Quantum-limited detection of new physics

Daniel Carney

Outline

- Quantum noise basics
- Example: axion cavities
- Example: heavy sterile neutrinos with levitated sensors

"Quantum measurements in fundamental physics: a user's manual" 2311.07270

Giacomo Marocco (LBL postdoc) Jacob Beckey (JILA + LBL \rightarrow UIUC)

Quantum-limited detection

The Sensitivity of the Advanced LIGO Detectors at the Beginning of Gravitational Wave Astronomy LIGO Collaboration 1604.00439

VOLUME 23, NUMBER 8

15 APRIL 1981

Quantum-mechanical noise in an interferometer

Carlton M. Caves

W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125 (Received 15 August 1980)

LIGO: m ~ 40 kg, t ~ (100 Hz)⁻¹ $\rightarrow \Delta x \sim 10^{-19}$ m

LIGO's quantum noise in more detail

 \rightarrow measure x(t)

 \rightarrow infer F(t)

Input-output formalism

Basic idea: scatter light off the cavity. Find outgoing light field (e.g., Xout = amplitude) in terms of incoming light (e.g., Xin).

$$\begin{split} \dot{X} &= \Delta Y - \frac{\kappa}{2} X - \sqrt{\kappa} X^{\text{in}}, \\ \dot{Y} &= -\Delta X - \frac{\kappa}{2} Y - \sqrt{\kappa} Y^{\text{in}} - \sqrt{2} g x, \\ \dot{x} &= \frac{p}{m}, \\ \dot{p} &= -m \omega_m^2 x - \gamma p + F^{\text{in}} - \sqrt{2} g X \end{split}$$

Typically only requires solving simple linear equations ("Heisenberg-Langevin equations")

$I/O \rightarrow$ calculate noise spectrum

$$S_{FF} = \int_{-\infty}^{\infty} dt e^{i\nu t} \langle F(t)F(0) \rangle = a \langle |Y_{in}|^2 \rangle + b \langle |X_{in}|^2 \rangle + c \langle |F_{thermal}|^2 \rangle$$
"Shot noise"
(input laser phase
fluctuations) "Back-action noise"
(noisy radiation pressure) Thermal load on mechanics
(noisy radiation pressure) SQL = point where shot and
backaction are balanced

$$SQL = point where shot and
backaction are balanced
Key physics: laser field is ~coherent state \rightarrow has
quantum vacuum fluctuations \rightarrow shot/backaction noise
 $\langle x^{in}(t)x^{in}(0) \rangle = \frac{1}{2} \langle \delta(t) \rangle$$$

Example: axion cavity searches

Similar ideas and calculations work for many things, e.g., axion searches (ADMX, HAYSTAC, DM Radio, ...)

$$V = g_{a\gamma\gamma} B_0 \int d^3 \mathbf{x} \, a \, \delta E_z$$
$$= F_Y(t) X + F_X(t) Y$$

Again assuming vacuum noise in the input (which is now a microwave transmission line), calculate similar PSD

> See e.g. K. Lehnert's Les Houches notes 2110.04912 Our review 2311.07270

Example: axion cavity searches

NB: vacuum noise reasonable for cavity f ~ GHz ~ 10 mK or higher

Quantum-limited impulse sensing

Suppose we want to detect sharp impulse ($\Delta p = \int Fdt$) with a mechanical detector

Dark matter searches with this technique

~1000 GeV-scale DM, long-range coupled to SM

~ug-scale levitated sphere

Monteiro, Afek, Carney, Krnjaic, Wang, Moore PRL 2020

 \sim 10 MeV-scale DM, coherent elastic scattering

~fg-scale levitated sphere

Afek, Carney, Moore PRL 2022

Milli-charged DM

single trapped ions/electrons

Carney, Haffner, Moore, Taylor PRL 2021, Ramani, Budker+ 2021

Integrating quantum sensors with traditional ones

- Previous examples: single DOF monitored in quantum limited way
- Next: integrate such a thing with, e.g., calorimeter array

Quantum Invisible Particle Sensor (QuIPS)

Measure:

- Sphere recoil (optical @ ~SQL)
- Escaped β electron (pixelated CCD/CMOS)
- \rightarrow Infer "invisible" (e.g., neutrino) momentum

Heavy sterile neutrinos

With a single 100 nm sphere at the standard quantum limit (SQL):

$$\Delta p_{
m SQL} = \sqrt{\hbar m_s \omega_s} = 15 \text{ keV} \times \left(\frac{m_s}{1 \text{ fg}}\right)^{1/2} \left(\frac{\omega_s/2\pi}{100 \text{ kHz}}\right)^{1/2}$$

Clear target: search for sterile neutrinos that mix with electron neutrinos, $m \sim keV-MeV$

~10⁵ radioisotopes (~1 month with 37 Ar) \rightarrow beat existing lab bounds

Carney, Leach, Moore PRX Quantum 2023

This actually works

Now building pixel calorimeter + 100 nm-scale trap at Berkeley

Mechanical detection of nuclear decays Wang, Penny, Recoaro, Siegel, Tseng, Moore 2402.13257

A brief meditation on the word "possible"

Detection beyond the Standard Quantum Limit

From Evan Hall (MIT/LIGO)

Quantum mechanics and measurement

There are targets which would require noise far below the SQL...

Example: direct detection of heavy DM via gravitational interaction with sensors. Requires noise ~10⁵ better than SQL. [Carney, Ghosh, Krnjaic, Taylor 1903.00492]

This is not possible with any sensor we have now. But I think one should proceed without fear.

Quantum mechanics itself does not impose any limit to how precisely one can measure a system.

$$|\psi\rangle = |x\rangle \implies \langle \Delta x^2 \rangle = 0$$

Quantum mechanics and measurement

There are targets which would require noise far below the SQL...

Example: direct detection of heavy DM via gravitational interaction with sensors. Requires noise $\sim 10^5$ better than SQL. [Carney, Ghosh, Krnjaic, Taylor 2018]

This is not possible with any sensor we have now. But I think one should proceed without fear.

Quantum mechanics itself does not impose any limit to how precisely one can measure a system.

Ultimately, the *fundamental* limits to what is possible in measurement are largely unknown, although we know some exist e.g. from quantum gravity...

 $\Delta x = 0 \rightarrow \Delta p = \infty$

Final comments

- Quantum mechanics imposes fundamental sources of noise.
- Quantum noise will continue to be important in variety of contexts, high energy and otherwise, **HOWEVER**
- These noise sources can often be engineered away.
- How far can we go? Are there more fundamental limits from quantum field theory, gravity, ...?

"Quantum measurements in fundamental ph a user's manual" 2311.07270

Giacomo Marocco (LBL postdoc)

Jacob Beckey (JILA + LBL \rightarrow UIUC)

Searches for new heavy neutrinos

Example: neutrino mass measurement?

Use QuIPS, statistically average 10⁶ events (~10⁴ spheres). Then with sphere uncertainty

 $\Delta p \sim 100 \text{ eV} \rightarrow \Delta x \sim 10 \text{ nm} \rightarrow \text{can in principle resolve} \sim 100 \text{ meV}$ neutrino mass

With 100 nm spheres, 1 kHz trap, this only requires ~few dB squeezing.

T.-C. Lee

J. Beckey G. Marocco