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Fine-Tuning in Thorium-229?

Nuclear transition energy
in 229Th:

∆E = ∆EEM +∆Enuc

∆E ≪ |∆EEM| ∼ |∆Enuc|
8 eV ≪ 0.1 MeV

⇒ Fine tuning?

⇒ Exceptionally
sensitive probe of
QCD at low energy?

Progression of precision δν/ν:

10−1 (2020), 10−3 (2022, ISOLDE), 10−6 (March 2024, PTB), 10−11 (June 2024, JILA)
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What Is A Clock?

Stable Laser

2-Level System
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Towards A Nuclear Clock

Stable Laser

2-Level System
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Nuclear Lineshape Analysis in the Limit δνDM ≫ νDM

ν(t) ≃ ν0 + δνDM cos (2πνDMt + φDM)

• In absence of DM,
I (ν) = δ(ν − ν0)

• In presence of DM,
average over TDM = 1/νDM:

⟨I (ν)⟩TDM
=

∫ TDM

0

dt

TDM
δ(ν − ν(t))

=
θ
(
1−

∣∣∣ν−ν0

δνDM

∣∣∣) /π√
δν2DM − (ν − ν0)2

⇒ Convolve with resonance lineshape
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Sidebands in the Limit δνDM ≪ νDM

Transition frequency:

ν(t) = exp {−i2πν0t−iα sin(2πνDMt)}

=
∞∑

n=−∞
Jn(α) exp {−2πi(ν0 + nνDM)t} ,

Jn: n
th Bessel function, α = δνDM

νDM
modulation index

⇒ The lineshape is convoluted with

I (ν) =
∑∞

n=−∞ |Jn(α)|2δ [ν − (ν0 + nνDM)]
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Nuclear Lineshape Analysis Regimes

α = δνDM
νDM

modulation index

DM amplitude ≫ DM frequency DM amplitude ≪ DM frequency

−50 0 50

ω/ωDM

I
[a

.u
.]

α = 50

−2 0 2

ω/ωDM

α = 0.5
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Nuclear Lineshape Analysis Regimes: Future

Lineshape
Analysis
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Nuclear Lineshape Analysis Regimes: Current

Lineshape
Analysis
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Experimental Setup

(a,b) VUV laser spectroscopy of the isomeric state in Th-doped cristals. (c) False color image of the cristal during VUV

laser excitation, cristal structure.

T0 T1 T2 T3 T4t0 t1 t2 t3 t4
t

Nbkg

N
n(

t)

excitation periods of length te

detection periods of length td

• 229Th-doped cristal irradiated for te

• Laser turned off

• Fluorescence photons from isomer
decays detected during td

• Change laser frequency, repeat

⇒ Record excitation spectrum of 229Th
nuclear resonance
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Finding the Resonance
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Nuclear Lineshape Analysis of PTB Data

⇒ Take into account experimental procedure

T0 T1 T2 T3 T4t0 t1 t2 t3 t4
t

Nbkg

N
n(

t)

excitation periods of length te

detection periods of length td

• Define Nn count rate during nth detection cycle

• Subtract background and photons excited during previous cycles

∆Nn ≡ (Nn − Nbkg)− e−
te+td

τ (Nn−1 − Nbkg)

τ : fluorescence lifetime

• Number of nuclei excited between t and t + dt: dNe = Γ(t)dt with
excitation rate prop. to intensity: Γ(t) ∝ I (δν(t))

• Probability of a nucleus excited at t ′ to decay between t and t + dt:

p(t)dt =
e−

t−t′
τ

τ
dt

• Count rate ∆Nn from fluorescence photons produced from nuclei excited
between tn and Tn and recorded between Tn and Tn + td :

∆Nn =
1

td

(
1− e−

td
τ

)∫ Tn

tn

dtΓ(t)e
t−Tn

τ
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Nuclear Lineshape Analysis of PTB Data

• Count rate ∆Nn from fluorescence photons produced from nuclei excited
between tn and Tn and recorded between Tn and Tn + td :

∆Nn =
1

td

(
1− e−

td
τ

)∫ Tn

tn

dtΓ(t)e
t−Tn

τ

• Approximate laser profile as a Lorentzian with peak frequency νL,
linewidth ∆L, detuning from the 229Th resonance: δν = νL − νTh

Γ(t) ∝ 1

1 + 4
(

δν(t)
∆L

)2

• Assume excitation rate to be dominated by detuning, approximate the
229Th resonance by a δ-distribution.

• Substituting x = (tn − t)/te , absorbing const. prefactors in N ,

∆Nn = ∆Noffset +N
∫ 1

0

dx
e−xte/τ

1 + 4
(

δν(x)
∆L

)2
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Nuclear Lineshape Analysis of PTB Data

• Substituting x = (tn − t)/te , absorbing const. prefactors in N ,

∆Nn = ∆Noffset +N
∫ 1

0

dx
e−xte/τ

1 + 4
(

δν(x)
∆L

)2

• Detuning of the laser from the 229Th resonance during nth measurement:

δνn = δν0,n + δνoffset + δνDM cos(2πνDMtex − φn)

φn: DM phase at the beginning of the nth detection period.
⇒ If DM oscillations are coherent, φn = φDM + 2πnνDM(te + td)

⇒ Fit (MCMC/ODR)
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Nuclear Lineshape Analysis

First laser-excitation of a nuclear transition: PTB 2024 [PRL 132, 182501]
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https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.132.182501
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Nuclear Lineshape Analysis
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MCMC vs. ODR

10−4 10−2 100 102

ωDM [1/s]

101

102

103

δf
D

M
[G

H
z]

2
π
/
T

2
π
/
t e MCMC

ODR

te : excitation time

T : time delay betw.

forward/backward scans

• νDM < T−1, “drift regime”: DM oscillation longer than duration of
experiment

• T−1 < νDM < t−1
e , intermediate regime: Each excitation cycle

experiences fraction of a DM oscillation, while full experiment sees at
least one DM oscillation ⇒ depends on details of experiment

• t−1
e < νDM, “broadening regime”: Experiment cannot track DM
oscillation in time, but DM oscillation leads to broadening of resonance
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Bounds on Ultralight Scalar Coupling to QCD

atomic clocks

other
oscillators∼10GHz width

300kHz width
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229Th Nuclear Transition vs. 87Sr Atomic Clock

[arXiv:2406.18719]
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http://www.arxiv.org/abs/2406.18719


229Th Nuclear Transition vs. 87Sr Atomic Clock

[arXiv:2406.18719]

νTh
νSr

= 4.707072615078(5)

20 of 23
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Bounds on Ultralight Scalar Coupling to QCD
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Bounds on Axions
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Conclusions

Nuclear clocks are sensitive probes of light new scalars coupling to QCD:

Can be searched for using a nuclear line-shape analysis in different regimes:

• light ULDM: drift regime

• “heavy” ULDM with large amplitude: line broadening

• “heavy” ULDM with small amplitude: sidebands

...And on the way we can learn about

Fine-tuning in thorium, interaction between light & matter, cristals
And find applications for: gravitational physics, geodesy, navigation,...
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Check out our paper on the arXiv:

Th-229 & ULDM: https://arxiv.org/abs/2407.15924

Thank you for your attention.

https://arxiv.org/abs/2407.15924
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Ultralight Scalars

• Motivation: dilaton, relaxion, axion

• Assume ϕ makes up dark matter & is light (mϕ ≲ 1 eV)

⇒ Average number of DM particles in a de Broglie volume λ3
dB in a

Milky-Way-like environment:

NdB ∼
(
34 eV

m

)4 (
250 km/s

v

)3

⇒ For sub-eV dark matter, huge NdB ⇒ DM ≃ classical field

(see e.g. [arXiv:2101.11735])

• Simplest possible Lagrangian:

Lϕ ⊃ 1

2
∂µϕ∂

µϕ+
1

2
m2

ϕϕ
2

ϕ oscillates around potential minimum:

ϕ(t, x) ∼ ϕ0 cos(mϕt)

https://arxiv.org/abs/2101.11735


Ultralight Scalars

• ϕ interacts with the Standard Model:

Lϕ ⊃ 1

2
∂µϕ∂

µϕ+
1

2
m2

ϕϕ
2 +

ϕ

MPl

[
de
4e2

FµνF
µν − dgβs

2gs
G a
µνG

aµν

− dmeme ēe −
∑
q=u,d

(
dmq + γmqdg

)
mq q̄q

]

• ϕ oscillates around potential minimum:

ϕ(t, x) ∼ ϕ0 cos(mϕt)

⇒ Oscillating fundamental constants

⇒ Oscillating transition frequencies

ν(t) ∼ν0 (1 + (Kgdg + Kede + . . .)ϕ(t)/MPl)

⇒ ν(t) ≃ν0 + δνDM cos (2πνDMt + φDM)



Axion

La ⊃
g2
s

32π2

a

fa
GA
µνG̃

A,µν , G̃ : dual of the gluon field strength

Confinement of QCD:

⇒ Interactions between pions & axion

⇒ Axion-dependent pion mass [Nucl.Phys.B 171 (1980) 253-272,arXiv:0811.1599]

m2
π(θ) =B

√
m2

u +m2
d + 2mumd cos(θ) , θ = a/fa , B = ⟨q̄q⟩/f 2π

Expanding around θ = 0, axion potential V (θ) = −m2
π(θ)f

2
π at LO.

⇒ Axion oscillation induces oscillation of pion mass ⇒ δm2
π

m2
π

= − mumd

2(mu+md )2
θ2

⇒ Oscillating transition frequency: δν
ν ≃ Kπ

δm2
π

m2
π

[ Nucl.Phys.B 171 (1980) 253-272, arXiv:0709.0077, 0807.4943, 2211.05174]

https://doi.org/10.1016/0550-3213(80)90370-3
https://arxiv.org/abs/0811.1599
https://doi.org/10.1016/0550-3213(80)90370-3
https://arxiv.org/abs/0709.0077
https://arxiv.org/abs/0807.4943
https://arxiv.org/abs/2211.05174


Sensitivity of Nuclear Clocks to New Physics

[arXiv:2012.09304,2407.17526]

∆E = ∆EEM +∆Enuc

∆E ≪ |∆EEM| ∼ |∆Enuc|
8 eV ≪ 0.1 MeV

KEM ≡ 1

∆E

∂∆EEM

∂ logαEM
≃ ∆EEM

∆E
∼ 105

KEM
s ≡ 1

∆E

∂∆EEM

∂ logαs
∼ β

∆EEM

∆E
∼ βKEM ,

β ∼ O(1)?

K nuc
s ≡ 1

∆E

∂∆Enuc

∂ logαs
∼ KEM

s ?

https://arxiv.org/abs/2012.09304
https://arxiv.org/abs/2407.17526


Precision vs. Accuracy



Optical Clock Stability

Achieve higher precision through

• Higher frequency (ν → ∞)

• Narrower linewidth (∆ν → 0)

⇒ Relevant quantity: fractional
uncertainty ∆ν

ν0

Achieve higher accuracy by

• Cooling

• Trapping

• Shielding from / accounting for
external fields

t

Collisions Doppler Shift External Electric 
& Magnetic Fields



Advantages of Nuclear Clocks wrt. Atomic Clocks

+ Higher frequency ⇒ Higher stability

+ Use solids? ⇒ Higher statistics ⇒ Higher stability

+ Strong vs. electromagnetic force ⇒ Nucleus less polarisable than
atom ⇒ Higher accuracy

+ Nucleus ≪ Atom ⇒ Shielded from external fields
⇒ Higher accuracy

+ Low transition frequency due to accidental cancellation (?)

∆E = ∆EEM +∆Enuc ∆E ≪ |∆EEM| ∼ |∆Enuc|
8 eV ≪ 0.1 MeV

⇒ Extraordinary sensitivity to new physics?
[arXiv:2012.09304,2407.17526]

+ Probes QCD ⇒ Sensitive to NP coupling to QCD

https://arxiv.org/abs/2012.09304
https://arxiv.org/abs/2407.17526


Sidebands in the Limit δνDM ≪ νDM

Transition frequency:

ν(t) = exp {−i2πν0t−iα sin(2πνDMt)}

=
∞∑

n=−∞
Jn(α) exp {−2πi(ν0 + nνDM)t} ,

Jn: n
th Bessel function, α = δνDM

νDM
modulation index

⇒ The lineshape is convoluted with

I (ν) =
∑∞

n=−∞ |Jn(α)|2δ [ν − (ν0 + nνDM)]

⇒ The transition can be resonantly driven at
frequencies ν = ν0 + nνDM, but at a rate
suppressed by |Jn(α)|2

⇒ If sideband with relative intensity ∆I/I to main

peak detected, constrain δνDM ≲ νDM

2

√
∆I
I
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