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Frequency estimation

You have some time-series data. You think it's described by an
oscillation at a single frequency w. How do you estimate @?
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The obvious solution: discrete Fourier transform
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Proplems with the
classical approach

Even with

perfect data, Nyquist’'s theorem says Aw ~ 1/T

But what if your data is polluted by amplitude noise?
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width of peak shifts: small, but it's there!



Quantum lets us do better

With optimal guantum control, we can gain a factor of T:

Aw ~ 1/T — 1/T?

classical, optimal
or SQL  control

Fven better for a frequency drift: A@ ~ 1/T°>

The trick is to let @ modulate the level splitting of a qubit,

and use a time-dependent control Hamiltonian to poke the system
at judiciously-chosen intervals. Amplitude noise never enters!

This actually works!! Let's see how.
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Setup: B-field and
superconducting qubit

Flux modulates qubit
level spacing:

B, = By sin(wt) ==l @ H,, (t) — g Siﬂ(Wt)Uz

Goal is guantum
parameter estimation:
use measurements of the qubit
to estimate Hamiltonian parameter @




Metrology ano
Fisher Information

Suppose we are trying to measure g, which is a parameter controlling
the probability distribution of an observable X: X ~ pg(X)

Cramér-Rao bound tells us the best we can do:

. 1
<529> > T
// /”U g
mean squared unbiased ~ amount of Fisher information:
deviation estimator data

Iy = /pg(X)[ag In py (X)) dX



Quantum metrology

In a quantum measurement, pg(X) comes from measurements on
guantum states parameterized by g, i.e. h//g)

The relevant quantity is the quantum Fisher information:
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]éQ) =4 <ag¢g‘ag¢g> - |<¢g|ag¢g>|

Measures distinguishably of two states under small variations of g

SQL: I;Q) x N Heisenberg: I(éQ) x N?

What about scaling with measurement time”?



Time-dependent metrology

Suppose our parameter multiplies a time-independent Hamiltonian,

If we let the system evolve for time T, we have |l//g> = e_igHOTl l//o)

Fasy to show that Ing) = 4T (Hg)g — <HO>§

Lessons: we don’t want to measure in an eigenstate of Hy where

the variance vanishes, but no matter what, O, O 1/T

But we can let the system evolve with a time-dependent Hamiltonian!
hy(T) = iU (0 — T)9,Uy (0 — T)
ISQ) = 4 Var|hg(T)]y,) 4

unitary evolution (time-ordered exponential)
under Hg(t)



Optimal control for frequency

Let's go back to our original problem:

Ah Ah
H, (t) — - Sin(wt)()'z —> h(t) = 775 cos(wt)o,

H commutes with itself at different times, no time-ordering necessary

. Ah T 2
Eigenvalues: p4 = ::775 cos(wt) — ILQ) = (/ g (1) — p_(1)] dt)
0

The control step Is best explained in pictures:
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Optimal frequency estimation

Prepare qubit in a superposition of H_ eigenstates, which maximizes QFI:

1
w,) =—=(10)+]1))
V2
Evolution under H, and control will make the two eigenstates acquire
a relative phase ¢. Measure ¢ (ideally, non-destructively):
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This Is a true
guantum advantage! WwT' 2 m — ;
(Up to the qubit 0.1 §
coherence time) T >1T5 :

Sab/(27 8¢) (MHz)




What about longer times”?

If the signal is very coherent, just time-stamp the measurements
at intervals of At with the best clock you can find!

442 A A?
@ = E (At)? | sin(wjAt) —sin(w(j — 1)At)| ~ T
w? 02
j=1
This lets you beat the qubit coherence time limit:
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Application: axions + APD

HPD review In one slide:

B.(z) = Bo(1 + az) HPD preparation relaxation
AL = MO X /Bpulse(t) dt 1 TT I EIT TTT TT 1 At
oLy
™ /
= —Nh == @;©>
BEC of spin-1 Cooper pairs BEC of spin-1 magnons SQUID and

frequency standard
measure My, (t)

_ 5xBo(1+ az)
=7 .

In absence of an axion, slowly drifting precession frequency.
Axion gives a "kKink” in this background behavior
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Application: axions + APD

Use same optimal control scheme to measure a frequency drift:

(t) = Asi +2 /9) 72 0w ~ Vo '
H;(t) = Asin(wt + wt*/2) : » W QAT JT,N,
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Frequency drift proportional to axion coupling: no information in the
amplitude A, which only appears as an overall scale.
Robust to amplitude noise!



