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Outline 2

✦ Brief overview of theory predictions for collider phenomenology

✦ Scattering amplitudes: setup of calculation

✓ What are the various ingredients that enter these calculations?

✦ Master integrals

✦ Master coefficients

✦ Summary and Outlook



THEORY PREDICTIONS FOR COLLIDER 
PHENOMENOLOGY 
A VERY BRIEF OVERVIEW



Very impressive results in collider physics 4

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2023-039/



The future — High-Luminosity LHC 5
https://hilumilhc.web.cern.ch/content/hl-lhc-project

✓ 20 times more data

✓ Very high-precision measurements

✓ Access to new rare processes

✓ Bottleneck in theory predictions… 



Why do we need precise theory predictions? 6

Slide by M.Grazzini



Why do we need precise theory predictions? 7

Slide by M.Grazzini



Why do we need precise theory predictions? 8

Slide by M.Grazzini



Anatomy of pQCD calculation — Real Life 9
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https://pdg.lbl.gov/2023/

✓ QCD looks very different at different energies

✓ Particles participating in high-energy interactions are not what detectors measure
‣ How do we relate the two perspectives?

Anatomy of pQCD calculation — Scale Dependence
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✓ Collinear factorisation

✓ Asymptotic freedom: at high-energies, the theory is perturbative
‣ Can compute the hard scattering in perturbation theory

‣ Can define a universal object (the proton) and measure its distribution of quarks 
and gluons

σAB→X = ∑
a,b

∫
1

0
dxa ∫

1

0
dxb fa|A(xa) fb|B(xb) σab→X (xa, xb)(1 + 𝒪(ΛQCD/Q) )

Parton Distribution Functions (PDFs): 
non perturbative, but universal

Hard scattering: 
perturbation theory

Non-perturbative 
effects: 

power suppressed

✓ If sufficiently inclusive over final state (i.e., don’t ask too many questions about it)

✓ Non-perturbative corrections to factorisation formula: largely unstudied… 
‣ Start to become an obstruction to increase of theory precision

Anatomy of pQCD calculation — Factorisation



Anatomy of pQCD calculation — Hard Interaction 12

Proton 1 Proton 2

✓ A high-energy parton is extracted from each proton
‣ Rely on non-perturbative PDFs to describe the proton

✓ High-energy interaction:
‣ Computable in perturbative QCD  Amplitudes!⇒
‣ Produce high-energy particles



Anatomy of pQCD calculation — Parton Showers 13

Proton 1 Proton 2

✓ Particles produced in the final state radiate
‣ Proliferation of particles fill phase-space

✓ Radiation is ordered in angle/transverse 
momentum
‣ Described by parton showers
‣ Form collimated jets of particles



Anatomy of pQCD calculation — Hadronisation and UE&MPIs 14

Proton 1 Proton 2

✓ Quarks and gluons hadronise
‣ Heavier hadrons more likely to be 

found as products of hard interaction

✓ Products of many other 
soft interactions also reach 
the detector 
‣ Underlying events and multiparton interactions



Hard Interactions 15

✦ Amplitudes for NNLO corrections (five-point processes)

SOLVED UNDER GOOD  
CONTROL

CURRENT 
FRONTIER

σNNLO = σRR + σRV + σVV

✦ Percent-level precision for several observables

σ = σLO ( 1 + αsσNLO + α2
s σNNLO) + 𝒪(α3

s )
∼ 𝒪(10%) ∼ 𝒪(1%)

σ ∼ ∫ dΦ 𝒜
2

✦ Factorisation of work: amplitudes and phase-space integration
NB: Divergences appear, work in 

Dimensional Regularisation, 
4 → D = 4 − 2ϵ



Loops and Legs 16

σ ∼ ∫ dΦ 𝒜
2

Leading Order

NLO

NNLO

✓ The higher the order, the more loops and external legs we have



Phase-space integration and singularities 17

σ ∼ ∫ dΦ 𝒜
2

✓ Loop amplitudes have IR singularities (after UV renormalisation)

✓ Phase-space integration has IR singularities ∼ ∼
Eg → 0 θg → 0

✓ Sum is finite: ∫ dΦ3 +∫ dΦ4

✓ Two approaches in phase-space integration:

‣ Subtraction: build counter terms  process specific, very efficient⇒

‣ Slicing: introduce cut-off in integration  process independent, less efficient⇒

✓ See subtraction talks this afternoon [talks by Gloria, Federica]

✓ And a different way to combine things to avoid it [talk by Matilde]



Anatomy of pQCD calculation — Summary 18

✦ Theoretical predictions for collider processes involve many components
✓ Need efficient and precise codes for each of these components

✦ Need ever more precise theoretical predictions to make the most 
out of experimental data

✦ Example: NNLO corrections to 3-jet production at the LHC

[Czakon, Mitov, Poncelet ’21]

[ATLAS, JHEP 07 (2023) 85]

‣ Energy-energy correlators…

‣ … and new  extractionsαs

‣ Among most complex NNLO calculations: 100M CPU hours (~700 tons of CO2!)  big 
problem we need to address for the future!

⇒

✦ Keep these challenges in mind when declaring an amplitude solved



SCATTERING AMPLITUDES 
SETUP OF CALCULATION (FOCUS ON MULTILEG PROCESSES)



Master integral decomposition 20

𝒜 = ∑ ci( ⃗p; ϵ) mi( ⃗p; ϵ)

Master coefficients 
- process specific 
- rational/algebraic 
functions 

Master integrals 
- kinematic dependent 
- special functions 
(polylogs, elliptics, …) 

✦ Decomposition valid to all orders in  … ϵ

✦ … but we only care about the first orders

✦ How?
✓ construct amplitude integrand (QGRAF+projectors, Generalised Unitarity, …)
✓ IBP reduce (Blade, FiniteFlow, Fire, Kira, LiteRed, NeatIBP, Reduze, …)

✦ Extremely complicated coefficients, even with “good basis”

} Can we use this to 
simplify our life?



Bases of Special Functions 21

✦ Relations after expansion in :ϵ

∼ ∼ ∼ r0 + r1 ϵ ln(s) + r2 ϵ2 ln2(s) + …

✦ Make relations explicit: basis of transcendental functions at each order

𝒜 = ∑ ci( ⃗p; ϵ) mi( ⃗p; ϵ)

𝒜 = ∑ ϵ j ∑ dj,k( ⃗p) hk( ⃗p)

⟹
[Gehrmann, Henn, Lo Presti, 18]

m( ⃗p) = ∑ ϵ j hj( ⃗p)

[Chicherin, Sotnikov, 20]
[Chicherin, Sotnikov, Zoia, 21]
[Abreu, Chicherin, Ita, Page, Sotnikov, Tschernow, Zoia, 23]
[Gehrmann et al 24]



Setup of Calculation 22

1. Master integrals:

𝒜 = ∑ ϵ j ∑ dj,k( ⃗p) hk( ⃗p)

✓ Decompose in terms of special functions
✓ Efficient and stable numerical evaluation to required order in ϵ

2. Coefficients
✓ Directly compute coefficients in  expansionϵ
✓ Simplify for efficient and stable numerical evaluation

✓ Pick basis that manifest analytic properties of amplitudes



MASTER INTEGRALS 
SPECIAL FUNCTIONS AND NUMERICAL EVALUATION



Master Integrals I 24

✦ How to compute them? Many ways…

✓ Identify independent transcendental components
✓ Convenient representation for fast/stable numerical evaluation

✦ Differential equations in canonical form

d ⃗M = ϵ A ⃗M A( ⃗p) = ∑ Ai d ln Wi( ⃗p)

✓ Find special (pure) basis

✓      “symbol alphabet”: analytic information, in usable formWi ⇒

[Remiddi, 97]

[Henn, 13]
[Gehrmann, Remiddi, 99]



Master Integrals II 25

✦ Finding pure basis
✓ Several semi-automated methods, but not yet systematic

✦ Finding the symbol alphabet

d ⃗M = ϵ A ⃗M A( ⃗p) = ∑ Ai d ln Wi( ⃗p)

✓ Special points in phase space: Landau analysis
}All investigations 

done with finite 
field numerical  

evaluations

✦ Finding the constant matrices Ai

✓ Trivial once pure basis and alphabet known
✓ Rational numbers: use numerical evaluations

[FiniteFlow, Fire, Kira, …]
[Schabinger, von Manteuffel, 14]

[Peraro, 16]

[talks by Maria, Mathieu, …]



Master Integrals III — (Analytic) Solution 26

d ⃗M = ϵ A ⃗M A( ⃗p) = ∑ Ai d ln Wi( ⃗p)

✦ Multiple Polylogarithms
✓ Cumbersome representation, region specific

✓ Relations are explicit✓ Relations not explicit

✦ Chen iterated integrals

✓ Use Ginac for evaluation, but slow… ✓ Write dedicated code for evaluation

m( ⃗p) = ∑ ϵ j hj( ⃗p)✦ Solve order by order

✦ Numeric alternatives: currently too slow, but potential for interpolation

✓ pySecDec ✓ AMFlow✓ Series Expansion
[Liu, Ma, (Wang), (17), 21, 22][Hidding 20][Moriello 19][Heinrich et al 15, 17, 18, 21,23, 24…]

[Chicherin, Sotnikov, 20]
[Chicherin, Sotnikov, Zoia, 21]
[Abreu, Chicherin, Ita, Page, Sotnikov, Tschernow, Zoia, 23]

[Armadillo et al 22]



COEFFICIENTS 
COMPUTATION AND SIMPLIFICATION



Coefficients I 28

𝒜 = ∑ ϵ j ∑ dj,k( ⃗p) hk( ⃗p)

✦ Now that the  are known, determine hk dj,k

✦ Strategy: Ansatz constrained by (finite field) numerical evaluations

d( ⃗p) =
𝒩( ⃗p)
𝒟( ⃗p)

✓ Numerator/Denominator are polynomials of high degree

✓ Generate the “numerical data”

[Peraro, 16]
[Schabinger, von Manteuffel, 14]



Coefficients II — “Numerical data” 29

“Feynman diagrammatic” “Two-loop generalised 
unitarity”

✓ Generate integrand: QGRAF, …

✓ Project on form factors

✓ IBP reduce (with syzygy, block triangular, …)

✓ Generate integrand: product of trees

✓ Parametrise generic integrand as 
surface terms/master integrands

𝒜(p0) = ∑ ci( ⃗p0; ϵ) mi( ⃗p; ϵ)

𝒜0 = 𝒜(p0) / . {mi( ⃗p) → ∑ ϵ j hj( ⃗p)} 𝒜0 = ∑ ϵ j ∑ dj,k( ⃗p0) hk( ⃗p)⟹
✦ Almost done:



Coefficients III — Fitting coefficients 30

d( ⃗p) =
𝒩( ⃗p)
𝒟( ⃗p)

✦ Denominator: essentially nothing to do if you have the integrals!

✦ Much simpler problem (but still hard): only need !𝒩( ⃗p)

𝒟( ⃗p) = ∏Wk
i

✓ Morally easy: determine a polynomial from exact numerical data

✓ Many ways to improve performance, very important in practice: 

✓ Algorithms scale very badly with degree/number of variables

✓ Univariate slices

✓ Univariate/multivariate partial fractions

✓ Choice of variables 

✓ -adic numbersp

[Badger et al]

[von Manteuffel et al]

[Ita et al]



Coefficients IV — Clean up and Assembly 31

✦ Important for pheno-ready results

✦ Most  are related  write in basis of rational functionsdj,k ⇒

✦ Clean-up basis for fast evaluation
✓ Multivariate partial fractions

✦ Assemble full amplitude: all colour structures/permutations/channels
✓ Large combinatorial factors…

✦ Implement everything in C++ code

✓ Precision rescue system: hiding in the symbol alphabet (cheap!)

𝒜 = ∑ ϵ j ∑ dj,k( ⃗p) hk( ⃗p)

[e.g., Abreu, Page, Pascual, Sotnikov, 20]

✓ Pick the right variables!



SUMMARY AND OUTLOOK 



Summary and Outlook 33

✦ Amplitudes for two-loop five-point massless processes
✓ 2013: first numerical results, all-plus gluon, 4/5 digits
✓ 2017: compute them at a single (unphysical) phase-space point in (10mins)𝒪
✓ 2018/2019: first analytic results for planar corrections, (50MB) text files for  𝒪 ci

✓ 2022/2023: completed all two-loop five-point massless processes for the LHC
✓ Compact and efficient expressions: (1s)/point, expressions printed in papers𝒪

[de Laurentis et al, 23]



Summary and Outlook 34

✦ A lot of progress in techniques for computing amplitudes
✓ Tied to progress on calculation of Feynman integrals

✦ Many things I did not discuss
✓ Techniques for amplitudes with fewer legs/internal masses
✓ Expansions and approximations

✓ Do we actually need exact higher order amplitudes? Sometimes no…
, pp → Htt̄ pp → Wtt̄ [Catani et al, 22 ; Buonocore et al 23]

[see e.g. Tommaso’s talk on Monday, Federico’s today]

✦ Important applications for particle pheno, gravity, formal studies

[all talks on Monday, Sara and Sebastian’s talks today]

✦ Towards NNNLO  more loops!⇒

✦ Adding internal masses: top physics, EW corrections, … 
[see Colomba’s talk]

[see Dhimiter and Junwon’s talks]



THANK YOU!


