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Figure 4.9: Typical line shape of cyclotron transition (left) and anomaly transition (right)
for one day of data. Fitting with a Gaussian noise model is shown. The determined center
frequencies ⌫̄

⇤
c and ⌫̄

⇤
a are shown by the black line, with the error indicated by the gray

region.

p-value. The data here demonstrates that the measurement is consistent within a narrow

range of magnetic fields. We also measure the g-factor at widely di↵erent magnetic fields to

check the other systematic errors.

4.3 Microwave Cavity Correction

The conductive electrode surface of the Penning trap electrodes forms a microwave cavity

that has resonances near the cyclotron frequency. In addition to the inhibited spontaneous

emission, it also alters the measured cyclotron frequency in the trap cavity ⌫̄
cav
c from ⌫̄c

as [52, 53]
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The e↵ect does not change the spin frequency, but the anomaly frequency—the di↵erence

of spin and cyclotron frequencies–shifts from the true anomaly frequency as

⌫̄a ! ⌫̄a ��⌫̄
cav
c . (4.35)
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,c = c/2L×n
  large shift!

L

,c ≠ c/2L×n
 small shift!

Ø Δ1cICS	 depends on trap cavity’s resonance 
=cavity QED

 →measure cavity resonances and correct
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from summing all mode contributions. This calculation
assumes the mode frequencies of a perfect cylinder, one Q
for TE modes, and another for TM modes. We calculate
with dimensions chosen to best match observed frequencies
and a single Q value for all modes. After shifts from the 72
observed modes using the ideal frequencies and the one Q
value are subtracted out, contributions for these modes
using measured frequencies and Q values are added back
in. The leading contribution to cavity shift uncertainties
comes from modifications of the field that an electron sees
from imperfections and misalignments of the trap cavity.
Figure 4(a) shows the consistency of μ=μB determinations
at 11 different magnetic fields, after each receives a
different cavity shift.
A weighted average of the 11 determinations gives

−
μ
μB

¼ g
2
¼ 1.001 159 652 180 59ð13Þ ½0.13 ppt%; ð6Þ

with 1σ uncertainty in the last two digits in parentheses.
Figure 1 shows the good agreement of this 2022 determi-
nation at Northwestern with our 2008 determination at
Harvard [37] and an uncertainty that is improved by a factor
of 2.2. Because uncertainty correlations from similar
measurement methods are difficult to determine, we do
not recommend averaging our two determinations. Table I
lists uncertainty contributions to the final result. The
statistical uncertainty is from the fits that extract f̄c and
ν̄a. The two dominant uncertainties have been discussed—
cyclotron broadening and cavity shifts (treated as correlated
for nearby fields). The nuclear paramagnetism uncertainty
is based upon the measured temperature fluctuations of the
silver trap electrodes. The anomaly power shift uncertainty
comes from the measured frequency dependence on drive
strength.

Several SM sectors together predict
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The Dirac prediction [20] is first on the right. QED provides
the asymptotic series in powers of α, along with the muon
and tauon contributions aμτ [40]. The constants C2 [21], C4

[22,23], C6 [24,25], and C8 [26] are calculated exactly, but
require measured lepton mass ratios as input [29]. The
measurements are so precise that a numerically calculated
tenth order C10 [27,28] is required and tested. A second
evaluation of C10 [41] differs slightly for reasons not yet
understood and the open points in Figs. 1 and 5 use this
alternative. Hadronic and weak interaction contributions
are ahadronic [30–32] and aweak [33–36]. The exact C8 and
the numerical C10 are remarkable advances that reduce the
calculation uncertainty well below the uncertainties
reported for the measured μ=μB and α.
The most precise αmeasurements [38,39], needed for the

SM prediction of g=2 in Eq. (7), disagree by 5.5σ, about
10 times our measurement uncertainty (Fig. 1). Until
the discrepancy is resolved, the best that can be said is
that the predicted and measured μ=μB agree to about
δðg=2Þ ¼ 0.7 × 10−12, half of the α discrepancy. A generic
chiral symmetry model [63] then suggests that the
electron radius is less than Re ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jδðg=2Þj

p
ℏ=ðmcÞ ¼

3.2 × 10−19 m, and that the mass of possible elec-
tron constituents must exceed m( ¼ m=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jδðg=2Þj

p
¼

620 GeV=c2. If δðg=2Þ would equal our μ=μB deter-
mination uncertainty, then Re ¼ 1.4 × 10−19 m and
m( ¼ 1.4 TeV=c2.
A 2.2 times reduced δðg=2Þwould bring us to the level of

the intriguing 4.2 standard deviation discrepancy between
the measured and predicted muon magnetic moment
[43,64]. The muon’s BSM sensitivity, expected to be 40
000 times higher (the ratio of muon and electron masses), is
largely offset by our 3150 times smaller uncertainty.
The fine structure constant α is the fundamental measure

of the strength of the electromagnetic interaction in the low
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FIG. 4. (a) Measured g=2 − 1.001 159 652 180 59 before
(white) and after (red) cavity-shift correction. (b) Measurements
take place in valleys of the cyclotron damping rate where
spontaneous emission is inhibited.

TABLE I. Largest uncertainties for g=2.

Source Uncertainty × 1013

Statistical 0.29
Cyclotron broadening 0.94
Cavity correction 0.90
Nuclear paramagnetism 0.12
Anomaly power shift 0.10
Magnetic field drift 0.09

Total 1.3
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from summing all mode contributions. This calculation
assumes the mode frequencies of a perfect cylinder, one Q
for TE modes, and another for TM modes. We calculate
with dimensions chosen to best match observed frequencies
and a single Q value for all modes. After shifts from the 72
observed modes using the ideal frequencies and the one Q
value are subtracted out, contributions for these modes
using measured frequencies and Q values are added back
in. The leading contribution to cavity shift uncertainties
comes from modifications of the field that an electron sees
from imperfections and misalignments of the trap cavity.
Figure 4(a) shows the consistency of μ=μB determinations
at 11 different magnetic fields, after each receives a
different cavity shift.
A weighted average of the 11 determinations gives

−
μ
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¼ g
2
¼ 1.001 159 652 180 59ð13Þ ½0.13 ppt%; ð6Þ

with 1σ uncertainty in the last two digits in parentheses.
Figure 1 shows the good agreement of this 2022 determi-
nation at Northwestern with our 2008 determination at
Harvard [37] and an uncertainty that is improved by a factor
of 2.2. Because uncertainty correlations from similar
measurement methods are difficult to determine, we do
not recommend averaging our two determinations. Table I
lists uncertainty contributions to the final result. The
statistical uncertainty is from the fits that extract f̄c and
ν̄a. The two dominant uncertainties have been discussed—
cyclotron broadening and cavity shifts (treated as correlated
for nearby fields). The nuclear paramagnetism uncertainty
is based upon the measured temperature fluctuations of the
silver trap electrodes. The anomaly power shift uncertainty
comes from the measured frequency dependence on drive
strength.
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statistical uncertainty is from the fits that extract f̄c and
ν̄a. The two dominant uncertainties have been discussed—
cyclotron broadening and cavity shifts (treated as correlated
for nearby fields). The nuclear paramagnetism uncertainty
is based upon the measured temperature fluctuations of the
silver trap electrodes. The anomaly power shift uncertainty
comes from the measured frequency dependence on drive
strength.

Several SM sectors together predict

g
2
¼ 1þ C2

!
α
π

"
þ C4

!
α
π

"
2

þ C6

!
α
π

"
3

þ C8

!
α
π

"
4

þ C10

!
α
π

"
5

þ ' ' ' þ aμτ þ ahadronic þ aweak: ð7Þ

The Dirac prediction [20] is first on the right. QED provides
the asymptotic series in powers of α, along with the muon
and tauon contributions aμτ [40]. The constants C2 [21], C4

[22,23], C6 [24,25], and C8 [26] are calculated exactly, but
require measured lepton mass ratios as input [29]. The
measurements are so precise that a numerically calculated
tenth order C10 [27,28] is required and tested. A second
evaluation of C10 [41] differs slightly for reasons not yet
understood and the open points in Figs. 1 and 5 use this
alternative. Hadronic and weak interaction contributions
are ahadronic [30–32] and aweak [33–36]. The exact C8 and
the numerical C10 are remarkable advances that reduce the
calculation uncertainty well below the uncertainties
reported for the measured μ=μB and α.
The most precise αmeasurements [38,39], needed for the

SM prediction of g=2 in Eq. (7), disagree by 5.5σ, about
10 times our measurement uncertainty (Fig. 1). Until
the discrepancy is resolved, the best that can be said is
that the predicted and measured μ=μB agree to about
δðg=2Þ ¼ 0.7 × 10−12, half of the α discrepancy. A generic
chiral symmetry model [63] then suggests that the
electron radius is less than Re ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jδðg=2Þj

p
ℏ=ðmcÞ ¼

3.2 × 10−19 m, and that the mass of possible elec-
tron constituents must exceed m( ¼ m=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jδðg=2Þj

p
¼

620 GeV=c2. If δðg=2Þ would equal our μ=μB deter-
mination uncertainty, then Re ¼ 1.4 × 10−19 m and
m( ¼ 1.4 TeV=c2.
A 2.2 times reduced δðg=2Þwould bring us to the level of

the intriguing 4.2 standard deviation discrepancy between
the measured and predicted muon magnetic moment
[43,64]. The muon’s BSM sensitivity, expected to be 40
000 times higher (the ratio of muon and electron masses), is
largely offset by our 3150 times smaller uncertainty.
The fine structure constant α is the fundamental measure

of the strength of the electromagnetic interaction in the low
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1!

0
1

2

3

)
-1

2
  (

10
2g

"

3 3.5 4 4.5 5 5.5
magnetic field (T)

(a)
1.001 159 652 180 59!

2
g

 = 
2
g

"

80 90 100 110 120 130 140 150
cyclotron frequency (GHz)

2!10

1!10) (
H

z)
#

/(2
c$

(b)

FIG. 4. (a) Measured g=2 − 1.001 159 652 180 59 before
(white) and after (red) cavity-shift correction. (b) Measurements
take place in valleys of the cyclotron damping rate where
spontaneous emission is inhibited.

TABLE I. Largest uncertainties for g=2.

Source Uncertainty × 1013

Statistical 0.29
Cyclotron broadening 0.94
Cavity correction 0.90
Nuclear paramagnetism 0.12
Anomaly power shift 0.10
Magnetic field drift 0.09

Total 1.3

PHYSICAL REVIEW LETTERS 130, 071801 (2023)
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Δgμ = gμ
exp – gμ

theo. = 498(96) × 10−11

Δge = Δgμ ×(me/mμ)2    = 0.12  × 10−12

4.2σe
B

e

?

μ
B

μ

?

×(me/mμ)2 

another factor of 2.2
and a better α measurement
Rb (Sorbonne), Cs(Berkeley), Sr? Yb?

electron g-factor: σ(ge) = 0.26 ×10-12
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We propose using trapped electrons as high-Q resonators for detecting meV dark photon dark matter.
When the rest energy of the dark photon matches the energy splitting of the two lowest cyclotron levels, the
first excited state of the electron cyclotron will be resonantly excited. A proof-of-principle measurement,
carried out with one electron, demonstrates that the method is background free over a 7.4 day search. It sets
a limit on dark photon dark matter at 148 GHz (0.6 meV) that is around 75 times better than previous
constraints. Dark photon dark matter in the 0.1–1 meV mass range (20–200 GHz) could likely be detected
at a similar sensitivity in an apparatus designed for dark photon detection.

DOI: 10.1103/PhysRevLett.129.261801

The particle nature of dark matter (DM) and its inter-
actions with the standard model (SM) of particle physics
remains a mystery, despite decades of experimental scru-
tiny [1–6]. The mass of the DM is unknown, and the
possibility that it is made of ultralight bosons and can be
described as a classical wave has received significant
inquiry in recent years [7–12]. One such ultralight dark
matter candidate is the dark photon (DP), a hypothetical
spin-1 particle [13,14] that is theoretically well motivated
and possesses cosmological production mechanisms that
can produce the observed DM abundance [15–22]. Such a
DP will generically have a kinetic mixing with the SM
photon because this term is allowed by the symmetries of
the theory (so long as the DP does not have a non-Abelian
gauge symmetry). This kinetic mixing allows dark photon
dark matter (DPDM) to be looked for in existing [23,24]
and forthcoming experiments [25].
In this Letter, we propose a promising new direct

detection technique using one-quantum transitions of one
or more trapped electrons that are initially cooled to their
cyclotron ground state. We demonstrate the viability of this
technique with a proof-of-principle measurement that sets a
limit 75 times better than previous constraints. This new
limit is only for a narrow mass range because of limitations

of an apparatus designed for making the most accurate
measurements of the electron and positron magnetic
moments [26]—to test the standard model’s most precise
predictions [27–35]. With an apparatus designed for DPDM
detection, including efficient scanning of the resonant
frequency, the mass range could be greatly extended.
The relevant properties of the DP are captured by the

Lagrangian (in natural units) [13]

L ⊃ −
1

4
F0
μνF0μν þ ϵ

2
FμνF0

μν þ
1

2
m2

A0A0
μA0μ: ð1Þ

Here A0
μ is the DP vector, F0 and F are the DP and SM

photon field strengths respectively, ϵ is the kinetic mixing
parameter, and mA0 is the mass of the DP. The DPDM
manifests as dark electric and magnetic fields oscillating at
a frequency set by the DP mass ωA0 ¼ mA0c2=ℏ, where c is
the speed of light and ℏ is the reduced Planck constant. In
the presence of a kinetic mixing with the SM photon, these
dark fields cause effective (ϵ-suppressed) SM electromag-
netic fields. These can be detected by devices sensitive to
tiny electric or magnetic fields at the frequency ωA0.
A plethora of complementary experiments have been

designed with sensitivities to different DM masses. The
frequency range we focus on, 20 to 200 GHz (i.e., 0.1 to
1 meV) is particularly challenging experimentally, yet well-
motivated theoretically by the minimal DPDM model with
purely gravitational production [15]. This range is too high
for extremely high-Q resonators (e.g., as used by ADMX
[36,37], CAPP [38–40], and HAYSTAC [41,42]). At the
same time, the corresponding photons are below the energy

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.
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• e+ g-factor measurement
- x100 better than 1987’s measurement
- most precise lepton CPT test

• me+/me- at 10-11 precision, x10,000 better than 1981’s measurement
- co-trapping proton and positron
- anti-gravity test at  δ(4̅/4)~0.03 level

Collab. with Stefan Ulmer
(HHU/CERN/RIKEN)

13−10 11−10 9−10 7−10 5−10 3−10 1−10
relative precision

  HFSHH-

  1S-2SHH-

  q/mpp-

  gpp-

  q/m+-e-e

  g+-e-e
this proposal

best lepton CPT test



21

We review the basic setup and the signal in Sec. II. We
then study different types of storage ring experiments and
estimate their sensitivity to long-range axion forces in
Secs. III, IV, V. We conclude in Sec. VI.

II. AXION FORCES AND SPIN PRECESSION
EXPERIMENTS

We consider models of the type

L ⊃ gsϕN̄N þ cψ
∂μϕ

fϕ
ψ̄γμγ5ψ ; ð1Þ

where gs is the CP violating scalar2 coupling to nucleons,
N, while gψp ¼ cψmψ

fϕ
determines the CP conserving dipole

coupling to the fermion ψ . We work with the convention
that cψ ¼ 1 absorbing the dependence in fϕ. We remain
agnostic to particular UV completions giving rise to these
couplings3 and instead focus on their phenomenology at
spin precession experiments using storage rings.
In the nonrelativistic limit4 this leads to the well-known

interaction Hamiltonian [10,11] (see also [29] for a recent
study):

Hϕ ¼ −
1

fa
∇ϕ · S; ð2Þ

which leads to the monopole-dipole potential between a
particle sourcing the coherent axion field and a spin:

VðrÞ ¼ gsg
ψ
p

8πmψ

!
1

λϕr
þ 1

r2

"
e−mϕrS · r̂; ð3Þ

where mϕ is the mass of the axion, and λϕ ∼m−1
ϕ is its

associated wavelength.
The Yukawa-like potential above has an interesting

distance dependence. Let us assume that a spin is located
at a distance d with respect to a given test mass. The test
mass, of size D, has NN ∼ nND3 nucleons, where nN is the
number density of nucleons. Obviously for D; d ≫ λϕ, the
nucleons do not produce a sizeable coherent axion field
affecting the spin—the exponential suppression makes the

force very weak at distances r > λϕ. As λϕ (mϕ) increases
(decreases), so does the reach of the classical axion field.
For D ≫ λϕ > d the number of nucleons that contribute
non-negligibly to the potential on the spin grows as
NN ∼ nNλ3ϕ. Therefore, in this regime, the total monop-
ole-dipole potential, VTðrÞ ¼ NNVðrÞ, on a spin grows
linearly with λϕ. Finally, for λϕ ≫ D, d, that is for axion
wavelengths much larger than any other scale in the
problem, all the nucleons of the test mass effectively
produce a potential on the spin and the signal is constant
with the axion mass. This dependence will be important
when estimating the effect of the axion gradient generated
by the earth on a detector made of polarized spins.
The temporal evolution of the spin (at rest) is described

by the equation

dS
dt

¼ μ × Bþ d ×Eþ S ×
∇ϕ
fϕ

: ð4Þ

The spin precession of a charged particle has 3
contributions—the two well-known magnetic dipole and
electric dipole moment contributions, and the axion gra-
dient. Any experiment looking for precise measurements of
the first two can in principle be used to search for axion
mediated forces.
Crucially for precision precession experiments, the axion

gradient is usually an environmental effect which cannot be
screened by any kind of magnetic/electric shielding. It is
also noteworthy that the axion gradient couples only to
spin, and not to orbital angular momentum. Therefore, any
precision experiment may see an effect if the direction of
the axion gradient (e.g. from the earth) is such that the
phase accumulates during the spin coherence time.

A. Geometry of storage ring experiments
and axion forces

In this section we study how storage rings which are
initially designed to measure precisely the spin precession
of a charged particle due to an EDM or anomalous
magnetic moment [see Eq. (5)], are also sensitive to axion
gradients sourced by matter. As we have seen in the
equations above, (2), (4), an axion gradient behaves as
an effective magnetic field.
In storage ring experiments, a large number of charged,

polarized particles perform circular motion under applied
electromagnetic fields. It is important to carefully study the
direction of the axion gradient relative to the spin and make
sure that the effect is not averaged out [14].
A magnetic storage ring (e.g., muon g − 2) has a vertical

applied magnetic field, which causes spin precession in the
horizontal plane. The effect of a horizontal axion gradient
will average to zero over a spin precession cycle, therefore
this geometry will be sensitive to a vertical axion gradient,
e.g., that sourced by the earth.

2The UV nature of the scalar coupling determines if it is
equivalence principle (EP) violating, or not. For example when gs
is not exactly proportional to the nucleon mass but to light
quark masses times a CP violating phase, or is generated through
the mixing with the Higgs, its EP violating behavior is below
Oð1%Þ [25].

3We acknowledge that for a QCD axion the scalar coupling,
which is CP violating, is roughly given by gs ∼ θeff

mN
fa
. In BSM

extensions with additional sources of CP violation, the induced
scalar coupling may be larger (see Ref. [26] for a comprehensive
study).

4See Refs. [27,28] for a derivation using the Foldy-Wouthuy-
sen transformation.
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spin

ωaxion XF and Mario Reig, arxiv:2310.18797
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e+ e- switch
isolates axion effect from B-field 3

FIG. 1. Axion-mediated monopole-dipole forces on electrons at different spin precession experiments, including [5, 6, 33–36].
The QCD axion band is shown in light green, taking ✓eff to lie in the range 10�20 < ✓eff < 10�10. Cyan corresponds to the
current sensitivity at the Penning trap experiment [17]. The dashed cyan will correspond to the sensitivity when the SM
discrepancy is solved. Dark blue (dashed) corresponds to future upgrades including the use of positrons. See [37] for details on
the different experimental schemes.
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single electron qubit
(cyclotron nc=0 and nc=1)

- ~100,000 lighter than atoms → 103 faster qubit operation
- free space qubit → long coherence time expected (>ms)
- scalable with surface Penning trap

trap electrode

superconducting wire
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weak interaction

A and A0 is the IS, νAA
0

i ≡ νAi − νA
0

i . The IS can be
phenomenologically written as

νAA
0

i ¼ KiμAA0 þ Fiδhr2iAA0 þ # # # ; ð1Þ

where the two terms represent the mass shift and the field
shift (FS), respectively [16,36]; μAA0 ≡m−1

A −m−1
A0 , where

mA and mA0 are the masses of isotopes A and A0, and
δhr2iAA0 is dominated by the difference in the charge radii
of the two nuclei. Both μAA0 and δhr2iAA0 are purely nuclear
quantities that do not depend on the electronic transition i,
whereas Ki and Fi are isotope-independent, transition-
dependent parameters. Given two electronic transitions,
i ¼ 1, 2, one obtains the following linear relation [16,36]:

mνAA
0

2 ¼ K21 þ F21mνAA
0

1 ; ð2Þ

with mνAA
0

i ≡ νAA
0

i /μAA0 , mδhr2iAA0 ≡ δhr2iAA0 /μAA0 , F21≡
F2/F1, and K21 ≡ K2 − F21K1.
The formulas in our treatment of NP are simplified by

introducing a geometrical description of the above leading-
order (LO) factorization, as King linearity is equivalent to
the coplanarity of the vectors. For each transition i, we can

form a vector mν!!
i ≡ ðmν

AA0
1

i ; mν
AA0

2
i ; mν

AA0
3

i Þ. The nuclear
parameters of the field and mass shifts, μAA0 and δhr2iAA0 ,

can also be written as the vectors mμ!!≡ ð1; 1; 1Þ and

mδhr2i
!!!!!

in the same space, and hence Eq. (1) becomes

mν!!
i ¼ Kimμ!!þ Fimδhr2i

!!!!!
. In this language, LO factori-

zation implies that mν!!
i must lie in the plane that is defined

by mμ!! and mδhr2i
!!!!!

, as illustrated in the Supplemental
Material [37]. Like King linearity, coplanarity is a purely
data-driven test of LO factorization since it is independent
of theoretical input. A change in Ki and Fi will merely
change the direction of mν!!

1 and mν!!
2 within the plane, but

the qualitative statement of coplanarity remains. In this
vector language we can provide a compact expression for a
nonlinearity measure,

NL ¼ 1

2
jðmν!!

1 × mν!!
2Þ · mμ!!j: ð3Þ

In terms of the King plot, NL is the area of the triangle
spanned by the three points shown in the Supplemental
Material [37]. Equivalently, in the geometrical picture,
it is half the volume of the parallelepiped defined by
mν!!

1;2 and mμ!!. A given data set is considered linear
if NL is smaller than its first-order propagated error

σNL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σkð∂NL/∂OkÞ2σ2k

q
, where the sum runs over all

measured observables Ok (modified frequency shifts and
isotope masses) with standard deviations σk.
New physics and violation of King linearity.—We now

include a NP contribution by adding a third, also factorized,
term to Eq. (1),

νAA
0

i ¼ KiμAA0 þ Fiδhr2iAA0 þ αNPXiγAA0 ; ð4Þ

namely, Xi depends on the form of the NP potential and
on the electronic transition, while γAA0 depends only on the
nuclear properties. The parameter αNP is the NP coupling
constant which we would like to probe.
For short-range NP (shorter than the nuclear size), the

electronic parameters Xi are proportional to those of the
FS, Xi ∝ Fi. In this case the NP term can be absorbed by
redefining δhr2iAA0 . Also, if the new physics couples to
electrons and nuclei according to their electric charge,
γAA0 ¼ 0 [38]. However, a long-range force with couplings
not proportional to the electric charge (and barring an
accidental cancellation) can be severely constrained by tests
of King linearity.
Equation (2) written in vectorial form becomes

mν!!
2 ¼ K21mμ!!þ F21mν!!

1 þ αNPh⃗X1ðX21 − F21Þ; ð5Þ

where h⃗ is the NP vector in reduced frequency units; that is,
hAA0 ≡ γAA0 /μAA0 and X21 ≡ X2/X1. Consequently, NP can
lead to a deviation from coplanarity if and only if (i) the
new force is not short-range, X21 ≠ F21, and (ii) h⃗ is not
aligned with any linear combination of mμ!!, mν!!

1, or mν!!
2.
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FIG. 1. Limits on the electron and neutron couplings (yeyn) of a
new boson of mass mϕ (for the experimental accuracies σi
specified on the labels). Constraint from existing IS data: Caþ

(397 vs 866 nm [19], the solid red line). IS projections (the
dashed lines) for Caþ (S → D transitions), Srþ, Sr/Srþ, and Ybþ.
For comparison, existing constraints from other experiments are
shown as shaded areas: fifth force (dark orange) [20,21], ðg − 2Þe
[22,23] combined with neutron scattering (light blue) [24–27] or
SN 1987A (light orange) [28], and star cooling in globular
clusters (orange) [29–33]. The gray line at 17 MeV indicates the
yeyn values required to accommodate the Be anomaly [34,35].
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