Searching for New Physics with Nuclear Lineshape Data

Fiona Kirk

l l Leibniz O Z Universität O 4 Hannover

based on work with

Eric Madge, Chaitanya Paranjape, Gilad Perez, Wolfram Ratzinger (Weizmann) E. Fuchs, Ekkehard Peik, Johannes Tiedau (PTB, LUH)

November 18, 2024

Outline

Which Lineshape?

Lineshape Search for New Physics

Lineshape Bounds

Outline

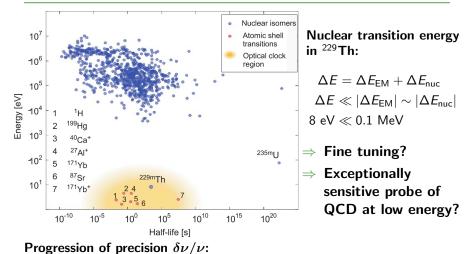
Which Lineshape?

Lineshape Search for New Physics

Lineshape Bounds

2 of 23

Fine-Tuning in Thorium-229?

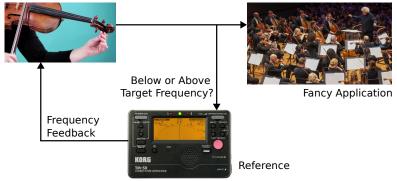


10⁻¹ (2020), 10⁻³ (2022, ISOLDE), 10⁻⁶ (March 2024, PTB), 10⁻¹¹ (June 2024, JILA)

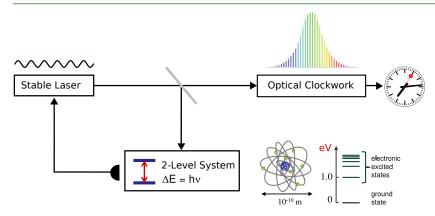
3 of 23

What Is A Clock?

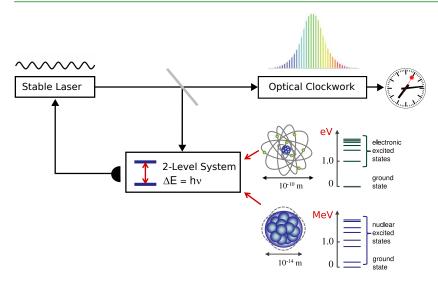
Source



What Is A Clock?



Towards A Nuclear Clock



Outline

Which Lineshape?

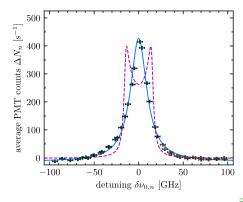
Lineshape Search for New Physics

Lineshape Bounds

5 of 23

Nuclear Lineshape Analysis in the Limit $\delta \nu_{\rm DM} \gg \nu_{\rm DM}$

 $\nu(t) \simeq \nu_0 + \delta \nu_{\text{DM}} \cos(2\pi \nu_{\text{DM}} t + \varphi_{\text{DM}})$



- In absence of DM, $I(\nu) = \delta(\nu - \nu_0)$
- In presence of DM, average over $T_{\text{DM}} = 1/\nu_{\text{DM}}$:

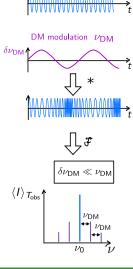
$$egin{aligned} & I(
u)
angle_{\mathcal{T}_{\mathrm{DM}}} = \int_{0}^{\mathcal{T}_{\mathrm{DM}}} rac{\mathrm{d}t}{\mathcal{T}_{\mathrm{DM}}} \delta(
u -
u(t)) \ & = rac{ heta\left(1 - \left|rac{
u -
u_0}{\delta
u_{\mathrm{DM}}}
ight|\right)/\pi}{\sqrt{\delta
u_{\mathrm{DM}}^2 - (
u -
u_0)^2}} \end{aligned}$$

 \Rightarrow Convolve with resonance lineshape

Sidebands in the Limit $\delta \nu_{\rm DM} \ll \nu_{\rm DM}$

Transition frequency:

 $\nu(t) = \exp\left\{-i2\pi\nu_0 t - i\alpha\sin(2\pi\nu\mathsf{DM}t)\right\}$



carrier frequency ν_0

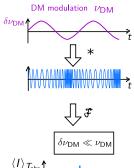
Sidebands in the Limit $\delta \nu_{\rm DM} \ll \nu_{\rm DM}$

Transition frequency:

$$\nu(t) = \exp\left\{-i2\pi\nu_0 t - i\alpha\sin(2\pi\nu\mathsf{DM}t)\right\}$$
$$= \sum_{n=-\infty}^{\infty} J_n(\alpha) \exp\left\{-2\pi i(\nu_0 + n\nu\mathsf{DM})t\right\},$$

 J_n : n^{th} Bessel function, $\alpha = \frac{\delta \nu_{\text{DM}}}{\nu_{\text{DM}}}$ modulation index

carrier frequency ν_0



Sidebands in the Limit $\delta \nu_{\rm DM} \ll \nu_{\rm DM}$

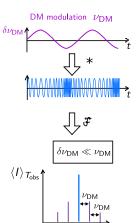
Transition frequency:

$$\nu(t) = \exp\left\{-i2\pi\nu_0 t - i\alpha\sin(2\pi\nu\mathsf{DM}t)\right\}$$
$$= \sum_{n=-\infty}^{\infty} J_n(\alpha) \exp\left\{-2\pi i(\nu_0 + n\nu\mathsf{DM})t\right\},$$

 J_n : n^{th} Bessel function, $\alpha = \frac{\delta \nu_{\text{DM}}}{\nu_{\text{DM}}}$ modulation index

 \Rightarrow The lineshape is convoluted with

$$I(\nu) = \sum_{n=-\infty}^{\infty} |J_n(\alpha)|^2 \delta \left[\nu - \left(\nu_0 + n\nu_{\text{DM}}\right)\right]$$



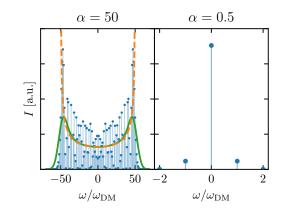
 ν_0

Nuclear Lineshape Analysis Regimes

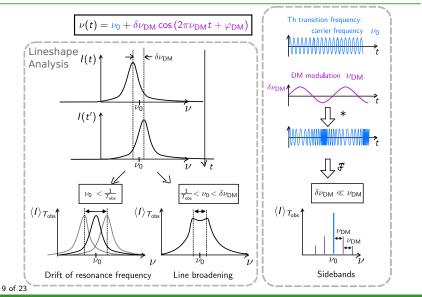
$$\alpha = \frac{\delta \nu_{\rm DM}}{\nu_{\rm DM}}$$
 modulation index

DM amplitude \gg DM frequency

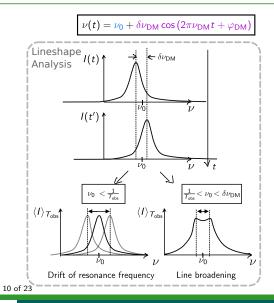
DM amplitude \ll DM frequency



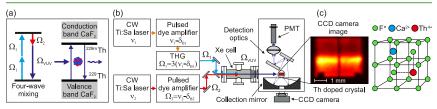
Nuclear Lineshape Analysis Regimes: Future



Nuclear Lineshape Analysis Regimes: Current

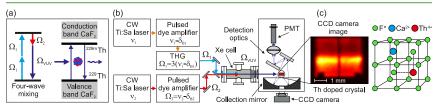


Experimental Setup

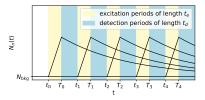


(a,b) VUV laser spectroscopy of the isomeric state in Th-doped cristals. (c) False color image of the cristal during VUV laser excitation. cristal structure.

Experimental Setup

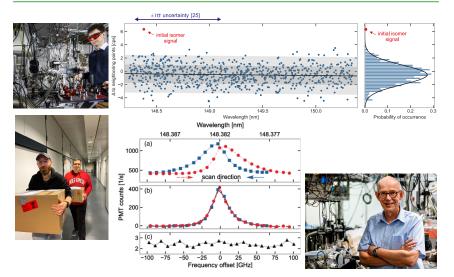


(a,b) VUV laser spectroscopy of the isomeric state in Th-doped cristals. (c) False color image of the cristal during VUV laser excitation, cristal structure.

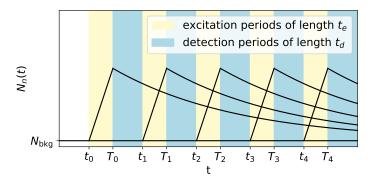


- ²²⁹Th-doped cristal irradiated for t_e
- Laser turned off
- Fluorescence photons from isomer decays detected during *t_d*
- Change laser frequency, repeat
- \Rightarrow Record excitation spectrum of ²²⁹Th nuclear resonance

Finding the Resonance



 \Rightarrow Take into account experimental procedure



• Define N_n count rate during n^{th} detection cycle

- Define N_n count rate during n^{th} detection cycle
- Subtract background and photons excited during previous cycles

$$\Delta N_n \equiv (N_n - N_{\rm bkg}) - e^{-\frac{t_e+t_d}{\tau}} (N_{n-1} - N_{\rm bkg})$$

 $\tau :$ fluorescence lifetime

- Define N_n count rate during n^{th} detection cycle
- Subtract background and photons excited during previous cycles

$$\Delta N_n \equiv (N_n - N_{\rm bkg}) - e^{-\frac{t_e + t_d}{\tau}} (N_{n-1} - N_{\rm bkg})$$

- $\tau :$ fluorescence lifetime
- Number of nuclei excited between t and t + dt: $dN_e = \Gamma(t)dt$ with excitation rate prop. to intensity: $\Gamma(t) \propto I(\delta\nu(t))$

- Define N_n count rate during n^{th} detection cycle
- Subtract background and photons excited during previous cycles

$$\Delta N_n \equiv (N_n - N_{\rm bkg}) - e^{-\frac{t_e + t_d}{\tau}} (N_{n-1} - N_{\rm bkg})$$

 τ : fluorescence lifetime

- Number of nuclei excited between t and t + dt: $dN_e = \Gamma(t)dt$ with excitation rate prop. to intensity: $\Gamma(t) \propto I(\delta\nu(t))$
- Probability of a nucleus excited at t' to decay between t and t + dt:

$$p(t) dt = rac{e^{-rac{t-t'}{ au}}}{ au} dt$$

- Define N_n count rate during n^{th} detection cycle
- Subtract background and photons excited during previous cycles

$$\Delta N_n \equiv (N_n - N_{\rm bkg}) - e^{-\frac{t_e + t_d}{\tau}} (N_{n-1} - N_{\rm bkg})$$

 τ : fluorescence lifetime

- Number of nuclei excited between t and t + dt: $dN_e = \Gamma(t)dt$ with excitation rate prop. to intensity: $\Gamma(t) \propto I(\delta\nu(t))$
- Probability of a nucleus excited at t' to decay between t and t + dt:

$$p(t)dt = rac{e^{-rac{t-t'}{ au}}}{ au}dt$$

 Count rate ΔN_n from fluorescence photons produced from nuclei excited between t_n and T_n and recorded between T_n and T_n + t_d:

$$\Delta N_n = \frac{1}{t_d} \left(1 - e^{-\frac{t_d}{\tau}} \right) \int_{t_n}^{T_n} \mathrm{d}t \Gamma(t) e^{\frac{t - T_n}{\tau}}$$

• Count rate ΔN_n from fluorescence photons produced from nuclei excited between t_n and T_n and recorded between T_n and $T_n + t_d$:

$$\Delta N_n = \frac{1}{t_d} \left(1 - e^{-\frac{t_d}{\tau}} \right) \int_{t_n}^{T_n} \mathrm{d}t \Gamma(t) e^{\frac{t - T_n}{\tau}}$$

• Count rate ΔN_n from fluorescence photons produced from nuclei excited between t_n and T_n and recorded between T_n and $T_n + t_d$:

$$\Delta N_n = \frac{1}{t_d} \left(1 - e^{-\frac{t_d}{\tau}} \right) \int_{t_n}^{T_n} \mathrm{d}t \Gamma(t) e^{\frac{t - T_n}{\tau}}$$

• Approximate laser profile as a Lorentzian with peak frequency ν_L , linewidth Δ_L , detuning from the ²²⁹Th resonance: $\delta \nu = \nu_L - \nu_{Th}$

$$\Gamma(t) \propto rac{1}{1+4\left(rac{\delta
u(t)}{\Delta_L}
ight)^2}$$

• Count rate ΔN_n from fluorescence photons produced from nuclei excited between t_n and T_n and recorded between T_n and $T_n + t_d$:

$$\Delta N_n = \frac{1}{t_d} \left(1 - e^{-\frac{t_d}{\tau}} \right) \int_{t_n}^{t_n} \mathrm{d}t \Gamma(t) e^{\frac{t - T_n}{\tau}}$$

• Approximate laser profile as a Lorentzian with peak frequency ν_L , linewidth Δ_L , detuning from the ²²⁹Th resonance: $\delta \nu = \nu_L - \nu_{Th}$

$$\Gamma(t) \propto rac{1}{1+4\left(rac{\delta
u(t)}{\Delta_l}
ight)^2}$$

• Assume excitation rate to be dominated by detuning, approximate the 229 Th resonance by a δ -distribution.

 Count rate ΔN_n from fluorescence photons produced from nuclei excited between t_n and T_n and recorded between T_n and T_n + t_d:

$$\Delta N_n = \frac{1}{t_d} \left(1 - e^{-\frac{t_d}{\tau}} \right) \int_{t_n}^{T_n} \mathrm{d}t \Gamma(t) e^{\frac{t - T_n}{\tau}}$$

• Approximate laser profile as a Lorentzian with peak frequency ν_L , linewidth Δ_L , detuning from the ²²⁹Th resonance: $\delta \nu = \nu_L - \nu_{Th}$

$$\Gamma(t) \propto rac{1}{1+4\left(rac{\delta
u(t)}{\Delta_L}
ight)^2}$$

- Assume excitation rate to be dominated by detuning, approximate the $^{229}\mathrm{Th}$ resonance by a $\delta\text{-distribution}.$
- Substituting $x = (t_n t)/t_e$, absorbing const. prefactors in N,

$$\Delta N_n = \Delta N_{\text{offset}} + \mathcal{N} \int_0^1 dx \frac{e^{-xt_e/\tau}}{1 + 4\left(\frac{\delta\nu(x)}{\Delta_L}\right)^2}$$

14 of 23

• Substituting $x = (t_n - t)/t_e$, absorbing const. prefactors in \mathcal{N} ,

$$\Delta N_n = \Delta N_{\text{offset}} + \mathcal{N} \int_0^1 dx \frac{e^{-xt_e/\tau}}{1 + 4\left(\frac{\delta\nu(x)}{\Delta_L}\right)^2}$$

• Substituting $x = (t_n - t)/t_e$, absorbing const. prefactors in \mathcal{N} ,

$$\Delta N_n = \Delta N_{\text{offset}} + \mathcal{N} \int_0^1 dx \frac{e^{-xt_e/\tau}}{1 + 4\left(\frac{\delta\nu(x)}{\Delta_L}\right)^2}$$

• Detuning of the laser from the ²²⁹Th resonance during n^{th} measurement:

$$\delta\nu_n = \delta\nu_{0,n} + \delta\nu_{\text{offset}} + \delta\nu_{\text{DM}}\cos(2\pi\nu_{\text{DM}}t_e x - \varphi_n)$$

 φ_n : DM phase at the beginning of the n^{th} detection period. \Rightarrow If DM oscillations are coherent, $\varphi_n = \varphi_{\text{DM}} + 2\pi n \nu_{\text{DM}} (t_e + t_d)$

• Substituting $x = (t_n - t)/t_e$, absorbing const. prefactors in \mathcal{N} ,

$$\Delta N_n = \Delta N_{\text{offset}} + \mathcal{N} \int_0^1 dx \frac{e^{-xt_e/\tau}}{1 + 4\left(\frac{\delta\nu(x)}{\Delta_L}\right)^2}$$

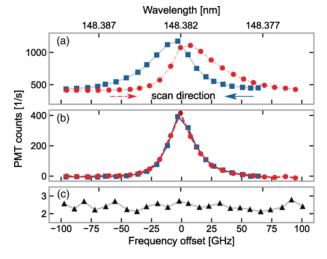
• Detuning of the laser from the ²²⁹Th resonance during n^{th} measurement:

$$\delta\nu_{n} = \delta\nu_{0,n} + \delta\nu_{\text{offset}} + \delta\nu_{\text{DM}}\cos(2\pi\nu_{\text{DM}}t_{e}x - \varphi_{n})$$

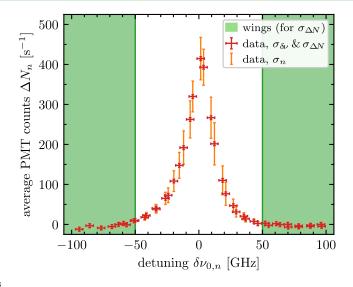
 φ_n : DM phase at the beginning of the n^{th} detection period. \Rightarrow If DM oscillations are coherent, $\varphi_n = \varphi_{\text{DM}} + 2\pi n\nu_{\text{DM}}(t_e + t_d)$ \Rightarrow Fit (MCMC/ODR)

Nuclear Lineshape Analysis

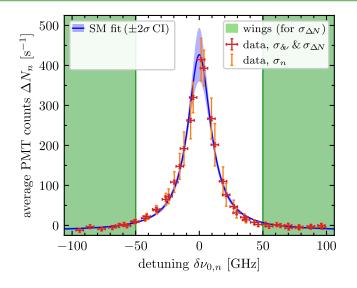
First laser-excitation of a nuclear transition: PTB 2024 [PRL 132, 182501]



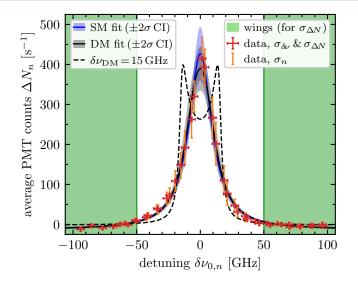
16 of 23



Nuclear Lineshape Analysis



Nuclear Lineshape Analysis

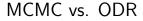


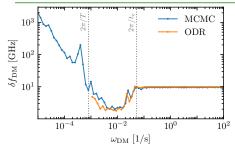
Outline

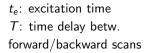
Which Lineshape?

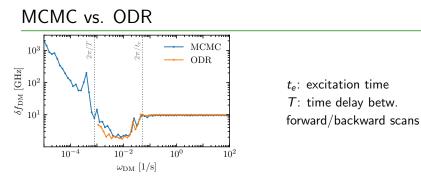
Lineshape Search for New Physics

Lineshape Bounds

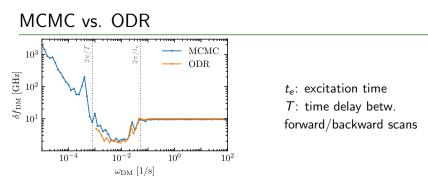




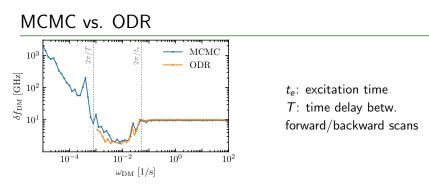




 νDM < T⁻¹, "drift regime": DM oscillation longer than duration of experiment

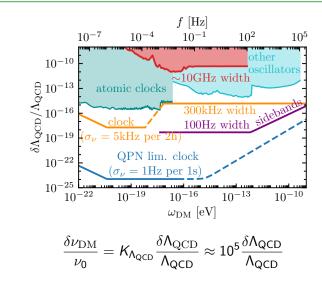


- νDM < T⁻¹, "drift regime": DM oscillation longer than duration of experiment
- *T*⁻¹ < *ν*DM < *t*_e⁻¹, intermediate regime: Each excitation cycle experiences fraction of a DM oscillation, while full experiment sees at least one DM oscillation ⇒ depends on details of experiment



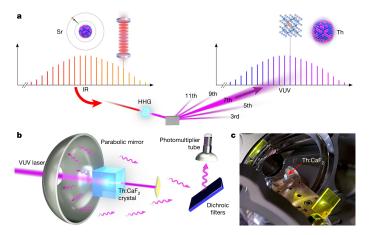
- νDM < T⁻¹, "drift regime": DM oscillation longer than duration of experiment
- *T*⁻¹ < *ν*DM < *t*_e⁻¹, intermediate regime: Each excitation cycle experiences fraction of a DM oscillation, while full experiment sees at least one DM oscillation ⇒ depends on details of experiment
- t_e⁻¹ < νDM, "broadening regime": Experiment cannot track DM oscillation in time, but DM oscillation leads to broadening of resonance

Bounds on Ultralight Scalar Coupling to QCD



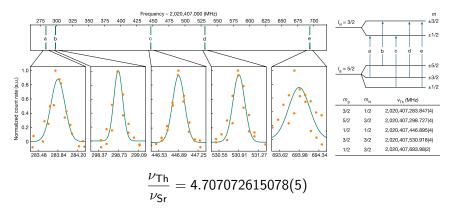
²²⁹Th Nuclear Transition vs. ⁸⁷Sr Atomic Clock

[arXiv:2406.18719]

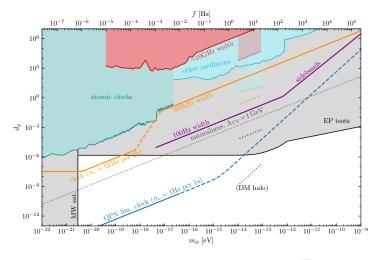


²²⁹Th Nuclear Transition vs. ⁸⁷Sr Atomic Clock

[arXiv:2406.18719]



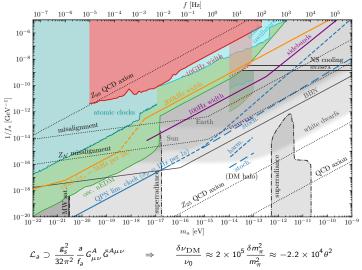
Bounds on Ultralight Scalar Coupling to QCD



$$\mathcal{L}_{\phi} \supset -d_{g} \frac{\phi}{M_{\mathsf{Pl}}} \frac{\sqrt{\pi}\beta_{\mathsf{s}}}{g_{\mathsf{s}}} G_{\mu\nu}^{\mathsf{A}} G^{\mathsf{A}\mu\nu} \quad \Rightarrow \quad \frac{\delta\nu_{\mathrm{DM}}}{\nu_{0}} \approx 10^{5} d_{g} \frac{\sqrt{4\pi}}{M_{\mathsf{Pl}}}$$

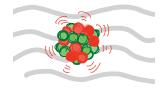
21 of 23

Bounds on Axions

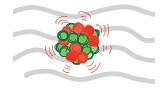


22 of 23

Nuclear clocks are sensitive probes of light new scalars coupling to QCD:



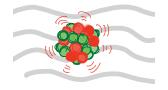
Nuclear clocks are sensitive probes of light new scalars coupling to QCD:



Can be searched for using a nuclear line-shape analysis in different regimes:

- light ULDM: drift regime
- "heavy" ULDM with large amplitude: line broadening
- "heavy" ULDM with small amplitude: sidebands

Nuclear clocks are sensitive probes of light new scalars coupling to QCD:



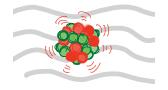
Can be searched for using a nuclear line-shape analysis in different regimes:

- light ULDM: drift regime
- "heavy" ULDM with large amplitude: line broadening
- "heavy" ULDM with small amplitude: sidebands

...And on the way we can learn about

Fine-tuning in thorium, interaction between light & matter, cristals

Nuclear clocks are sensitive probes of light new scalars coupling to QCD:



Can be searched for using a nuclear line-shape analysis in different regimes:

- light ULDM: drift regime
- "heavy" ULDM with large amplitude: line broadening
- "heavy" ULDM with small amplitude: sidebands

...And on the way we can learn about

Fine-tuning in thorium, interaction between light & matter, cristals And find applications for: gravitational physics, geodesy, navigation,...

23 of 23

Check out our paper on the arXiv:

Th-229 & ULDM: https://arxiv.org/abs/2407.15924

Thank you for your attention.

Backup slides

Ultralight Scalars

- Motivation: dilaton, relaxion, axion
- Assume ϕ makes up dark matter & is light ($m_\phi \lesssim 1 \; {
 m eV}$)
 - $\Rightarrow\,$ Average number of DM particles in a de Broglie volume $\lambda^3_{\rm dB}$ in a Milky-Way-like environment:

$$N_{\rm dB} \sim \left(rac{34 \ {
m eV}}{m}
ight)^4 \left(rac{250 \ {
m km/s}}{v}
ight)^3$$

 \Rightarrow For sub-eV dark matter, huge $N_{\rm dB}$ \Rightarrow DM \simeq classical field

(see e.g. [arXiv:2101.11735])

• Simplest possible Lagrangian:

$$\mathcal{L}_{\phi} \supset rac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi + rac{1}{2} m_{\phi}^2 \phi^2$$

 ϕ oscillates around potential minimum:

 $\phi(t,x) \sim \phi_0 \cos(m_\phi t)$

Ultralight Scalars

• ϕ interacts with the Standard Model:

$$\mathcal{L}_{\phi} \supset rac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi + rac{1}{2} m_{\phi}^2 \phi^2 + rac{\phi}{M_{\mathsf{Pl}}} \Biggl[rac{d_e}{4e^2} F_{\mu
u} F^{\mu
u} - rac{d_g eta_s}{2g_s} G^a_{\mu
u} G^{a\mu
u} - d_{m_e} m_e ar{e} e - \sum_{q=u,d} \left(d_{m_q} + \gamma_{m_q} d_g
ight) m_q ar{q} q$$

• ϕ oscillates around potential minimum:

 $\phi(t,x) \sim \phi_0 \cos(m_\phi t)$

- \Rightarrow Oscillating fundamental constants
- \Rightarrow Oscillating transition frequencies

$$\begin{split} \nu(t) \sim &\nu_0 \left(1 + \left(\mathsf{K}_g \mathsf{d}_g + \mathsf{K}_e \mathsf{d}_e + \ldots \right) \phi(t) / \mathsf{M}_{\mathsf{PI}} \right) \\ \Rightarrow &\nu(t) \simeq &\nu_0 + \delta \nu_{\mathsf{DM}} \cos \left(2\pi \nu_{\mathsf{DM}} t + \varphi_{\mathsf{DM}} \right) \end{split}$$

$$\mathcal{L}_a \supset rac{g_s^2}{32\pi^2} rac{a}{f_a} G^A_{\mu
u} \tilde{G}^{A,\mu
u} \,, \qquad ilde{G} : ext{dual of the gluon field strength}$$

Confinement of QCD:

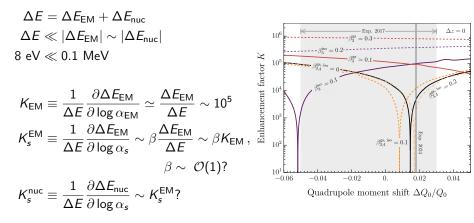
- \Rightarrow Interactions between pions & axion
- \Rightarrow Axion-dependent pion mass [Nucl.Phys.B 171 (1980) 253-272,arXiv:0811.1599]

$$m_\pi^2(heta)=B\sqrt{m_u^2+m_d^2+2m_um_d\cos(heta)}\,,\qquad heta=a/f_a\,,\quad B=\langlear qq
angle/f_\pi^2$$

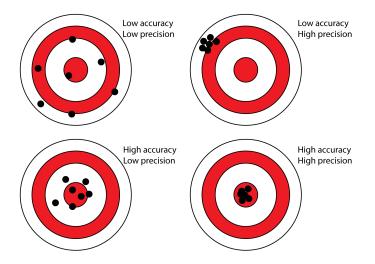
Expanding around $\theta = 0$, axion potential $V(\theta) = -m_{\pi}^2(\theta)f_{\pi}^2$ at LO.

- \Rightarrow Axion oscillation induces oscillation of pion mass $\Rightarrow \frac{\delta m_{\pi}^2}{m_{\pi}^2} = -\frac{m_u m_d}{2(m_u + m_d)^2} \theta^2$
- $\Rightarrow \text{ Oscillating transition frequency: } \frac{\delta\nu}{\nu} \simeq K_{\pi} \frac{\delta m_{\pi}^2}{m_{\pi}^2}$ [Nucl.Phys.B 171 (1980) 253-272, arXiv:0709.0077, 0807.4943, 2211.05174]

[arXiv:2012.09304,2407.17526]



Precision vs. Accuracy

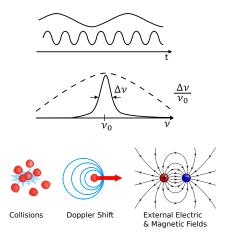


Achieve higher precision through

- Higher frequency $(
 u
 ightarrow \infty)$
- Narrower linewidth ($\Delta
 u
 ightarrow 0$)
- \Rightarrow Relevant quantity: fractional uncertainty $\frac{\Delta \nu}{
 u_0}$

Achieve higher accuracy by

- Cooling
- Trapping
- Shielding from / accounting for external fields



Advantages of Nuclear Clocks wrt. Atomic Clocks

- + Higher frequency \Rightarrow Higher stability
- + Use solids? \Rightarrow Higher statistics \Rightarrow Higher stability
- + Strong vs. electromagnetic force \Rightarrow Nucleus less polarisable than atom \Rightarrow Higher accuracy
- + Nucleus \ll Atom \Rightarrow Shielded from external fields \Rightarrow Higher accuracy
- + Low transition frequency due to accidental cancellation (?)

$$\begin{split} \Delta E &= \Delta E_{\mathsf{EM}} + \Delta E_{\mathsf{nuc}} \qquad \Delta E \ll |\Delta E_{\mathsf{EM}}| \sim |\Delta E_{\mathsf{nuc}}| \\ & 8 \text{ eV} \ll 0.1 \text{ MeV} \end{split}$$

\Rightarrow Extraordinary sensitivity to new physics?

[arXiv:2012.09304,2407.17526]

+ Probes QCD \Rightarrow Sensitive to NP coupling to QCD

Transition frequency:

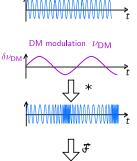
$$\nu(t) = \exp\left\{-i2\pi\nu_0 t - i\alpha\sin(2\pi\nu\mathsf{DM}t)\right\}$$
$$= \sum_{n=-\infty}^{\infty} J_n(\alpha) \exp\left\{-2\pi i(\nu_0 + n\nu\mathsf{DM})t\right\},$$

 J_n : n^{th} Bessel function, $\alpha = \frac{\delta \nu_{\text{DM}}}{\nu_{\text{DM}}}$ modulation index

 \Rightarrow The lineshape is convoluted with

$$I(\nu) = \sum_{n=-\infty}^{\infty} |J_n(\alpha)|^2 \delta \left[\nu - (\nu_0 + n\nu_{\text{DM}})\right]$$

- ⇒ The transition can be resonantly driven at frequencies $\nu = \nu_0 + n\nu_{\rm DM}$, but at a rate suppressed by $|J_n(\alpha)|^2$
- ⇒ If sideband with relative intensity $\Delta I/I$ to main peak detected, constrain $\delta \nu_{\text{DM}} \lesssim \frac{\nu_{\text{DM}}}{2} \sqrt{\frac{\Delta I}{I}}$



carrier frequency

