Optically-trapped membranes for highfrequency gravitational wave detection

Quantum Sensing for Fundamental Physics

November 20, 2024

Christoph Reinhardt (DESY, FH-ALPS)

Nanomechanical membrane resonators

Silicon nitride (SiN) membrane (typically 10 to 100 nm thick)

Microscope & SEM images

Mechanical resonances

m = n = 1, $f_{11} = 0.4$ MHz

$$m = n = 3, f_{33} = 1.2 \text{ MHz}$$

$$f_{mn} = \frac{1}{2\ell} \sqrt{\frac{\sigma}{\rho} (m^2 + n^2)}$$

Mechanical stress: $\sigma = 1$ GPa Mass density: $\rho = 3000$ kg/m³

[1] B. M. Zwickl, et al. Applied Physics Letters 92.10 (2008)

[1]

Optical trapping of a glass sphere

Dielectric (polarizable) particle is attracted to region of maximum field

$$U(x) = -\frac{1}{2}\alpha E^2(x)$$

$$f_{\rm trap} = \frac{1}{2\pi} \sqrt{\frac{1}{m} \frac{d^2 U}{dx^2}}$$

https://physics.aps.org/articles/v13/s4

Optical trapping of a membrane

- Straight-forward installation of membrane chip inside cavity
- Optical standing wave inside cavity provides a harmonic potential for membrane
 - \rightarrow optical spring constant [2-4]

$$k_{\rm opt} = \frac{d^2 U_{\rm opt}}{dx^2} = \frac{16\pi \mathcal{P}}{\lambda} \frac{|r|}{c} \frac{|r|}{|t|}$$

 Membrane's oscillation frequency depends on optical power

$$f_{\rm tot}(\mathcal{P}) = \sqrt{\frac{k_{\rm m} + k_{\rm opt}(\mathcal{P})}{m_{\rm eff}}}$$

[2] Chang, D. E., Ni, K. K., Painter, O., & Kimble, H. J. (2012). Ultrahigh-Q mechanical oscillators through optical trapping. *New Journal of Physics*, *14*(4), 045002
[3] Ni, K. K., Norte, R., Wilson, D. J., Hood, J. D., Chang, D. E., Painter, O., & Kimble, H. J. (2012). Enhancement of mechanical Q factors by optical trapping. *Physical review letters*, *108*(21), 214302
[4] Barasheed, Abeer Z., Tina Müller, and Jack C. Sankey. "Optically defined mechanical geometry." *Physical Review A* 93.5 (2016): 053811

DESY. | Optically-trapped membranes for high-frequency gravitational wave detection | Christoph Reinhardt, 20.11.2024

High-frequency gravitational wave detector

Resonant enhancement if frequency of membrae and gravitational wave coincide $f_{\rm m} = f_{\rm GW}$

[5] Arvanitaki, et al. *Physical review letters* 110.7 (2013): 071105 [6] Aggarwal, et al. *Physical review letters* 128.11 (2022): 111101

Detector sensitivity

Thermal noise-limited strain sensitivity on resonance: $h \approx \frac{4}{L} \left[k_B \frac{T}{m(2\pi f_{\rm GW})^3 Q} \right]^{1/2}$

[5] Arvanitaki, et al. *Physical review letters* 110.7 (2013): 071105 [6] Aggarwal, et al. *Physical review letters* 128.11 (2022): 111101

DESY. | Optically-trapped membranes for high-frequency gravitational wave detection | Christoph Reinhardt, 20.11.2024

Predicted sensitivity & signals

Goal: similar sensitivity to Levitated Sensor Detector [6]

[6] Aggarwal, et al. Physical review letters 128.11 (2022): 111101

DESY. | Optically-trapped membranes for high-frequency gravitational wave detection | Christoph Reinhardt, 20.11.2024

Evolution of mechanical thin-film resonators

Images (left to right):

Verbridge et al., Appl. Phys Lett. (2006) Thompson et al., Nature (2008) Reinhardt et al., Phys. Rev. X (2016) Tsaturyan et al., Nat. Nano (2017) Ghadimi et al., Science (2018) Bereyhi et al., Nature Comm. (2022) Bereyhi et al., Phys. Rev. X (2022) Pratt et al., Phys. Rev. X (2023)

Design target: ten times larger membranes & SiN \rightarrow Si

Phononic crystal membrane [7,8]	Demonstrated	Target	
	<i>ℓ</i> ~3 mm	~10 <i>l</i>	
	$f \sim 10^6 \text{ Hz}$	$f \sim 10^4 \dots 10^5 \text{ Hz}$	
	$Q \sim 10^{9}$	$Q > 10^{12}$	
R-3 mm			Scaling
E Car			$f \propto \ell^{-1}$
Proposed trampoling [0]	Demonstrated	Townst	$Q \propto \ell^2$
Branched trampoline [9]	Demonstrated	Target	
	<i>ℓ</i> ~3 mm	~10 <i>l</i>	
	$f \sim 10^5 \; {\rm Hz}$	$f \sim 10^3 \dots 10^4 \text{ Hz}$	
	$Q \sim 10^{9}$	$Q > 10^{12}$	
500 µm			

[7] Tsaturyan, Yeghishe, et al. "Ultracoherent nanomechanical resonators via soft clamping and dissipation dilution." *Nature nanotechnology* 12.8 (2017): 776-783
[8] <u>https://nbi.ku.dk/english/research/quantum-optics-and-photonics/quantum-optomechanics/ultracoherent-mechanical-devices/</u>
[9] Bereyhi, Mohammad J., et al. "Hierarchical tensile structures with ultralow mechanical dissipation." *Nature Communications* 13.1 (2022): 3097

Design target: ten times larger membranes & SiN → Si

Phononic crystal membrane [7,8]	Demonstrated	Target	
	<i>ℓ</i> ~3 mm	~10 <i>l</i>	
	$f \sim 10^6 \text{ Hz}$	$f \sim 10^4 \dots 10^4$) ⁵ Hz
3 mm	$Q \sim 10^{9}$	$Q > 10^{12}$	Superradiance e.g., Sprague, et al., 2409.03714
Branched trampoline [9]	Demonstrated	Target	
a the second sec	<i>ℓ</i> ~3 mm	~10 <i>l</i>	Neutron star mergers e.g., Ecker, et al., 2403.0324
	$f \sim 10^5 \text{ Hz}$	$f \sim 10^3 \dots 10^3$) ⁴ Hz
	$0 \sim 10^9$	$0 > 10^{12}$	

[7] Tsaturyan, Yeghishe, et al. "Ultracoherent nanomechanical resonators via soft clamping and dissipation dilution." *Nature nanotechnology* 12.8 (2017): 776-783
[8] <u>https://nbi.ku.dk/english/research/quantum-optics-and-photonics/quantum-optomechanics/ultracoherent-mechanical-devices/</u>
[9] Bereyhi, Mohammad J., et al. "Hierarchical tensile structures with ultralow mechanical dissipation." *Nature Communications* 13.1 (2022): 3097

Towards a prototype detector

Goal: table-top prototype

- Meter-scale optical cavities
- cm² scale membranes made out of crystalline silicon with $Q > 10^{12}$
- Cryogenically cooled to 10 K

Huang, et al., Nature 626, 512–516 (2024)

Towards a prototype detector

Goal: table-top prototype

- Meter-scale optical cavities
- cm² scale membranes made out of crystalline silicon with $Q > 10^{12}$
- Cryogenically cooled to 10 K

Reinhardt, McGill University (2018)

Closing remarks

Available infrastructure and expertise at DESY could enable a cryogenic 100-m-scale experiment

ALPS II / cryoplatform infrastructure at DESY

Synergies: membrane pressure sensor [9] (unprecedented 10 decade measurement range)

[10] Reinhardt, et al. ACS Photonics, 11(4), 1438-1446 (2024)[11] Reinhardt, et al. EU Patent Application, EP4446714, (2023)

Thank you

Christoph Reinhardt christoph.reinhardt@desy.de +49-40-8998-5055