The Ferroaxionic Force

Based on work w/ A. Arvanitaki, J. Engel, A. Geraci, A. Hepburn and K. Van Tilburg

Amalia Madden Kavli Institute for Theoretical Physics, Santa Barbara

- Generates a neutron electric dipole moment (EDM) $d_n \simeq e \theta_{OCD} \times 10^{-18} \,\mathrm{m}$
- Experimental bound: $\theta_{OCD} < 10^{-10}$
- preserved by QCD
- The electroweak sector violates P and T, so why not QCD?

• $d_n = 0$ would mean that both parity (P) and time reversal (T) symmetries are

The QCD Axion

•
$$\mathscr{L} \supset \frac{a(x)}{32\pi^2 f_a} \tilde{G}G$$

(f_a = axion decay constant)

• The axion field dynamically solves the strong CP problem.

- QCD predicts a mass for the axion o
- Can be the dark matter and can mediate new forces

of
$$m_a \sim 6 \times 10^{-11} eV \left(\frac{10^{17} GeV}{f_a} \right)$$

$\tau = d_n(t) \times E^*$

CASPER-electric

ADMX, DM Radio, CAST, IAXO (solar), ALPS...

Photon Couplings: $\mathscr{L} \supset -\frac{g_{a\gamma\gamma}}{4}aF\tilde{F}$

Axion-photon interaction

Image: Semertzidis et al. 2022

Fermion Couplings:

 $-g_{s}a\bar{\psi}\psi + \frac{g_{p}}{2m_{\psi}}\partial_{\mu}a\bar{\psi}\gamma^{\mu}$ $\gamma_5 \psi$ $\frac{g_p}{2m_{\psi}}\sigma_{\psi} \cdot \left[\nabla a + \dot{a} \frac{\mathbf{p}_{\psi}}{m_{\psi}} \right]$ **NR** limit

monopole-dipole forces

dipole-dipole forces

ARIADNE, CASPEr-wind, QUAX

The Ferroaxionic Force

 $\mathscr{L} \supset \frac{a}{f} G\tilde{G}$

 $\mathcal{L} \supset \frac{g_p}{2m_N} \partial_\mu a \bar{N} \gamma^\mu \gamma_5 N$

Axion-mediated forces

 $\mathscr{L} \supset \frac{(\partial a)^2}{2} - \frac{m_a^2 a^2}{2} - g_s a \bar{N} N + \frac{g_p}{2m_N} \partial_\mu a \bar{N} \gamma^\mu \gamma_5 N$

 $U_{sp} = \frac{g_s g_p}{8\pi m_N} \left(\frac{m_a}{r} + \frac{1}{r^2}\right) e^{-rm_a} \left(\hat{\sigma} \cdot \hat{r}\right)$

Axion-mediated forces

 $\mathscr{L} \supset \frac{(\partial a)^2}{2} - \frac{m_a^2 a^2}{2} - \frac{g_s a \bar{N} N + \frac{g_p}{2m_N}}{2m_N} \partial_\mu a \bar{N} \gamma^\mu \gamma_5 N$ P & T odd P & T even $g_s \sim 10^{-30} \frac{10^9 \, GeV}{f_a}$ (from CKM)

Idea: what if P and T violation comes from a piezoelectric crystal with polarised nuclear spins?

Piezoelectric Crystals

• Crystal structure breaks parity symmetry $(x, y, z) \neq (-x, -y, -z)$

- Crystal structure breaks parity symmetry $(x, y, z) \neq (-x, -y, -z)$

• Deformation causes electric dipole moment across unit cell (and vice versa).

How does the axion couple to a piezoelectric material?

interacting with crystal electrons...

Expectation: a coupling that looks like a nuclear EDM

Schiff's theorem: If we treat an atom as a system of static, point-like particles, nuclear EDM is shielded by electron cloud [Schiff 1963].

Electrostatic (scalar) potential: **Nuclear Schiff Moment**

Resolution: finite size effects

Magnetic (vector) potential: **Nuclear Magnetic Quadrupole Moment**

 $\mathbf{S} \sim e \frac{\bar{\theta}_a}{m_N} R_0^2 \propto A^{2/3}$

 $S \sim eZ \frac{\bar{\theta}_a}{m_N} R_0^2 \propto Z A^{2/3}$ pear shaped nuclei

Schiff Moment

$V_e = 4\pi e \,\mathbf{S} \cdot \nabla(\delta_e(\mathbf{r}))$

non-deformed nuclei

 $\sim (0.01 - 1) \times \bar{\theta}_a e fm^3$

opposite parity orbitals ϵ_s and ϵ_p :

Schiff Moment

In a piezoelectric crystal, the ground state electron wave function is a mixture of

$$\epsilon_s |s\rangle + \epsilon_p |p\rangle$$

Magnetic Quadrupole Moment

$$V_{\mathsf{M}} = \frac{e\,\mathsf{M}}{4I(2I-1)} \left[I_m I_n + I_n I_m - \frac{2}{3} \delta_{mn} I(I+1) \right] \times t_{mn}(\sigma_e, \hat{r}_e)$$

$$M \sim Z^{2/3} \ 10 \frac{\bar{\theta}_a}{m_N} \mu_N$$

 $\sim (0.1 -$

 $\mu_n = \frac{e}{2m_p} = \text{nuclear magnetic moment}$

- 1)
$$\times \bar{\theta}_a e fm^2$$

MQM: Atomic Mixing

Effective in-medium energy density

 $|\psi\rangle_e = \epsilon_s |s\rangle + \epsilon_p |p\rangle$

Nuclear quadrupole tensor

Take a uniform slab of material with a big transverse area:

$$\left(\Box + m_a^2\right) a\left(t, \mathbf{x}\right) = -\frac{\rho_{\mathsf{S}} + \rho_{\mathsf{M}}}{f_a} \equiv$$

Like a B-field, but unaffected by magnetic shielding!

- By moving the crystal at the Larmor frequency $\omega = -\gamma_N B_0$, we pick up a resonantly enhanced, off-axis magnetization
- The separation between the crystal and NMR sample sets the range of axion masses that we are sensitive to.

Noise

The main noise source is transverse spin projection noise from the sample itself

Schiff moment:

MQM:

 $\frac{M}{\lesssim} 10^7 \times g_s^{CKM}$

21

Dipole-Dipole ($g_p \times g_p$) axion Compton wavelength $\lambda_a = m_a^{-1}$ [m] 10^{-2} 10^{-3} 10^{-4} 10^{-5} SN/NS cooling $t_{\text{int}} = 1 \text{ yr}, T_2 = 10^4 \text{ s}$ $n_N(^3_2\text{He}) = 2 \times 10^{21} \text{ cm}^{-3}$ $A = (300D)^2$ pseudoscalar coupling 10^{-4} 10^{-3} 10^{-2} 10^{-1} axion mass m_a [eV]

What's next?

- In progress: precise Schiff/MQM calculations for stable, deformed nuclei
- Density functional theory (DFT) calculations of electron wave functions near nuclei
- Further experimental investigation of candidate materials
- Squeezing protocol to reach SQUID limited noise sensitivity

- scalar coupling in vacuum.
- By sourcing virtual axions, we generate a new force that can be searched for using nuclear magnetic resonance techniques.
- While this effect does not require the QCD axion to be the dark matter, it probes a mass range where it could be.
- Complimentary to cavity experiments and astrophysical probes

Summary

Piezoelectric crystals can generate an in-medium scalar coupling of the QCD axion, via its model-independent gluon coupling, that is much larger than the

