quantum theory
» contains naturally gravity and gauge interactions

» may lead to standard model physics in the low energy limit

String theory provides a large landscape of low energy EFTs

» framework to study consistent low energy limits of quantum gravity

Distinct string theories are connected via duality transformations

P suggests the existence of an unique underlying theory



Motivation: String Compactifications
Anomaly-free string theory only for 10 spacetime dimensions

Obtain 4d effective field theory by decomposing

MY =RY x X

Effective physics on RY3 is determined by the geometry of X
» Spectrum of the EFT < Eigenmodes of A on X
» Massless states of the EFT < Harmonic modes on X < H*(X,C)

» (Quantum-corrected) couplings < Moduli space geometry



Motivation: Calabi-Yau Manifolds

Internal spaces of particular interest: Calabi-Yau manifolds
» provide a vacuum solution in the absence of any field content

> restore supersymmetry after compactification

Definition: X n-dimensional Calabi-Yau manifold (CY n-fold) if
» X Kahler manifold of complex dimension n
> X is Ricci-flat, i.e. R(X)=0

Moduli Space: Parameter space consisting of
» h"~L1 complex structure moduli z; = Holomorphic n-form
Q= Q(z) € H"O(X, C)
» hb1 Kihler moduli t' = Kahler form
J=J(t") € H¥(X,C)



Motivation: Moduli Stabilization and Fluxes

Low energy EFT of string compactification: supergravity

Moduli (z;,t') < massless scalar fields
» Phenomenologically: no massless scalar fields observed

» Fundamental: Moduli tune shape and size of internal space

For realistic (or semi-realistic) string models: Moduli Stabilization

Possible Mechanism: Flux Compactifications [Gukov, Vafa, Witten, 2005]
W= / Qz) A G
X
for G € H"(X,Z) topological n-form flux

» For type IIB string theory compactified on CY 3-fold: G =F —17H
for F,H € H3(X,Z) and axio-dilaton 7



Motivation: Supersymmetric Flux Vacua

Supersymmetric vacuum constraints:
ow=0 , oW=0 , W=0

implying

/XQ(z,-)/\F:O , /XQ(z,-)/\H:O

and

/Xaz,.Q(z,-) ANF—-71H)=0
Recall Q(z) € H39(X,C). Thus,
F,H e (H*'(X,C) & H"*(X,C)) N H*(X, Z)
Question: Under which conditions does X admit non-trivial fluxes F, H?

= Address this question via arithmetic geometry

[Kachru, Nally, Yang, 2020], [Candelas, De la Ossa, Kuusela, McGovern, 2023]



Modularity: Varieties over Finite Fields

X variety over C:
X = {fi(x) =0} C A" or P!

for f; € Z[x1, ..., %]

Treat now X as variety over the finite field F,- with p” elements
X [Fp = {fi(x) = 0}

for f; € Fpr[x1, ..., Xxn] the canonical projection

(Finite) Number of points:

Ny (X) := | X /Fr




Modularity: Elliptic Curves

Elliptic Curve &: defined by cubic equation y? = x3 + ax + b
E={y’z=x3+axz® + b’} CP? 42> +27b #0

2miT

Consider the coefficients a, = p+ 1 — N,(E), then for g =e

f(r) = Z apqP is a weight-two modular form

p prime
Note: The same a, determine
RP(E,T)=det(l —Fr,')=1—a,T +pT?
Frobenius endomorphism
Frp : HY(X,Q,) — H'(X,Q,)

H'(X,Q,) suitable p-adic cohomology group



Modularity: Serre's Modularity Conjecture

For a general algebraic variety X:

Serre’s Modularity Conjecture: [Serre, 1975]

One-to-one correspondence between two-dimensional representations
p:Gal(Q/Q) — GLy(F,r) and modular forms that are Hecke eigenforms.

Gal(L/K) = {¢ € Aut(L) | 6(K) = K}

Frp: H*(X,Qp) — H¥(X,Qp): b“-dimensional reps. of fr, € Gal(Q/Q)
> For elliptic curves: b = H}(£,Q) = 2. Thus, modularity of £ is a

special case of this conjecture.

> If HX(X,Qp) = A, ® £, such that Fry(A,) C Ay
Frola, :Ap — A, defines a dim(A,)-dimensional (sub-)rep. of fr,



Modularity: The Zeta-Function
Define local zeta function
(X, T) :=ex iN r(X)l
pA, : p . P ;

as generating function for the N, (X)

Weil Conjectures: [Weil, 1949]
RI(X,T)- - R, _1 (X, T)

RE(X, T)--- RE(X, T)
RE(X, T) are polynomials of degree b* := dim(H*(X, Q).

CP(Xa T) =

More precisely: R (X, T) = det(1 — TFr;l) characteristic polynomial

If H*(X,Q,) = A @ T defines a sub-representation, then



Modularity: Modular Calabi-Yau manifolds
Definition: A CY n-fold X is modular if
H'(X,Qp)=No® X, , Frp(Ay)) CA, , dim(A)=2
for almost all primes p.
> If X is modular, RR(X, T) = 1— ap,p®T + p? T2 for some o, 8 € N.
The a, determine the corresponding Hecke eigenform via

f(r)= > aq" q=¢€""

p prime
> If H'(X,Q) =A@ X, then H"(X,Q,) = A, & X, for almost all
primes p.
If moreover, A @ X defines a Hodge substructure of H"(X,Q), then
Fro(Ap) C Ap. Le.

/\®(C:@/\p’q , NP =APG | APYC HPI(X,C)



Modularity: Relation to Flux Vacua
Recall for type IIB string fluxes on a CY threefold X:
F,H e H}(X,Z)n (H*'(X,C) & H*?(X,C))
for a supersymmetric flux vacuum. Hence
A= (F,H)g C H*(X,Q)

defines a two-dimensional sub-representation

Necessary condition for supersymmetric flux vacua:

X has to be a modular Calabi-Yau threefold!

Note: For modular CY 3-folds with #*! = 1:
> [ 9:Q(z) A (F — 7H) = 0 fixes the axio-dilaton 7
» The modular form f5 determines 7

[Kachru, Nally, Yang, 2020], [Candelas, De la Ossa, Kuusela, McGovern, 2023]



Modular Fourfolds: Why Fourfolds?

So far: 10-dimensional string theory compactified on a CY 3-fold.

More general setup: M-theory on 11 spacetime dimensions
» Compactification on CY 4-fold X gives 3-dimensional EFT
» Similarly, moduli are massless scalar fields = stabilize via fluxes

» Flux Superpotential:

W:/XQ(z,-)/\G

for G € H*(X,Z) topological four-form flux

» Supersymmetric flux vacua only if
G € HY(X,Z) N (H*°(X,C) N H**(X,C) N H>*(X,C))

Similar result for F-theory (12 spacetime dimensions) compactifications



Modular Fourfolds: Possibilities for Modularity

Two different choices of two-dimensional sub-reps. A C H*(X,Q):

“Attractor points™:
A C H*O(X,C) N H*2(X,C) N H%*(X, C)

Mimic the behaviour of rank-two attractor points of Calabi-Yau threefolds

“Attractive K3-points":
A C H3(X,C)n HM3(X,C)

Geometric origin from an attractive K3 surface

Sufficient condition for M-theory flux vacua:

X attractor point = any G € A is a suitable M-theory flux

In contrast to the threefold case:
» Modularity is not a necessary condition



Modular Fourfolds: The Hodge Structure of Fourfolds

Threefolds vs. Fourfolds: The Hodge diamond of a Calabi-Yau threefold

1
0 0
0 ptt 0
1 h?1 > 1
0 ptt 0
0 0
1

» horizontal and vertical Hodge structure are separated

RY(X, T)
T= NPT G- (1= pT)

CP(Xa T) =



Modular Fourfolds: The Hodge Structure of Fourfolds

Threefolds vs. Fourfolds: The Hodge diamond of a Calabi-Yau fourfold

1
0 0
0 hht 0
0 h*1 h*t 0
1 h3’1 h2’2 h3,1 1
0 h2,1 h271 0
0 hbt 0
0 0
1

> H22(X,C) = H>*(X,C) @ H22(X,C) @ H?(X,C)

RE(X, T)RE(X. T)
=D P R (T - T (L= pT)

CP(X7 T) =



Modular Fourfolds: The Hodge Structure of Fourfolds

Threefolds vs. Fourfolds: The Hodge diamond of a Calabi-Yau fourfold

1
0 0
0 A1 0
0 h2,1 h2’1 0
1 h3,1 h2.2 h3 1 1
0 h2’1 h2 1 0
0 A1 0
0 0
1

> H22(X,C) = H>*(X,C) @ H>2(X,C) @ H?(X,C)

RY(X, T)RE(X, T)

X1 = T o RA(X, T)R? (X, ’T)(l —pT)" (1= p'T)



Modular Fourfolds: A Modular Example

A one-parameter family of Hulek-Verrill fourfolds

H\/i:{<i+...+xi>(xl+...+xﬁ):l}C’]I‘ﬁ
6

X1

Histogram of points z, € F,, s.t. R(,’(HVip, T) factorizes quadratically
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Here: 7 < p <733



Modular Fourfolds: A Modular Example

Reconstruction of the modular point z € Q:
z, =z modp
s.t. R\F,’(HV;, T) factorizes for (almost) all primes p

Collection of points z, € F, with quadratic factorization

prime p z, € F, prime p z, € F,
p=11 ||1] 6 | 8] 10 p=19 (|12 |7 |17
p=13 || 1 p=23 ||1]|4]|5]12
p=17 || 1| 15

(Rational) solution z € @ s.t. HV? is modular (and smooth): z =1
» Tested for all primes 11 < p < 733

» No additional modular point found



Modular Fourfolds: A Modular Example

Consistency checks:
> Coefficients aj, of quadratic factor

RR(HVY, T) =1 — appT + p°T?

give g-expansion of a unique Hecke eigenform
> |dentified generators of the two-dimensional sublattice

A = [H¥*}(HV],C) @ H3(HVE,C)] N H*(HVY, Z)

How about fluxes?
» Attractive K3-point! = A does not provide suitable fluxes
> As h*! =1 we have:

Y= [H“fO(HV‘l‘, C) & H>?(HV?,C) & HO4(HV?, (C)} N HY(HV?, Z)

» In particular: G:= C-Re(Q(z=1))eX, CeR



Modular Fourfolds: A Non-modular Example

The mirror family of the complete intersection P7[2,2, 4]:

» Number of quadratic factorizations for each prime 7 < p < 317:
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» Many primes p with no point z, € F,, of quadratic factorization

» The existence of a modular point z € Q C C is highly unlikely



Conclusions

Modularity is a useful tool to search for M-theory flux vacua
> “Attractor-point” = Sublattice A realizes fluxes
» Modularity is not a necessary criterion!

» Modular form (L-function) = cosmological constant

Restrictions and Assumptions
> Analysis restricted to horizontal part H}(X, C) of cohomology
> Need to assume that Fr, factorizes correspondingly

» Search restricted to algebraic moduli space z € Q

Based on numerical experiments:
» Construction of Frobenius action is self-consistent

» Modular structure in accordance with Deligne's conjecture and
geometric interpretation

A posteori justification for the assumptions



