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Frequency estimation
You have some time-series data. You think it’s described by an  
oscillation at a single frequency . How do you estimate ?ω ω
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The obvious solution: discrete Fourier transform
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how precise 
is that peak 

location? 
what about the  

width?



Problems with the  
classical approach

Even with perfect data, Nyquist’s theorem says Δω ∼ 1/T

But what if your data is polluted by amplitude noise?

width of peak shifts: small, but it’s there!



Quantum lets us do better
With optimal quantum control, we can gain a factor of T: 

 
Δω ∼ 1/T → 1/T2

classical, 
or SQL

optimal 
control

Even better for a frequency drift:  Δ ·ω ∼ 1/T3

The trick is to let  modulate the level splitting of a qubit, 
and use a time-dependent control Hamiltonian to poke the system 

at judiciously-chosen intervals. Amplitude noise never enters!

ω

This actually works!! Let’s see how.

We now turn to the experiment, where we realize the
optimal control depicted in Fig. 1(c). The experimental setup
consists of a superconducting transmon circuit [28] that is
dispersively coupled to a waveguide cavity [29]. The qubit
system is comprised of the lowest two levels of the circuit and
is described by the Pauli spin operators σx, σy, and σz. The
dispersive interaction between the qubit and the cavity,
described by the Hamiltonian Hint ¼ −ℏχn̂σz, allows for
the rapid, quantum nondemolition measurement of the qubit
in the energy basis by probing the cavity resonance with
microwave photons. Here χ=2π ¼ −0.5 MHz is the disper-
sive coupling rate, and n̂ is the cavity photon number
operator. To create the time-dependent Hamiltonian
Hω ¼ Aℏ sinðωtÞσz=2, we drive the cavity with detuning
Δ=2π ¼ 37 MHz to populate the cavity with an average n̄ ¼
n̄0 þ A sinðωtÞ=2χ photons. The mean photon number n̄0 ¼
6.4 results in an ac Stark shift of 6.4MHz and themodulation
amplitude A=2π ¼ 0.60 MHz.
We first demonstrate the standard T2 scaling of the

quantum Fisher information that is obtained without
Hamiltonian control. An equal superposition state ðj0iþ
eiϕj1iÞ=

ffiffiffi
2

p
maximizes the QFI, and the measurement

protocol is simply a Ramsey sequence as depicted in
Fig. 2(a). A π=2 pulse is applied, followed by waiting
for a time T, followed by a second π=2 pulse and projective
measurement in the σz basis. The axis of the second π=2
rotation is adjusted such that the projective measurement in
the energy basis accumulates maximal information about
the phase of the qubit. The QFI is given in terms of the

Bures distance [30] ds2 ¼ 2ð1 − jhψωjψωþdωijÞ, where
IðQÞ
ω ¼ 4ds2=dω2. As such, we vary ω by a small amount
to determine the slope [Fig. 2(c)], where IðQÞ

ω ¼ ðdϕ=dωÞ2.
The frequency sensitivity is ultimately governed by the QFI
and the phase variance, which as shown in Fig. 2(d) is given
by the standard binomial error δϕ ¼ 1=

ffiffiffiffiffiffiffi
4N

p
due to

projection noise, resulting in a cumulative frequency
information of NIðQÞ

ω . As displayed in Fig. 2(e), the
frequency sensitivity improves as ω=ðATÞ, (QFI ∝ T2)
until dephasing of the qubit, characterized by T%

2 ¼ 4 μs,
degrades the sensitivity.
The key idea behind optimal coherent control is to

impose an additional time-dependent Hamiltonian HcðtÞ to
maximize the difference of the eigenvalues of hωðTÞ. In
Fig. 2(b), we display this optimal Hamiltonian control,
which consists of discrete unitary π rotations applied to
the qubit at specific optimal times: These are applied at the
antinodes of the estimated Hamiltonian rather than at the
nodes as is commonly seen in dynamical decoupling
sequences [26]. In contrast to dynamical decoupling pulses,
whose object is to refocus diverging states and prolong
coherence, our control pulses do the opposite: The objec-
tive is to separate as quickly as possible two quantum states
corresponding to nearby values of the frequency in order to
improve our resolution of that parameter; hybrid schemes
have very recently been proposed [27]. In Fig. 2(e), we
show how under optimal control the frequency sensitivity
attains the ultimate limit δω=δϕ ¼ π=ðAT2Þ for short times

(a) (c)

(d)

(e)

(b)

FIG. 2. Frequency metrology with optimal control. (a) Schematic of the estimation task: The qubit is prepared in a superposition of
energy eigenstates ðj0iþ j1iÞ=

ffiffiffi
2

p
, followed by an interaction with a time-periodic Hamiltonian with frequency ω for a certain time,

followed by a π=2 pulse and projection in the σz basis to determine the acquired phase. (b) The energy eigenvalue difference of
Hamiltonian HωðtÞ is sketched in time, together with the optimal coherent control pulses (repeated π pulses at the antinodes of the
oscillating Hamiltonian) designed to acquire maximum frequency information. This results in the effective total Hamiltonian HeffðtÞ.
The acquired phase is the time integral of this function. (c) The frequency sensitivity is determined by varying ω, and a linear fit
determines dϕ=dω. (d) The phase uncertainty δϕ versus experimental repetition number N shows that the phase uncertainty is given by
the binomial error 1=

ffiffiffiffiffiffiffi
4N

p
(solid line). (e) The frequency sensitivity for the uncontrolled (red circles) and optimal control (blue

diamonds) attains the respective limits (solid lines) for times shorter than the decoherence time. The error bars indicate the estimated
standard deviation of slope dω=dϕ from the linear regression fit as in panel (c). (e) (Inset) The quantum Fisher information associated
with a given measurement protocol (uncontrolled, red; controlled, blue), determined from the slope of the acquired phase versus
frequency is displayed on a log-log plot versus the time.
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Setup: B-field and 
superconducting qubit

Flux modulates qubit 
level spacing:
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H!(t) =
A~
2

sin(!t)�z
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Bz = B0 sin(!t)

Goal is quantum  
parameter estimation: 

use measurements of the qubit 
to estimate Hamiltonian parameter ω



Metrology and  
Fisher Information

Suppose we are trying to measure , which is a parameter controlling 
the probability distribution of an observable X: 

g
X ∼ pg(X)

Cramér-Rao bound tells us the best we can do:
<latexit sha1_base64="vXGez9p2p4nvklmFYy+HU4ykYdU="></latexit>

h�2ĝi � 1

vIg

mean squared 
deviation

unbiased 
estimator

Fisher information:
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Ig =

Z
pg(X)[@g ln pg(X)]2 dX

amount of 
data



Quantum metrology
In a quantum measurement,  comes from measurements on 

quantum states parameterized by , i.e. 
pg(X)

g |ψg⟩
The relevant quantity is the quantum Fisher information:

<latexit sha1_base64="FDMMtWxNg6b8Nw1UIi5AdZJboww="></latexit>

I(Q)
g = 4

"
h@g g|@g gi �

���h g|@g gi
���
2
#

Measures distinguishably of two states under small variations of g

SQL: I(Q)
g ∝ N Heisenberg: I(Q)

g ∝ N2

What about scaling with measurement time?



Time-dependent metrology
Suppose our parameter multiplies a time-independent Hamiltonian, 

Hg = gH0

If we let the system evolve for time , we have T |ψg⟩ = e−igH0T |ψ0⟩

Easy to show that I(Q)
g = 4T2[⟨H2

0⟩g − ⟨H0⟩2
g]

Lessons: we don’t want to measure in an eigenstate of  where 
the variance vanishes, but no matter what,   

H0
σg ∝ 1/T

But we can let the system evolve with a time-dependent Hamiltonian!

<latexit sha1_base64="Kf0Zf2bTD/5hmR4VsckY3j1UD0U="></latexit>

I(Q)
g = 4Var[hg(T )]| 0i
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hg(T ) = iU†
g (0 ! T )@gUg(0 ! T )

unitary evolution (time-ordered exponential) 
under Hg(t)



Optimal control for frequency
Let’s go back to our original problem:
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H!(t) =
A~
2

sin(!t)�z

<latexit sha1_base64="4c9bJ61eBLIRRODNCrnEZdki91c="></latexit>

=) h!(t) =
A~
2

t cos(!t)�z

H commutes with itself at different times, no time-ordering necessary

Eigenvalues:
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µ± = ±A~
2

t cos(!t)

The control step is best explained in pictures:

<latexit sha1_base64="yKrJIbT83DVJeVxSapIE+YXDQpM="></latexit>

=) I(Q)
! =

⇣Z T

0
[µ+(t)� µ�(t)] dt

⌘2

If, for example, the parameter to be estimated is a multipli-
cative factor [20] on a static Hamiltonian, Hg ¼ gH0, then,
given that unitary evolution for a time T is described by
Ug ¼ expð−igH0TÞ, the quantum Fisher information scales
in timeas Ig ∝ T2 [20].However, if theHamiltonian is instead
time dependent [14,21], the quantum Fisher information may
exceed this scaling for certain parameters, reaching a scaling
of Ig ∝ T4 for estimating the frequency of an oscillating
Hamiltonian under optimal coherent control [22]. Very recent
experiments [23–25] in magnetic-field-sensing NV centers
have demonstrated that using a hybrid quantum-classical
strategy of estimating a local magnetic field value with a
quantum technique, repeated in time, together with a classical
Fourier transform can achieve a Fisher information of the
frequency scaling as T3. In this Letter, we experimentally
demonstrate T4 scaling of the quantum Fisher information in
the estimation of a Hamiltonian oscillation frequency for a
pseudo-spin-half system. This quantum enhanced scaling has
been proved [22] to be the best allowed by quantum
mechanics in the kind of system we consider in this work.
This improved scaling is achieved through adaptive optimal
control where an additional control Hamiltonian that depends
on the estimated parameter is applied to the system to enhance
sensitivity.We show that theT4 scaling is robust against small
variations in the control Hamiltonian, thus allowing for
adaptive control.
To illustrate how optimal control can be used to maximize

the quantum Fisher information, we consider a time-depen-
dent Hamiltonian imposed on a two-level quantum system
HωðtÞ ¼ Aℏ sinðωtÞσz=2, describing the periodic modula-
tion of the energy levels of the system with amplitude A as
shown in Fig. 1(a). Our focus is to maximize the quantum
Fisher information of the modulation frequency ω, that is, to
minimize the overlap of two quantum states jψωi and
jψωþδωi after time evolution under the Hamiltonian for time
T. We will show that the optimal choice of quantum states
is a superposition of energy eigenstates ðj0iþ eiϕj1iÞ=

ffiffiffi
2

p
,

which accumulate different phases ϕωðTÞ under the
Hamiltonian evolution.
To formalize our discussion of the quantum Fisher infor-

mation, we reformulate Eq. (2) as IðQÞ
ω ¼ 4Var½hωðTÞ&jψ0i,

where hωðTÞ¼iU†
ωð0→TÞ∂ωUωð0→TÞ,Uωð0 → TÞ is the

unitary evolution of the initial state jψ0i under the
Hamiltonian, and Var½·& represents the variance. In this form,
we can see that the quantum Fisher information is related to
the squared difference between the minimum and maximum
eigenvalues of hωðTÞ.
To determine the eigenvalues of hωðTÞ, we break the

unitary evolution Uωð0 → TÞ into infinitesimal time inter-
vals as discussed in Ref. [22] and consider the eigen-
values of hωðtÞ versus the time. In the current case, the
Hamiltonian commutes with itself at different times, so we
arrange the system to be in a superposition of the
eigenstates of ∂ωHωðtÞ=ℏ, such that the eigenvalues main-
tain maximal separation. These eigenvalues simply evolve
as μ'ðtÞ ¼ 'At cosðωtÞ=2. In Fig. 1(b), we sketch μ'ðtÞ.
The quantum Fisher information (QFI) about the frequency
ω associated with an evolution for time T is given by

IðQÞ
ω ¼

"Z
T

0
½μþðtÞ − μ−ðtÞ&dt

#
2

; ð3Þ

which increases as T2. Figure 1(c) displays how additional
control at the crossing points can be used to dramatically
enhance the QFI. By applying a control to guide the qubit
along a trajectory that maximizes the integral (3), the QFI
can increase instead as T4 as shown in Fig. 1(d). The
intuitive reason for the T4 scaling versus the T2 scaling is
that, for time-independent Hamiltonians, two nearby quan-
tum states corresponding to different values of the param-
eter can only diverge from each other with constant
velocity, whereas in time-dependent Hamiltonians, they
can accelerate away from each other, giving greater
quantum distinguishability of the states in the same period
of time [22,26,27].

(a) (b)

(c)

(d)

FIG. 1. Frequency estimation of a time-periodic Hamiltonian. (a) The experiment consists of a transmon qubit dispersively coupled to
a waveguide cavity. The qubit is subject to a time-dependent Hamiltonian HωðtÞ, and the task is to estimate the frequency ω. (b) The
eigenvalues μ' of ∂ωHωðtÞ=ℏ. The quantum Fisher information is related to the integral of μþðtÞ − μ−ðtÞ, which is alternately positive or
negative. (c) A control HcðtÞ is used to guide the qubit evolution such that μþðtÞ and μ−ðtÞ are maximally separated. (d) The scaling of
the quantum Fisher information for the uncontrolled and controlled measurement evolution, showing scaling as T2 and T4, respectively.
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(Time-dependent)  
control maximally 

separates eigenvalues 
to maximize QFI 



Optimal frequency estimation
Prepare qubit in a superposition of  eigenstates, which maximizes QFI: Hω

|ψω⟩ =
1

2
( |0⟩ + |1⟩)

Evolution under  and control will make the two eigenstates acquire 
a relative phase . Measure  (ideally, non-destructively):

Hω
ϕ ϕ

<latexit sha1_base64="S85MXPK9N/SQsAQjTTdqBqbG4Ic="></latexit>
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We now turn to the experiment, where we realize the
optimal control depicted in Fig. 1(c). The experimental setup
consists of a superconducting transmon circuit [28] that is
dispersively coupled to a waveguide cavity [29]. The qubit
system is comprised of the lowest two levels of the circuit and
is described by the Pauli spin operators σx, σy, and σz. The
dispersive interaction between the qubit and the cavity,
described by the Hamiltonian Hint ¼ −ℏχn̂σz, allows for
the rapid, quantum nondemolition measurement of the qubit
in the energy basis by probing the cavity resonance with
microwave photons. Here χ=2π ¼ −0.5 MHz is the disper-
sive coupling rate, and n̂ is the cavity photon number
operator. To create the time-dependent Hamiltonian
Hω ¼ Aℏ sinðωtÞσz=2, we drive the cavity with detuning
Δ=2π ¼ 37 MHz to populate the cavity with an average n̄ ¼
n̄0 þ A sinðωtÞ=2χ photons. The mean photon number n̄0 ¼
6.4 results in an ac Stark shift of 6.4MHz and themodulation
amplitude A=2π ¼ 0.60 MHz.
We first demonstrate the standard T2 scaling of the

quantum Fisher information that is obtained without
Hamiltonian control. An equal superposition state ðj0iþ
eiϕj1iÞ=

ffiffiffi
2

p
maximizes the QFI, and the measurement

protocol is simply a Ramsey sequence as depicted in
Fig. 2(a). A π=2 pulse is applied, followed by waiting
for a time T, followed by a second π=2 pulse and projective
measurement in the σz basis. The axis of the second π=2
rotation is adjusted such that the projective measurement in
the energy basis accumulates maximal information about
the phase of the qubit. The QFI is given in terms of the

Bures distance [30] ds2 ¼ 2ð1 − jhψωjψωþdωijÞ, where
IðQÞ
ω ¼ 4ds2=dω2. As such, we vary ω by a small amount
to determine the slope [Fig. 2(c)], where IðQÞ

ω ¼ ðdϕ=dωÞ2.
The frequency sensitivity is ultimately governed by the QFI
and the phase variance, which as shown in Fig. 2(d) is given
by the standard binomial error δϕ ¼ 1=

ffiffiffiffiffiffiffi
4N

p
due to

projection noise, resulting in a cumulative frequency
information of NIðQÞ

ω . As displayed in Fig. 2(e), the
frequency sensitivity improves as ω=ðATÞ, (QFI ∝ T2)
until dephasing of the qubit, characterized by T%

2 ¼ 4 μs,
degrades the sensitivity.
The key idea behind optimal coherent control is to

impose an additional time-dependent Hamiltonian HcðtÞ to
maximize the difference of the eigenvalues of hωðTÞ. In
Fig. 2(b), we display this optimal Hamiltonian control,
which consists of discrete unitary π rotations applied to
the qubit at specific optimal times: These are applied at the
antinodes of the estimated Hamiltonian rather than at the
nodes as is commonly seen in dynamical decoupling
sequences [26]. In contrast to dynamical decoupling pulses,
whose object is to refocus diverging states and prolong
coherence, our control pulses do the opposite: The objec-
tive is to separate as quickly as possible two quantum states
corresponding to nearby values of the frequency in order to
improve our resolution of that parameter; hybrid schemes
have very recently been proposed [27]. In Fig. 2(e), we
show how under optimal control the frequency sensitivity
attains the ultimate limit δω=δϕ ¼ π=ðAT2Þ for short times

(a) (c)

(d)

(e)

(b)

FIG. 2. Frequency metrology with optimal control. (a) Schematic of the estimation task: The qubit is prepared in a superposition of
energy eigenstates ðj0iþ j1iÞ=

ffiffiffi
2

p
, followed by an interaction with a time-periodic Hamiltonian with frequency ω for a certain time,

followed by a π=2 pulse and projection in the σz basis to determine the acquired phase. (b) The energy eigenvalue difference of
Hamiltonian HωðtÞ is sketched in time, together with the optimal coherent control pulses (repeated π pulses at the antinodes of the
oscillating Hamiltonian) designed to acquire maximum frequency information. This results in the effective total Hamiltonian HeffðtÞ.
The acquired phase is the time integral of this function. (c) The frequency sensitivity is determined by varying ω, and a linear fit
determines dϕ=dω. (d) The phase uncertainty δϕ versus experimental repetition number N shows that the phase uncertainty is given by
the binomial error 1=

ffiffiffiffiffiffiffi
4N

p
(solid line). (e) The frequency sensitivity for the uncontrolled (red circles) and optimal control (blue

diamonds) attains the respective limits (solid lines) for times shorter than the decoherence time. The error bars indicate the estimated
standard deviation of slope dω=dϕ from the linear regression fit as in panel (c). (e) (Inset) The quantum Fisher information associated
with a given measurement protocol (uncontrolled, red; controlled, blue), determined from the slope of the acquired phase versus
frequency is displayed on a log-log plot versus the time.
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This is a true 
quantum advantage! 

(Up to the qubit 
coherence time)



What about longer times?
If the signal is very coherent, just time-stamp the measurements 

at intervals of  with the best clock you can find!Δt
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This lets you beat the qubit coherence time limit:
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Application: axions + HPD
HPD review in one slide: 

In absence of an axion, slowly drifting precession frequency. 
Axion gives a “kink” in this background behavior

need 
incredible 
precision!



Use same optimal control scheme to measure a frequency drift:
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Frequency drift proportional to axion coupling: no information in the 
amplitude A, which only appears as an overall scale. 

Robust to amplitude noise!

Application: axions + HPD


