

An overview of new(ish) tools for the calculation of scattering amplitudes

Samuel Abreu CERN & The University of Edinburgh

Loop-the-Loop, 2024

- ✦ Brief overview of theory predictions for collider phenomenology
	- **✓** What are the various ingredients that enter these calculations?
- ✦ Scattering amplitudes: setup of calculation

← Master integrals

- ✦ Master coefficients
- ✦ Summary and Outlook

THEORY PREDICTIONS FOR COLLIDER PHENOMENOLOGY

A VERY BRIEF OVERVIEW

Very impressive results in collider physics ⁴

The future — High-Luminosity LHC ⁵

https://hilumilhc.web.cern.ch/content/hl-lhc-project

Expected relative uncertainty

Why do we need precise theory predictions? ⁶

Why do we need precise theory predictions? ⁷

pp->H+X 13 TeV, PDF4LHC15, $\mu_F = \mu_B = m_H/2$

Why do we need precise theory predictions? ⁸

Anatomy of pQCD calculation — Real Life ⁹

Anatomy of pQCD calculation — Scale Dependence

https://pdg.lbl.gov/2023/

- **QCD** looks very different at different energies
- Particles participating in high-energy interactions are not what detectors measure
	- **‣** How do we relate the two perspectives?

Anatomy of pQCD calculation — Factorisation

✓ If sufficiently inclusive over final state (i.e., don't ask too many questions about it)

$$
\sigma_{AB\to X} = \sum_{a,b} \int_0^1 dx_a \int_0^1 dx_b f_{a|A}(x_a) f_{b|B}(x_b) \sigma_{ab\to X}(x_a, x_b) \left(1 + \mathcal{O}(\Lambda_{QCD}/\mathcal{Q}) \right)
$$

Parton Distribution Functions (PDFs): non perturbative, but universal

Hard scattering: perturbation theory

Non-perturbative effects: power suppressed

✓ Collinear factorisation

- **‣** Can define a universal object (the proton) and measure its distribution of quarks and gluons
- **✓** Asymptotic freedom: at high-energies, the theory is perturbative
	- **‣** Can compute the hard scattering in perturbation theory
- **✓** Non-perturbative corrections to factorisation formula: largely unstudied…
	- **‣** Start to become an obstruction to increase of theory precision

Anatomy of pQCD calculation — Hard Interaction ¹²

✓ A high-energy parton is extracted from each proton

‣ Rely on non-perturbative PDFs to describe the proton

Anatomy of pQCD calculation — Parton Showers ¹³

Anatomy of pQCD calculation — Hadronisation and UE&MPIs ¹⁴

Hard Interactions ¹⁵

✦ Percent-level precision for several observables

$$
\sigma = \sigma_{LO} \left(1 + \alpha_s \sigma_{NLO} + \alpha_s^2 \sigma_{NNLO} \right) + \mathcal{O}(\alpha_s^3)
$$

✦ Amplitudes for NNLO corrections (five-point processes)

✦ Factorisation of work: amplitudes and phase-space integration

$$
\sigma \sim \int d\Phi \, |\mathscr{A}|^2
$$

NB: Divergences appear, work in Dimensional Regularisation, $4 \rightarrow D = 4 - 2\epsilon$

Loops and Legs ¹⁶

✓ The higher the order, the more loops and external legs we have

Phase-space integration and singularities

$$
\sigma \sim \left| d\Phi \left| \mathcal{A} \right|^2 \right|
$$

- **✓** Loop amplitudes have IR singularities (after UV renormalisation)
-

- \checkmark Sum is finite: $d\Phi_3$ $\left.\begin{array}{c}\right.^{\circ}$ $\left.\begin{array}{c}\right.^{\circ} \\ \circ \end{array}\right.^{\circ}$ $+$ $d\Phi_4$ $\left.\begin{array}{c}\right.^{\circ} \\ \circ \end{array}\right.^{\circ}$
- **✓** Two approaches in phase-space integration:
	- **‣** Subtraction: build counter terms ⇒ process specific, very efficient
	- **‣** Slicing: introduce cut-off in integration ⇒ process independent, less efficient
- **✓** See subtraction talks this afternoon [talks by Gloria, Federica]
- **✓** And a different way to combine things to avoid it [talk by Matilde]

Anatomy of pQCD calculation — Summary ¹⁸

- ✦ Need ever more precise theoretical predictions to make the most out of experimental data
- ✦ Theoretical predictions for collider processes involve many components
	- **✓** Need efficient and precise codes for each of these components
- Example: NNLO corrections to 3-jet production at the LHC

- ► Among most complex NNLO calculations: 100M CPU hours (~700 tons of CO2!) \Rightarrow big problem we need to address for the future!
- Keep these challenges in mind when declaring an amplitude solved

ATLAS

anti-k. $R = 0.4$

 $\alpha_e(m) = 0.1180$ **MMHT 2014 (NNLO)** \rightarrow Data $- -$ LO

 \cdots NLO $\overline{}$ NNI C

 $p > 60$ GeV

 $m < 2.4$

Particle-level TEEC $\sqrt{6}$ = 13 TeV: 139 fb

SCATTERING AMPLITUDES

SETUP OF CALCULATION (FOCUS ON MULTILEG PROCESSES)

Master integral decomposition ²⁰

✦ How?

- **✓** construct amplitude integrand (QGRAF+projectors, Generalised Unitarity, …)
- **✓** IBP reduce (Blade, FiniteFlow, Fire, Kira, LiteRed, NeatIBP, Reduze, …)
- ✦ Extremely complicated coefficients, even with "good basis"
- Decomposition valid to all orders in ϵ ...
- ✦ … but we only care about the first orders

Bases of Special Functions ²¹

✦ Relations after expansion in *ϵ*:

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n}
$$

✦ Make relations explicit: basis of transcendental functions at each order

$\mathscr{A} = \sum c_i(\vec{p}; \epsilon)$	$m_i(\vec{p}; \epsilon)$	$m(\vec{p}) = \sum e^j h_j(\vec{p})$
[Gehmann, Henn, Lo President, 18]		
[Chicherin, Schrikov, Zoli, 21]		
[Chicherin, Schrikov, Zoli, 21]		
[Abreu, Chicherin, Ita, Page, Sotnikov, Tschernow, Zoli, 23]		
[Gehrmann et al 24]		

$$
\mathscr{A} = \sum \epsilon^j \sum d_{j,k}(\vec{p}) h_k(\vec{p})
$$

- 1. Master integrals:
	- **✓** Decompose in terms of special functions
	- **✓** Efficient and stable numerical evaluation to required order in *ϵ*
	- **✓** Pick basis that manifest analytic properties of amplitudes
- 2. Coefficients
	- **✓** Directly compute coefficients in *ϵ* expansion
	- **✓** Simplify for efficient and stable numerical evaluation

MASTER INTEGRALS

SPECIAL FUNCTIONS AND NUMERICAL EVALUATION

- ✦ How to compute them? Many ways…
	- **✓** Identify independent transcendental components
	- **✓** Convenient representation for fast/stable numerical evaluation
- ✦ Differential equations in canonical form

[Remiddi, 97] [Henn, 13] [Gehrmann, Remiddi, 99]

$$
d\vec{M} = \epsilon A \, \vec{M} \qquad A(\vec{p}) = \sum A_i \, d \ln W_i(\vec{p})
$$

- **✓** Find special (pure) basis
- \checkmark $\;W_i\;\Rightarrow\;$ "symbol alphabet": analytic information, in usable form

$$
d\overrightarrow{M} = \epsilon A \overrightarrow{M} \qquad A(\overrightarrow{p}) = \sum A_i \ d \ln W_i(\overrightarrow{p})
$$

← Finding pure basis

- **✓** Several semi-automated methods, but not yet systematic
- \rightarrow Finding the symbol alphabet
	-

[talks by Maria, Mathieu, ...]

✓ Special points in phase space: Landau analysis }All investigations done with finite field numerical evaluations

[FiniteFlow, Fire, Kira, …] [Schabinger, von Manteuffel, 14] [Peraro, 16]

- \bullet Finding the constant matrices A_i
	- **✓** Rational numbers: use numerical evaluations
	- **✓** Trivial once pure basis and alphabet known

Master Integrals III — (Analytic) Solution ²⁶

$$
d\vec{M} = \epsilon A \, \vec{M} \qquad A(\vec{p}) = \sum A_i \, d \ln W_i(\vec{p})
$$

★ Solve order by order

$$
m(\vec{p}) = \sum e^j h_j(\vec{p})
$$

✦ Multiple Polylogarithms

- **✓** Cumbersome representation, region specific
-
- ▼ Use Ginac for evaluation, but slow...

Chen iterated integrals

-
- **✓** Relations are explicit **✓** Relations not explicit

[Chicherin, Sotnikov, 20] [Chicherin, Sotnikov, Zoia, 21] [Abreu, Chicherin, Ita, Page, Sotnikov, Tschernow, Zoia, 23]

✦ Numeric alternatives: currently too slow, but potential for interpolation

✓ pySecDec **✓** Series Expansion **✓** AMFlow

[Armadillo et al 22]

[Heinrich et al 15, 17, 18, 21,23, 24…] [Moriello 19] [Hidding 20] [Liu, Ma, (Wang), (17), 21, 22]

COEFFICIENTS

COMPUTATION AND SIMPLIFICATION

$$
\mathscr{A} = \sum e^j \sum d_{j,k}(\vec{p}) h_k(\vec{p})
$$

- \bullet Now that the h_k are known, determine $d_{i,k}$
- ✦ Strategy: Ansatz constrained by (finite field) numerical evaluations

$$
d(\vec{p}) = \frac{\mathcal{N}(\vec{p})}{\mathcal{D}(\vec{p})}
$$

[Peraro, 16] [Schabinger, von Manteuffel, 14]

- **✓** Numerator/Denominator are polynomials of high degree
- **✓** Generate the "numerical data"

Coefficients II — "Numerical data" ²⁹

- **✓** Generate integrand: QGRAF, …
- **✓** Project on form factors
- **✓** IBP reduce (with syzygy, block triangular, …)

"Feynman diagrammatic" "Two-loop generalised unitarity"

- **✓** Parametrise generic integrand as surface terms/master integrands
- **✓** Generate integrand: product of trees

✦ Almost done:

$$
\mathcal{A}_0 = \mathcal{A}(p_0) \land \left\{ m_i(\vec{p}) \to \sum e^j h_j(\vec{p}) \right\} \Longrightarrow \left\{ \mathcal{A}_0 = \sum e^j \right\}
$$

 $(p_0) = \sum c_i(\vec{p}_0; \epsilon) m_i(\vec{p}; \epsilon)$ \overline{a}

$$
\implies \mathcal{A}_0 = \sum e^j \sum d_{j,k}(\vec{p}_0) h_k(\vec{p})
$$

Coefficients III — Fitting coefficients ³⁰

$$
d(\vec{p}) = \frac{\mathcal{N}(\vec{p})}{\mathcal{D}(\vec{p})}
$$

[Badger et al] [von Manteuffel et al] [Ita et al]

Denominator: essentially nothing to do if you have the integrals! $(\vec{p}) = \prod W_i^k$

- \blacklozenge Much simpler problem (but still hard): only need $\mathscr{N}(\vec{p})!$
	- **✓** Morally easy: determine a polynomial from exact numerical data
	- **✓** Algorithms scale very badly with degree/number of variables
	- **✓** Many ways to improve performance, very important in practice:
		- **✓** Univariate slices **✓** Choice of variables
		- **✓** Univariate/multivariate partial fractions **✓** *p*-adic numbers

Coefficients IV — Clean up and Assembly ³¹

$$
\mathscr{A} = \sum e^j \sum d_{j,k}(\vec{p}) h_k(\vec{p})
$$

- Important for pheno-ready results
- ✦ Assemble full amplitude: all colour structures/permutations/channels
	- **✓** Large combinatorial factors…
- ← Most $d_{i,k}$ are related \Rightarrow write in basis of rational functions
- Clean-up basis for fast evaluation
	- **✓** Multivariate partial fractions
	- **✓** Pick the right variables!
- Implement everything in C++ code

✓ Precision rescue system: hiding in the symbol alphabet (cheap!)

[e.g., Abreu, Page, Pascual, Sotnikov, 20]

SUMMARY AND OUTLOOK

Summary and Outlook ³³

- Amplitudes for two-loop five-point massless processes
	- **✓** 2013: first numerical results, all-plus gluon, 4/5 digits
	- **✓** 2017: compute them at a single (unphysical) phase-space point in (10mins)
	- **✓** 2018/2019: first analytic results for planar corrections, (50MB) text files for *ci*
	- **✓** 2022/2023: completed all two-loop five-point massless processes for the LHC
	- **✓** Compact and efficient expressions: (1s)/point, expressions printed in papers

Summary and Outlook ³⁴

- ✦ A lot of progress in techniques for computing amplitudes
	- **✓** Tied to progress on calculation of Feynman integrals [all talks on Monday, **Sara** and **Sebastian's** talks today]
- ✦ Important applications for particle pheno, gravity, formal studies
- Many things I did not discuss
	- **✓** Techniques for amplitudes with fewer legs/internal masses
	- **✓** Expansions and approximations
	- **✓** Do we actually need exact higher order amplitudes? Sometimes no… $pp \rightarrow Ht\bar{t}$, $pp \rightarrow Wt\bar{t}$ [Catani et al, 22 ; Buonocore et al 23]
- ✦ Adding internal masses: top physics, EW corrections, …

[see **Colomba's** talk]

✦ Towards NNNLO ⇒ more loops!

[see **Dhimiter** and **Junwon's** talks]

[see e.g. **Tommaso's** talk on Monday, **Federico's** today]

THANK YOU!