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Fine-Tuning in Thorium-2297

»  Nuclear isomers|
107} « Awvmicsnel | Nuclear transition energy
transitions . 229Th .
6 Optical clock in -
0% ¢ region
105 - o . AE = AEgy + AEq
2 ol | AE < |AEem| ~ [AEn]
8 8 eV < 0.1 MeV
@ 10° 1
Tk xsmy | = Fine tuning?
1 = Exceptionally
10 ops
sensitive probe of

1I0'1° 10°  10°  10° 10" 1Io15 1I02° QCD at low energy?
Half-life [s]
Progression of precision év /v:

10! (2020), 10~3 (2022, ISOLDE), 10-6 (March 2024, PTB), 10~ (June 2024, JILA)
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Towards A Nuclear Clock
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Outline

Lineshape Search for New Physics
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Nuclear Lineshape Analysis in the Limit dvpv > vpm

average PMT counts AN,, [s7!]

v(t) =~ vy + dvpm cos (2vpmt + ppm)

400 1

—100 —50 0 50 100
detuning dvy,,, [GHz|

® |n absence of DM,

1(v) =6(v — o)

® |n presence of DM,
average over Tpy = 1/vpwm:

= Convolve with resonance lineshape



Sidebands in the Limit dvpm < vpm

carrier frequency 1/

Transition frequency: DM modulation Vpp
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Sidebands in the Limit dvpm < vpm

carrier frequency 1/

Transition frequency: DM modulation Vpp
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Sidebands in the Limit dvpm < vpm

carrier frequency 1/

Transition frequency: DM modulation Vpp

5VDM

v(t) = exp{—i2mpt—iasin(2rvDMt)} s

- *
= Z JIn(a) exp {—27i(vy + nvDM)t}, @
e WLkl ki et

J,: nth Bessel function, o = ‘SV”M modulation index @3;
DM
= The lineshape is convoluted with
hr,
1) = 5 o [ ()28 [ — (v + rvow)] e
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Nuclear Lineshape Analysis Regimes

a = %M modulation index
VDM

DM amplitude > DM frequency DM amplitude < DM frequency

a =50 a=0.5

S N s ki
oo
o

.

I [a.u]
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Nuclear Lineshape Analysis Regimes: Future

- Th transition frequency:
| I/(l’) = vy + dvpm cos (2mrpmt + L,QDM) |

carrier frequency 1

Lineshape
Analysis

I(t) — & dvpm t

DM modulation Vpm

dUDM}C N

” t
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o 7 t F
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Drift of resonance frequency Line broadening Sidebands
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Nuclear Lineshape Analysis Regimes: Current

| v(t) = vy + dvpm cos (2mvpmt + Ypm) |

Lineshape

i 5
Analysis I(t) < ovom

v v
v t
\J

1
o << Svpm

1(t)

Drift of resonance frequency Line broadening
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Experimental Setup
(a) (b) (c)

Conduction CwW Pulsed . CCD camera OF @Ca> @Th
Ti:Sa laser [»|dye amplifier Detection image o
Py band CaF, v S V.-S’:. optics —

Q, 4 Ja2omh Xe cell Q, .H,
! | _7»

T Qv —> ||~ [l
v 229Th

Ccw Pulsed [1 —— 1 mm l/'
Fou_r-\_:vave Valence Ti:Sa laser » dye amplifier| Th doped crystal ©
mixing band CaF, v, Q=v,-5,,

Collection mirror +CCD camera
(a,b) VUV laser spectroscopy of the isomeric state in Th-doped cristals. (c) False color image of the cristal during VUV

laser excitation, cristal structure.
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Experimental Setup

(a) (b) (©
Conduction cw Pulsed X CC!D camera . . ,
band CaF, Ti:Sa laser [»|dye amplifier Detection — image OF- @Ca* @Th*
+ v, v, v,-8,, optics -
Q, 4 229m T q °
A | —> | B~ i
I S by e T
Ccw Pulsed [1 —— 1 mm l/'
Four-wave bva::?goeF Ti:Sa laser p{ dye amplifier, Th doped crystal &
mixin =v.-5,
9 — va Q=vidy, Collection mirror +CCD camera

(a,b) VUV laser spectroscopy of the isomeric state in Th-doped cristals. (c) False color image of the cristal during VUV

laser excitation, cristal structure.

e 22Th-doped cristal irradiated for t.

excitation periods of length te

detection periods of length t4 L4 Laser tU rned OfF

Nn(t)

e Fluorescence photons from isomer
decays detected during ty

Npkg

b To 61 6T 67 6T e Change laser frequency, repeat
t

= Record excitation spectrum of 22°Th
nuclear resonance

11 of 23
I



Finding the Resonance

+10 uncertainty [25]
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Nuclear Lineshape Analysis of PTB Data

= Take into account experimental procedure

excitation periods of length te
detection periods of length t4

Nn(t)

Npikg —] — — — —
to To & T to T, t3 T3 ty Ty
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Nuclear Lineshape Analysis of PTB Data

e Define N, count rate during n*" detection cycle
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Nuclear Lineshape Analysis of PTB Data

e Define N, count rate during n*" detection cycle

e Subtract background and photons excited during previous cycles
tett,
AN, = (N — Nowg) — €7 (Np—1 — Niig)

7: fluorescence lifetime
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Nuclear Lineshape Analysis of PTB Data

e Define N, count rate during n*" detection cycle
e Subtract background and photons excited during previous cycles

te+
AN,, = (N,, — kag) —e 7
7: fluorescence lifetime

‘ (Nn—l - kag)

e Number of nuclei excited between t and t + dt: dN. = I'(t)dt with
excitation rate prop. to intensity: ['(t) oc /(dv(t))
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Nuclear Lineshape Analysis of PTB Data

Define N, count rate during n' detection cycle

Subtract background and photons excited during previous cycles

tett
AN, = (N, — Npig) — €™ = (No—1 — Nog)

7: fluorescence lifetime

e Number of nuclei excited between t and t + dt: dN. = I'(t)dt with
excitation rate prop. to intensity: ['(t) oc /(dv(t))

e Probability of a nucleus excited at t’ to decay between t and t + dt:

t—t’

e+
dt
T

p(t)dt =

13 of 23



Nuclear Lineshape Analysis of PTB Data

Define N, count rate during n' detection cycle

Subtract background and photons excited during previous cycles

tett
AN, = (N, — Npig) — €™ = (No—1 — Nog)

7: fluorescence lifetime

Number of nuclei excited between t and t + dt: dN, = ['(t)dt with
excitation rate prop. to intensity: ['(t) oc /(dv(t))

Probability of a nucleus excited at t’ to decay between t and t + dt:

t—t’

e+
dt
T

p(t)dt =

Count rate AN, from fluorescence photons produced from nuclei excited
between t, and T, and recorded between T, and T, + tg:

1 4 T =Tn

AN":—(l—e f) del(t)e =
ty t
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Nuclear Lineshape Analysis of PTB Data

e Count rate AN, from fluorescence photons produced from nuclei excited
between t, and T, and recorded between T, and T, + t4:

1 g T t—Tp
AN,,—E(I—e )/t dr(t)e

n

14 of 23
I



Nuclear Lineshape Analysis of PTB Data

e Count rate AN, from fluorescence photons produced from nuclei excited
between t, and T, and recorded between T, and T, + t4:

1 ty T t=Tp
AN, = —(1l—e = dtl (t)e =
tyg ( € >/t ( )e

e Approximate laser profile as a Lorentzian with peak frequency v,
linewidth A, detuning from the ?>Th resonance: v = v; — vTh
1

r(t) o —1 e (62_(:))2
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Nuclear Lineshape Analysis of PTB Data

e Count rate AN, from fluorescence photons produced from nuclei excited
between t, and T, and recorded between T, and T, + t4:

1 _4 To =T,
AN,,:—(I—e ")/t der(t)e ="

ty

n

e Approximate laser profile as a Lorentzian with peak frequency v,
linewidth A, detuning from the ?>Th resonance: v = v; — vTh

1
2
ov(t
1+4(A—(L))

® Assume excitation rate to be dominated by detuning, approximate the
229Th resonance by a d-distribution.

r(t) o
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Nuclear Lineshape Analysis of PTB Data

e Count rate AN, from fluorescence photons produced from nuclei excited
between t, and T, and recorded between T, and T, + t4:

1 g T t—
AN,,:—(I—e ")/t der(t)e ="

ty

n

e Approximate laser profile as a Lorentzian with peak frequency v,
linewidth A, detuning from the ?>Th resonance: v = v; — vTh

1
A 1+4 (5”(*))

® Assume excitation rate to be dominated by detuning, approximate the
229Th resonance by a d-distribution.

e Substituting x = (t, — t)/te, absorbing const. prefactors in NV,

1 e—xte/'r
AN, = ANgfrser + N dx

14 of 23 ’ 1 + 4 (6V(X)>



Nuclear Lineshape Analysis of PTB Data

e Substituting x = (t, — t)/te, absorbing const. prefactors in AV,

e—xte/'r

1
AN, = A + N [ ax—
0 144 (‘”A—(LX))
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Nuclear Lineshape Analysis of PTB Data

e Substituting x = (t, — t)/te, absorbing const. prefactors in AV,

e—xte/'r

1
ANn = ANoffset +N/ dXW
0 v(x
144 (A—)
e Detuning of the laser from the ??Th resonance during nt" measurement:
0Vp = 010, + Oofset + OVDM COS(2TUpMteX — Pp)

©,: DM phase at the beginning of the n'" detection period.
= If DM oscillations are coherent, ¢, = ¢pm + 2mnvpm(te + td)
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Nuclear Lineshape Analysis of PTB Data

e Substituting x = (t, — t)/te, absorbing const. prefactors in AV,

e—xte/'r

1
ANn = ANoffset +N/ dXW
0 v(x
144 (A—)
e Detuning of the laser from the ??Th resonance during nt" measurement:
0Vp = 010, + Oofset + OVDM COS(2TUpMteX — Pp)

©,: DM phase at the beginning of the n'" detection period.
= If DM oscillations are coherent, ¢, = ¢pm + 2mnvpm(te + td)

= Fit (MCMC/ODR)
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Nuclear Lineshape Analysis

First laser-excitation of a nuclear transition: PTB 2024 [PRL 132, 182501]
Wavelength [nm]

148.387 148.382 148.377
(a) I I.;. I
1000 - . *me _
e ] ..
=
500 wn® e an e
B o ® mma® e e
i) |"'|. '—!]—:- scan direction - — .I
= C T T ]
% 400 (b)
g
~ 200~ -
=
o
0F LL Tl
3—(0} I Ll 1 R i
“‘A“A““““‘l‘A‘A‘ h |

1 1 1 1 1 1 1 1 1
-100 -75 -50 -25 0 25 50 75 100
Frequency offset [GHz]
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https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.132.182501

Nuclear Lineshape Analysis

500 - w:ings (for oan)

# + data, o5 & oan

| data, oy

400

300

200

100

average PMT counts AN,, [s7}]

0
—100 —50 0 50 100
detuning vy, [GHz]
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Nuclear Lineshape Analysis

" wings (for oan)
+ data, o5 & oan
I data, o,

500 | = SM fit (:|:2a' C'I) ]

400

300

200

average PMT counts AN,, [s7}]

—100 —50 0 50 100
detuning vy, (GHz]
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Nuclear Lineshape Analysis

[ wings (for ocan)
+ data, o5 & oan
| data, on

500 = SM fit (+20 CI)
£ DM fit (+20 CI)
== dvpm=15GHz

400

=

n
)
1

1

300

average PMT counts AN,, [s7}]

—100 -50 0 50 100
detuning vy ,, [GHz]
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Outline

Lineshape Bounds
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te: excitation time
T: time delay betw.
forward /backward scans

10° 10?

1074 1072
wWpM [I/S]
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MCMC vs. ODR

108 D —— MCMC |
T 10t te: excitation time
z o
£ ol T: time delay betw.

forward /backward scans
10-4 10-2 10° 102
wWpM [I/S]
e DM < T~1, “drift regime”: DM oscillation longer than duration of
experiment
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MCMC vs. ODR

10% [ =i —— MOMC |
T 10t te: excitation time
= -
£ ol T: time delay betw.

forward /backward scans
10-4 10-2 10° 102
wWpM [1/5]
e DM < T~1, “drift regime”: DM oscillation longer than duration of
experiment

e T~ <vDM < t;!, intermediate regime: Each excitation cycle
experiences fraction of a DM oscillation, while full experiment sees at
least one DM oscillation = depends on details of experiment
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MCMC vs. ODR

103 B =i —— MOMC |
T 0% te: excitation time
= -
£ ol T: time delay betw.

forward /backward scans
10-4 10-2 10° 102
wWpM [1/5]
e DM < T~1, “drift regime”: DM oscillation longer than duration of
experiment

e T~ <vDM < t;!, intermediate regime: Each excitation cycle
experiences fraction of a DM oscillation, while full experiment sees at
least one DM oscillation = depends on details of experiment

e t-1 < vDM, “broadening regime”: Experiment cannot track DM
oscillation in time, but DM oscillation leads to broadening of resonance

18 of 23
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Bounds on Ultralight Scalar Coupling to QCD

10-7 10~4 101 102 10°

()th( T
oscillators ]

~10GHz width

81018 L atomic clocks W—

C .
< qp-16 -\"""“"“““""7' )J0kHz width \0‘&“
a FSNclock 7 S 1
o [ OC 100Hz width 7]
<O’1()—19 o, = bkHz per2Zn, ,/’ §
I . ]
~© 10-22 '_ QPN lim. clock ,/’ h
(0, = 1Hz per 1s) _»~
10—25 I ot ol voum i el e s om ond e e v 2
1072 10°0 10716 108 1010
wWpM [eV]
SvpMm oNQep 4 ~59NQeD
= KAQCD ~ 10
Vo Aqcp Aqcop
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229Th Nuclear Transition vs. 8’Sr Atomic Clock

[arXiv:2406.18719]
< o
@ § =@

1 1 R
Ny

|
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http://www.arxiv.org/abs/2406.18719

229Th Nuclear Transition vs. 8’Sr Atomic Clock

[arXiv:2406.18719]
Frequency - 2,020,407,000 (MHz) m
275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 700 Io=32 +3/2
[ | | | e
a b c d e T T
I,=5/2 572
~ K +3/2
3
s +1/2
e
s
H my m Van (MH2)
S
S 32 172 2,020,407,283.847(4)
3
8 52 3/2  2,020,407,298.727(4)
£ 172 172 2,020,407,446.895(4)
5
z 32 32 2,020,407,530.918(4)
c . 12 32 2,020,407,693.98(2)

283.48 283.84
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VTh
vsy

= 4.707072615078(5)



http://www.arxiv.org/abs/2406.18719

Bounds on Ultralight Scalar Coupling to QCD

1 [Hz]
107 107 107® 107 107 1072 107" 10° 10 10? 0% 10t 10°
100 atomic clocks
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< 1073 F
104;/\/
\C
1070 F \
E
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10712 1 =]
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L4 D _dgi@g“ug"‘}“’ o oYDM 105dg7
M, s M,
PI 8s o Pl

21 of 23



Bounds on Axions

f [Hz]
10-7 107 107® 107 107 1072 107" 10° 10 10? 0% 10t 10°

atomic clocks

Ell
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Conclusions

Nuclear clocks are sensitive probes of light new scalars coupling to QCD:

6 ~
v))
(¢ ”)
Nl
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Conclusions

Nuclear clocks are sensitive probes of light new scalars coupling to QCD:
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Can be searched for using a nuclear line-shape analysis in different regimes:
e light ULDM: drift regime

® “heavy” ULDM with large amplitude: line broadening

® “heavy” ULDM with small amplitude: sidebands
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Can be searched for using a nuclear line-shape analysis in different regimes:
e light ULDM: drift regime

® “heavy” ULDM with large amplitude: line broadening

® “heavy” ULDM with small amplitude: sidebands

...And on the way we can learn about

Fine-tuning in thorium, interaction between light & matter, cristals
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Conclusions

Nuclear clocks are sensitive probes of light new scalars coupling to QCD:

Can be searched for using a nuclear line-shape analysis in different regimes
e light ULDM: drift regime

® “heavy” ULDM with large amplitude: line broadening

® “heavy” ULDM with small amplitude: sidebands

...And on the way we can learn about
Fine-tuning in thorium, interaction between light & matter, cristals
And find applications for: gravitational physics, geodesy, navigation,...
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Check out our paper on the arXiv:

Th-229 & ULDM: https://arxiv.org/abs/2407.15924

Thank you for your attention.


https://arxiv.org/abs/2407.15924

Backup slides



Ultralight Scalars

e Motivation: dilaton, relaxion, axion

e Assume ¢ makes up dark matter & is light (mg S 1 eV)

= Average number of DM particles in a de Broglie volume A\3g in a
Milky-Way-like environment:

(34 eV)4 (250 km/s)3
Ngg ~
m 14

= For sub-eV dark matter, huge Nygg = DM ~ classical field
(see e.g. [arXiv:2101.11735])

e Simplest possible Lagrangian:
LoD 20,60"6+ 1m2g?
[ 2 M 2m¢
¢ oscillates around potential minimum:

¢(t, x) ~ ¢o cos(myt)


https://arxiv.org/abs/2101.11735

Ultralight Scalars

® ¢ interacts with the Standard Model:

1 1 ¢ |d dg 5
L 78L OH =2 42 T e FVF,LLL/_ &S ra auv
¢32 ;¢ ¢+ 2m¢¢ +MPI 462 1% 2gs GHVG
- dme mee_e - Z (qu + 'qudg) ch_lq
q=u,d

® ¢ oscillates around potential minimum:

@(t,x) ~ ¢g cos(myt)

= Oscillating fundamental constants
= Oscillating transition frequencies

v(t) ~vg (1 + (Kgdg + Kede +...) ¢(t)/ Mpy)
= V(t) ~vg + dVpm COS (27TZ/DMt + SDDM)



Axion

2 ~ ~
L2D 355 5 fiG:‘V GAH G : dual of the gluon field strength
T T

Confinement of QCD:
= Interactions between pions & axion

= Axion-dependent pion mass [Nucl.Phys.B 171 (1980) 253-272,arXiv:0811.1599]

m2(6) :B\/mg—i—mf,—&—2mumdcos(0)7 0=al/f,, B=1(3q)/f?

s

Expanding around 6 = 0, axion potential V() = —m?2(0)f? at LO.

2

. . . . . . . 5’7771- _ mymy 2
= Axion oscillation induces oscillation of pion mass = = —72(mu+md)29
= Oscillati ition fi RPN L

scillating transition frequency: —= ~ Ki m

[ Nucl.Phys.B 171 (1980) 253-272, arXiv:0709.0077, 0807.4943, 2211.05174]


https://doi.org/10.1016/0550-3213(80)90370-3
https://arxiv.org/abs/0811.1599
https://doi.org/10.1016/0550-3213(80)90370-3
https://arxiv.org/abs/0709.0077
https://arxiv.org/abs/0807.4943
https://arxiv.org/abs/2211.05174

Sensitivity of Nuclear Clocks to

New Physics

AE = ANEgm + AEnuc
AE < |AEpm| ~ |AE |
8 eV <« 0.1 MeV

Kem

EM _

s

nuc —

S

1 O0AEem  AEem

_— ~ ~ 10°

AE 8|0g AEM AE 0

1 OAEem . AEewm

—_— ~ ~ K

AE 9log s P=pE ~ PKem,
B~ O(1)?

1 0DEwe  em,

AE Ologas s

Enhancement factor K

[arXiv:2012.09304,2407.17526]

10°

10°

10°

10°E

1071

10

20z dxg

—0.06

L L
—0.04 —0.02 0.

Quadrupole moment shift AQy/Qo

0.02


https://arxiv.org/abs/2012.09304
https://arxiv.org/abs/2407.17526

Precision vs. Accuracy

Low accuracy Low accuracy
Low precision High precision
High accuracy High accuracy

Low precision High precision



Optical Clock Stability

Achieve higher precision through TN
e Higher frequency (v — o) AVAVAVAVAVAVAN

e Narrower linewidth (Av — 0)

= Relevant quantity: fractional - A~ A
. Av .
uncertalnty 70 . N

Achieve higher accuracy by

e Cooling 0 ,

©
e Trapping @‘)‘0 @-
e Shielding from / accounting for -

. Collisions Doppler Shift External Electric
external flelds & Magnetic Fields



Advantages of Nuclear Clocks wrt. Atomic Clocks

+

Higher frequency = Higher stability
Use solids? = Higher statistics = Higher stability

+

+ Strong vs. electromagnetic force = Nucleus less polarisable than
atom =- Higher accuracy

+ Nucleus < Atom = Shielded from external fields
= Higher accuracy

+ Low transition frequency due to accidental cancellation (?)

AE = ANEgym + AEnuc AE < |AEgm| ~ |AEny|
8 eV « 0.1 MeV

= Extraordinary sensitivity to new physics?
[arXiv:2012.09304,2407.17526]

+ Probes QCD = Sensitive to NP coupling to QCD


https://arxiv.org/abs/2012.09304
https://arxiv.org/abs/2407.17526

Sidebands in the Limit dvpm < vpm

Transition freq uency: carrier frequency 1/

v(t) = exp{—2mpt—iasin(2rvDMt)} VDUWUQUDUUU%W]%%W\_?

o0
. DM modulation ppm
= Z Jn(a) exp {—2mi(vy + nuDM)t}, Svom
n=—o00 t
th H SUpM . . *
Jn: n™ Bessel function, o = T modulation index
fTvT |
= The lineshape is convoluted with LU [1LLING
1) = 5o a3 [ = (v + o) lLe
= The transition can be resonantly driven at
frequencies v = vy + nuvpy, but at a rate n
suppressed by |J,(a)|? Tobs
v
— If sideband with relative intensity Al// to main | ! ou
peak detected, constrain dvpm < UDTM’/% l 7 >
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