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Motivation: Why should we study String Theory?

String theory is a candidate for a Grand unification theory as it

▶ provides a UV complete quantum theory

▶ contains naturally gravity and gauge interactions

▶ may lead to standard model physics in the low energy limit

String theory provides a large landscape of low energy EFTs

▶ framework to study consistent low energy limits of quantum gravity

Distinct string theories are connected via duality transformations

▶ suggests the existence of an unique underlying theory



Motivation: String Compactifications
Anomaly-free string theory only for 10 spacetime dimensions

Obtain 4d effective field theory by decomposing

M10 = R1,3 × X

Effective physics on R1,3 is determined by the geometry of X

▶ Spectrum of the EFT ⇔ Eigenmodes of ∆ on X

▶ Massless states of the EFT ⇔ Harmonic modes on X ⇔ Hk(X ,C)
▶ (Quantum-corrected) couplings ⇔ Moduli space geometry



Motivation: Calabi-Yau Manifolds

Internal spaces of particular interest: Calabi-Yau manifolds

▶ provide a vacuum solution in the absence of any field content

▶ restore supersymmetry after compactification

Definition: X n-dimensional Calabi-Yau manifold (CY n-fold) if

▶ X Kähler manifold of complex dimension n

▶ X is Ricci-flat, i.e. R(X ) = 0

Moduli Space: Parameter space consisting of

▶ hn−1,1 complex structure moduli zi ⇒ Holomorphic n-form

Ω = Ω(zi ) ∈ Hn,0(X ,C)
▶ h1,1 Kähler moduli t i ⇒ Kähler form

J = J(t i ) ∈ H1,1(X ,C)



Motivation: Moduli Stabilization and Fluxes

Low energy EFT of string compactification: supergravity

Moduli (zi , t
i ) ⇔ massless scalar fields

▶ Phenomenologically: no massless scalar fields observed

▶ Fundamental: Moduli tune shape and size of internal space

For realistic (or semi-realistic) string models: Moduli Stabilization

Possible Mechanism: Flux Compactifications [Gukov, Vafa, Witten, 2005]

W =

∫
X

Ω(zi ) ∧ G

for G ∈ Hn(X ,Z) topological n-form flux

▶ For type IIB string theory compactified on CY 3-fold: G = F − τH
for F ,H ∈ H3(X ,Z) and axio-dilaton τ



Motivation: Supersymmetric Flux Vacua

Supersymmetric vacuum constraints:

∂ziW = 0 , ∂τW = 0 , W = 0

implying ∫
X

Ω(zi ) ∧ F = 0 ,

∫
X

Ω(zi ) ∧ H = 0

and ∫
X

∂ziΩ(zi ) ∧ (F − τH) = 0

Recall Ω(zi ) ∈ H3,0(X ,C). Thus,

F ,H ∈
(
H2,1(X ,C)⊕ H1,2(X ,C)

)
∩ H3(X ,Z)

Question: Under which conditions does X admit non-trivial fluxes F ,H?

⇒ Address this question via arithmetic geometry

[Kachru, Nally, Yang, 2020], [Candelas, De la Ossa, Kuusela, McGovern, 2023]



Modularity: Varieties over Finite Fields

X variety over C:

X = {fi (x) = 0} ⊂ An or Pn−1

for fi ∈ Z[x1, . . . , xn]

Treat now X as variety over the finite field Fpr with pr elements

X/Fpr := {f̄i (x) = 0}

for f̄i ∈ Fpr [x1, . . . , xn] the canonical projection

(Finite) Number of points:

Npr (X ) := |X/Fpr |



Modularity: Elliptic Curves

Elliptic Curve E : defined by cubic equation y2 = x3 + ax + b

E = {y2z = x3 + axz2 + bz3} ⊂ P2 4a3 + 27b2 ̸= 0

Consider the coefficients ap = p + 1− Np(E), then for q = e2πiτ

f (τ) =
∑

p prime

apq
p is a weight-two modular form

Note: The same ap determine

Rp
1 (E ,T ) = det(1− Fr−1

p ) = 1− apT + pT 2

Frobenius endomorphism

Frp : H1(X ,Qp) → H1(X ,Qp)

H1(X ,Qp) suitable p-adic cohomology group



Modularity: Serre’s Modularity Conjecture

For a general algebraic variety X :

Serre’s Modularity Conjecture: [Serre, 1975]

One-to-one correspondence between two-dimensional representations
ρ :Gal(Q̄/Q) → GL2(Fpr ) and modular forms that are Hecke eigenforms.

Gal(L/K ) = {ϕ ∈ Aut(L) | ϕ(K ) = K}

Frp :H
k(X ,Qp)→Hk(X ,Qp): b

k -dimensional reps. of frp ∈ Gal(Q̄/Q)

▶ For elliptic curves: b1 = H1(E ,Q) = 2. Thus, modularity of E is a
special case of this conjecture.

▶ If Hk(X ,Qp) = Λp ⊕ Σp such that Frp(Λp) ⊆ Λp:
Frp|Λp :Λp → Λp defines a dim(Λp)-dimensional (sub-)rep. of frp



Modularity: The Zeta-Function

Define local zeta function

ζp(X ,T ) := exp

( ∞∑
r=1

Npr (X )
T r

r

)

as generating function for the Npr (X )

Weil Conjectures: [Weil, 1949]

ζp(X ,T ) =
Rp
1 (X ,T ) · · ·Rp

2n−1(X ,T )

Rp
0 (X ,T ) · · ·Rp

2n(X ,T )

Rp
k (X ,T ) are polynomials of degree bk := dim(Hk(X ,Q).

More precisely: Rp
k (X ,T ) = det(1− TFr−1

p ) characteristic polynomial

If Hk(X ,Qp) = Λ⊕ Σ defines a sub-representation, then

Rp
k (X ,T ) = Rp

Λ(X ,T ) · Rp
Σ(X ,T )



Modularity: Modular Calabi-Yau manifolds

Definition: A CY n-fold X is modular if

Hn(X ,Qp) = Λp ⊕ Σp , Frp(Λp) ⊆ Λp , dim(Λ) = 2

for almost all primes p.

▶ If X is modular, Rp
Λ(X ,T ) = 1− app

αT + pβT 2 for some α, β ∈ N0.

The ap determine the corresponding Hecke eigenform via

f (τ) =
∑

p prime

apq
p q = e2πiτ

▶ If Hn(X ,Q) = Λ⊕ Σ, then Hn(X ,Qp) = Λp ⊕ Σp for almost all
primes p.

If moreover, Λ⊕ Σ defines a Hodge substructure of Hn(X ,Q), then
Frp(Λp) ⊆ Λp. I.e.

Λ⊗ C =
⊕

Λp,q , Λq,p = Λp,q , Λp,q ⊆ Hp,q(X ,C)



Modularity: Relation to Flux Vacua

Recall for type IIB string fluxes on a CY threefold X :

F ,H ∈ H3(X ,Z) ∩
(
H2,1(X ,C)⊕ H1,2(X ,C)

)
for a supersymmetric flux vacuum. Hence

Λ := ⟨F ,H⟩Q ⊆ H3(X ,Q)

defines a two-dimensional sub-representation

Necessary condition for supersymmetric flux vacua:

X has to be a modular Calabi-Yau threefold!

Note: For modular CY 3-folds with h2,1 = 1:

▶
∫
X
∂zΩ(z) ∧ (F − τH) = 0 fixes the axio-dilaton τ

▶ The modular form fΛ determines τ

[Kachru, Nally, Yang, 2020], [Candelas, De la Ossa, Kuusela, McGovern, 2023]



Modular Fourfolds: Why Fourfolds?

So far: 10-dimensional string theory compactified on a CY 3-fold.

More general setup: M-theory on 11 spacetime dimensions

▶ Compactification on CY 4-fold X gives 3-dimensional EFT

▶ Similarly, moduli are massless scalar fields ⇒ stabilize via fluxes

▶ Flux Superpotential:

W =

∫
X

Ω(zi ) ∧ G

for G ∈ H4(X ,Z) topological four-form flux

▶ Supersymmetric flux vacua only if

G ∈ H4(X ,Z) ∩
(
H4,0(X ,C) ∩ H2,2(X ,C) ∩ H0,4(X ,C)

)
Similar result for F-theory (12 spacetime dimensions) compactifications



Modular Fourfolds: Possibilities for Modularity

Two different choices of two-dimensional sub-reps. Λ ⊆ H4(X ,Q):

“Attractor points“:

Λ ⊆ H4,0(X ,C) ∩ H2,2(X ,C) ∩ H0,4(X ,C)

Mimic the behaviour of rank-two attractor points of Calabi-Yau threefolds

“Attractive K3-points“:

Λ ⊆ H3,1(X ,C) ∩ H1,3(X ,C)

Geometric origin from an attractive K3 surface

Sufficient condition for M-theory flux vacua:

X attractor point ⇒ any G ∈ Λ is a suitable M-theory flux

In contrast to the threefold case:

▶ Modularity is not a necessary condition



Modular Fourfolds: The Hodge Structure of Fourfolds

Threefolds vs. Fourfolds: The Hodge diamond of a Calabi-Yau threefold

1
0 0

0 h1,1 0
1 h2,1 h2,1 1

0 h1,1 0
0 0

1

▶ horizontal and vertical Hodge structure are separated

ζp(X ,T ) =
Rp
3 (X ,T )

(1− T )(1− pT )h1,1(1− p2T )h1,1(1− p3T )



Modular Fourfolds: The Hodge Structure of Fourfolds

Threefolds vs. Fourfolds: The Hodge diamond of a Calabi-Yau fourfold

1
0 0

0 h1,1 0
0 h2,1 h2,1 0

1 h3,1 h2,2 h3,1 1
0 h2,1 h2,1 0

0 h1,1 0
0 0

1

▶ H2,2(X ,C) = H2,2
h (X ,C)⊕ H2,2

v (X ,C)⊕ H2,2
⊥ (X ,C)

ζp(X ,T ) =
Rp
3 (X ,T )Rp

5 (X ,T )

(1− T )(1− pT )h1,1Rp
4 (X ,T )(1− p3T )h1,1(1− p4T )



Modular Fourfolds: The Hodge Structure of Fourfolds

Threefolds vs. Fourfolds: The Hodge diamond of a Calabi-Yau fourfold

1
0 0

0 h1,1 0
0 h2,1 h2,1 0

1 h3,1 h2,2 h3,1 1
0 h2,1 h2,1 0

0 h1,1 0
0 0

1

▶ H2,2(X ,C) = H2,2
h (X ,C)⊕ H2,2

v (X ,C)⊕ H2,2
⊥ (X ,C)

ζp(X ,T ) =
Rp
3 (X ,T )Rp

5 (X ,T )

(1− T )(1− pT )h1,1Rp
v (X ,T )Rp

⊥(X ,T )(1− p3T )h1,1(1− p4T )



Modular Fourfolds: A Modular Example

A one-parameter family of Hulek-Verrill fourfolds

HV4
z =

{(
z

x1
+ · · ·+ z

x6

)
(x1 + · · ·+ x6) = 1

}
⊂ T6

Histogram of points zp ∈ Fp s.t. Rp
v (HV

4
zp ,T ) factorizes quadratically
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Here: 7 ≤ p ≤ 733



Modular Fourfolds: A Modular Example

Reconstruction of the modular point z ∈ Q̄:

zp ≡ z mod p

s.t. Rp
v (HV

4
zp ,T ) factorizes for (almost) all primes p

Collection of points zp ∈ Fp with quadratic factorization

prime p zp ∈ Fp

p = 11 1 6 8 10
p = 13 1
p = 17 1 15

prime p zp ∈ Fp

p = 19 1 2 7 17
p = 23 1 4 5 12
. . .

(Rational) solution z ∈ Q s.t. HV4
z is modular (and smooth): z = 1

▶ Tested for all primes 11 ≤ p ≤ 733

▶ No additional modular point found



Modular Fourfolds: A Modular Example

Consistency checks:

▶ Coefficients ap of quadratic factor

Rp
Λ(HV

4
1,T ) = 1− appT + p2T 2

give q-expansion of a unique Hecke eigenform

▶ Identified generators of the two-dimensional sublattice

Λ =
[
H3,1(HV4

1,C)⊕ H1,3(HV4
1,C)

]
∩ H4(HV4

1,Z)

How about fluxes?

▶ Attractive K3-point! ⇒ Λ does not provide suitable fluxes

▶ As h3,1 = 1 we have:

Σ =
[
H4,0(HV4

1,C)⊕ H2,2
h (HV4

1,C)⊕ H0,4(HV4
1,C)

]
∩ H4(HV4

1,Z)

▶ In particular: G := C ·Re(Ω(z = 1)) ∈ Σ , C ∈ R



Modular Fourfolds: A Non-modular Example

The mirror family of the complete intersection P7[2, 2, 4]:

▶ Number of quadratic factorizations for each prime 7 ≤ p ≤ 317:

50 100 150 200 250 300

2

4

▶ Many primes p with no point zp ∈ Fp of quadratic factorization

▶ The existence of a modular point z ∈ Q̄ ⊂ C is highly unlikely



Conclusions

Modularity is a useful tool to search for M-theory flux vacua

▶ “Attractor-point“ ⇒ Sublattice Λ realizes fluxes

▶ Modularity is not a necessary criterion!

▶ Modular form (L-function) ⇒ cosmological constant

Restrictions and Assumptions

▶ Analysis restricted to horizontal part H4
h (X ,C) of cohomology

▶ Need to assume that Frp factorizes correspondingly

▶ Search restricted to algebraic moduli space z ∈ Q̄

Based on numerical experiments:

▶ Construction of Frobenius action is self-consistent

▶ Modular structure in accordance with Deligne’s conjecture and
geometric interpretation

A posteori justification for the assumptions


