A Review: Spin-dependent Exotic Interaction

Lei Cong congllzu@gmail.com

Supervisor: Dmitry Budker Helmholtz-Institut Mainz, Germany

November 18, 2024

Spin-dependent Exotic Interactions – Who ordered that?

New boson 1 :

- Specific theoretical ideas aiming to answer unresolved key problems can produce new ultraweak interactions.
	- \blacktriangleright The strong CP problem;
	- \blacktriangleright The matter-antimatter asymmetry of the universe;
	- ▶ Dark matter:
	- \blacktriangleright The hierarchy problem;

¹ Safronova, M. S., D. Budker, D. DeMille, D. F. J. Kimball, A. Derevianko, and C. W. Clark (2018), Rev. Mod. Phys. **90** (2), 025008.

Background: spin independent potential

• Yukawa proposed massive spin-0 bosons, the exchange of which gives rise to the Yukawa potential 2 :

$$
V(r) = -g^2 \frac{e^{-Mr}}{4\pi r},\qquad(1)
$$

- \triangleright V(r) is the potential energy as a function of distance r between two particles;
- \triangleright g is the dimensionless coupling constant;
- \blacktriangleright *M* is the mass of the exchanged boson.

Yukawa Potential

Hideki Yukawa's prediction of the mediator particle, initially called the "meson" (now known as the pion), was confirmed with its discovery in cosmic rays in 1947.

2 Yukawa, H. (1935), Nippon Sugaku-Buturigakkwai Kizi Dai 3 Ki 17, 48. Zel'dovich, B.

Spin-dependent potentials – Moody and Wilczek 3

Two possibilities for spin-0 bosons couplings to fundamental fermions: the scalar vertex (s) and the pseudoscalar vertex (p).

where ψ is the fermion field, γ_5 matrices encode the spinor structure.

$$
V(r) = \frac{-g_5^1 g_5^2 e^{-m_\varphi r}}{4\pi r}; \qquad V(r) = (g_5^1 g_5^2) \frac{\partial_2 \cdot \hat{r}}{\partial_3 m} \left[\frac{m_\varphi}{r} + \frac{1}{r^2} \right] e^{-m_\varphi r};
$$

$$
V(r) = \frac{g_5^1 g_5^2}{16\pi M_1 M_2} \left[(\partial_1 \cdot \partial_r) \left[\frac{m_\varphi}{r^2} + \frac{1}{r^3} + \frac{4\pi}{3} \delta^3(r) \right] - (\partial_1 \cdot \hat{r})(\partial_2 \cdot \hat{r}) \left[\frac{m_\varphi^2}{r} + \frac{3m_\varphi}{r^2} + \frac{3}{r^3} \right] \right] e^{-m_\varphi r}.
$$

3Moody, J. Wilczek, F. New macroscopic forces? Phys. Rev. D ³⁰, 130-138 (1984).

Bosons interacting with fermions

1.Moody and Wilczek

1984, Moody and Wilczek introduced a general framework of hypothetical bosons and explored 3 potentials resulting from the exchange of spin-0 bosons, e.g. axion.

2.Dobrescu and Mocioiu

2006, Dobrescu and Mocioiu later expanded this framework to encompass 16 potentials, employing a different approach based on symmetries.

3.Fadeev et al.

2019, Fadeev et al. providing a more general framework, and classify the potentials in 9 type of physical constants.

Our review⁴

Formulation of the potentials in terms of a small number of coupling constants

Lei Cong (Helmholtz Institute Mainz) [Spin-dependent Exotic Interaction](#page-0-0) November 18, 2024 6/12

⁴ L. Cong*, W. Ji*, P. Fadeev, F. Ficek, M. Jiang, V. V. Flambaum, H.S. Guan, D. F. Jackson Kimball, M. G. Kozlov,Y. V. Stadnik, D. Budker. Spin-dependent exotic interactions, arXiv:2408.15691 (2024).

Experiment search: 1. Dedicated source-sensor experiments

Figure: Schematic figure of a dedicated source-sensor experiments.

In source-sensor experiments, the exotic interaction typically manifests as an effective magnetic field acting on the spins of the sensor.

Sensors used in experiments for exotic forces

Figure: Dedicated source-sensor experiments. From left to right, the sensors are:

- Nitrogen-vacancy (NV) centers in diamond⁵
- Neutron spin from a 129 Xe- 131 Xe-Rb comagnetometer⁶
- \bullet SmCo₅ and Alnico in Torsion pendulum⁷

5
⁵ Rong X, Jiao M, Geng J, et al. Constraints on a spin-dependent exotic interaction between electrons with single electron spin quantum sensors (2018). Phys. Rev. Lett. 121(8): 080402.

⁶ Feng Y K, Ning D H, Zhang S B, et al. Search for Monopole-Dipole Interactions at the Submillimeter Range with a ¹²⁹Xe-131Xe-Rb Comagnetometer (2022). Phys. Rev. Lett. 128(23): 231803.

7 Terrano W A, Adelberger E G, Lee J G, et al. Short-range, spin-dependent interactions of electrons: A probe for exotic pseudo-goldstone bosons (2015). Phys. Rev. Lett. 115, 201801.

2. Complementary experiments and observations to detect exotic spin-dependent interactions

• Precision Measurements: Spectroscopy of exotic atoms⁸

Figure: Schematic figure of an antiprotonic helium atom.

- \bullet Atomic and molecular parity-violation experiments⁹
- \bullet EDM experiments¹⁰

Lei Cong (Helmholtz Institute Mainz) [Spin-dependent Exotic Interaction](#page-0-0) November 18, 2024 9/12

^{8&}lt;br>⁸ Ficek, F., P. Fadeev, V. V. Flambaum, D. F. Jackson Kimball, M. G. Kozlov, Y. V. Stadnik, and D. Budker (2018), Phys. Rev. Lett. 120 (18), 183002.

⁹ Antypas, D., A. Fabricant, J. E. Stalnaker, K. Tsigutkin, V. V. Flambaum, and D. Budker (2019), Nat. Phys. 15 (2), 120. 10 Stadnik, Y. V., V. A. Dzuba, and V. V. Flambaum (2018), Phys. Rev. Lett. 120 (1), 013202.

Our review 11

Figure: Laboratory constraintson the coupling constant product $g_A g_V$ as a function of the interaction range λ shown on the bottom x-axis. The top x-axis represents the new vector boson mass $M. V_{12+13}$.

¹¹L. Cong*, W. Ji*, P. Fadeev, F. Ficek, M. Jiang, V. V. Flambaum, H.S. Guan, D. F. Jackson Kimball, M. G. Kozlov,Y. V. Stadnik, D. Budker. Spin-dependent exotic interactions, arXiv:2408.15691 (2024).

Collaborators

