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Differential Equations 

Describe how promptly a quantity changes with respect to the change in one or more other quantities

Differential Equations

 ∂(n)
x f(x) + pn−1(x) ∂(n−1)

x f(x) + … + p1(x) ∂(1)
x f(x) + p0(x) f(x) = 0

Theoretical Physics goals: modelling Nature by modelling changes: Systems’ Evolution
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IBP
=

X

i

ck,i M
[d]
i (1.16)

which can be seen as a Dimensional recurrence relation
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1.5 Di↵erential Equations
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[d] = A(d, z) M[d] (1.19)
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CHAPTER 5. POST-NEWTONIAN CORRECTIONS

5.2 The Einstein-Infeld-Ho↵mann Lagrangian from
a 1 PN calculation

Exploiting the previous method we will derive the complete e↵ective action for a
non spinning binary at 1 PN order, i.e. taking care of corrections that scales as
GNv2 and G2

N .
Let’s start our calculation by defining the e↵ective action as

Seff (xa) = �ma

Z
dt

r
1� v2a

c2
� iW (xa, va) (5.8)

where W is evaluated in terms of connected e↵ective diagrams as

W (xa,b, va,b) =

Z
d⌧ad⌧bA(xa,b, va,b) (5.9)

A(xa,b, va,b) =

Z
ddk

(2⇡)d
d!

2⇡
eik·(xa�xb)e�i!(⌧a�⌧b)M(k,!) (5.10)

M(k,!) ⇠ GNv
2, G2

N (5.11)

In order to find which PN e↵ective diagrams participate in 5.11 we start by looking
at the GN and G2

N topologies. For semplicity, from now on we will adopt a thick
black line for a graviton, instead of the gluon one.
As for the GN topology, it is characterized by a unique PM diagram given by

(5.12)

We can now switch to the Kol-Smolkin variables by filling the diagram with �, Ai,
and neglecting �nm since its emission and absorption would be proportional to v4.
So far the connected diagrams are

� Ai (5.13)
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available in “local form”. The diagrams that contribute are of the type

but now there are non-trivial numerator factors that don’t trivially follow from the structure

of propagators. The full integrand is available through to seven loops in the literature [36–

40]. The inspection of the available local expansions on this cut does not indicate an

obvious all-loop generalization, nor does it betray any hint that that the final result can

be expressed in the one-line form given above. For instance just at 5 loops, the local form

of the cut is given as a sum over diagrams,

with intricate numerator factors. If all terms are combined with a common denominator of

all physical propagators, the numerator has 347 terms. Needless to say, the complicated ex-

pression obtained in this way perfectly matches the amplituhedron computation of the cut.

13 Master Amplituhedron

We have defined the amplituhedron An,k,L separately for every n, k and loop order L. How-

ever, a trivial feature of the geometry is that An,k,L is contained in the “faces” of An′,k′,L′ ,

for n′ > n, k′ > k,L′ > L. The objects needed to compute scattering amplitudes for any

number of particles to all loop orders are thus contained in a “master amplituhedron” with

n, k, L → ∞.

In this vein it may also be worth considering natural mathematical generalizations of

the amplituhedron. We have already seen that the generalized tree amplituhedron An,k,m

lives in G(k, k+m) and can be defined for any even m. It is obvious that the amplituhedron

with m = 4, of relevance to physics, is contained amongst the faces of the object defined

for higher m.

If we consider general even m, we can also generalize the notion of “hiding particles”

in an obvious way: adjacent particles can be hidden in even numbers. This leads us

– 24 –



Feynman Integrals
Momentum-space Representation

=

N-denominator  
generic Integral

3 Feynman Integral Decomposition

Consider scalar Feynman integrals with L loops, E+1 external momenta, and N = LE +
1
2L(L+1) (generalised) denominators2 in a generic dimension d:

Ia1,a2,...,aN ⌘
Z LY

i=1

d
d
ki

⇡d/2

NY

j=1

1

D
aj

j

. (3.1)

where Dj stands for either a genuine denominator or an irreducible scalar product (ISP).
In Baikov representation, one changes the integration variables, from the loop momenta

ki to the denominators Dj , at the cost of introducing a Jacobian, see, e.g., [12, 83] or
Appendix A of [1]. Here we summarize the final forms of the standard and Loop-by-
Loop Baikov representations.

1. Standard Baikov Representation. In this case, after the change of variables, the
Feynman integral may be written as,

Ia1,a2,...,aN ⌘ K

Z

C
u' (3.2)

where
u = B

�
, � ⌘ (d�E�L�1)/2 (3.3)

and

' ⌘ '̂ d
Nz , '̂ ⌘ 1

z
a1
1 z

a2
2 · · · zaN

N

, d
Nz ⌘ dz1 ^ dz2 ^ · · · ^ dzN , (3.4)

and where B is the Baikov polynomial computed as a determinant of the Gram matrix of
scalar products, depending on loop momenta, and K is a constant pre-factor (independent
of the integration variables), which may depend on the external kinematic invariants
and on the dimensional regulator d. The integration contour C is defined such that B

vanishes on its boundaries.

We can re-express it, in the language of intersection theory, as a bilinear pairing,

Ia1,a2,...,aN ⌘ K h'|C]! , (3.5)

with
! ⌘ d log(u) = �d log(B). (3.6)

2. Loop-by-Loop (LBL) Baikov Representation. In this case, after the change of
variables, the the number of integration variables M can be smaller than the N (because
M �N ISPs have been integrated out). For this case, the integral have the form

Ia1,a2,...,aM ,aM+1,...,aN ⌘ K

Z

C
u' = K h'|C]! (3.7)

2N amounts to the total number of scalar products which can be built with the loop momenta ki and
the independent external momenta pj , and corresponds to the sum of the so called reducible and irreducible
scalar products. The former can be expressed in terms of the denominators of graph propagators, while the
latter are independent of them. Nevertheless, they also can be interpreted as auxiliary denominators, not
related to any internal line of the graph.
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1
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where Dj stands for either a genuine denominator or an irreducible scalar product (ISP).
In Baikov representation, one changes the integration variables, from the loop momenta

ki to the denominators Dj , at the cost of introducing a Jacobian, see, e.g., [12, 83] or
Appendix A of [1]. Here we summarize the final forms of the standard and Loop-by-
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and where B is the Baikov polynomial computed as a determinant of the Gram matrix of
scalar products, depending on loop momenta, and K is a constant pre-factor (independent
of the integration variables), which may depend on the external kinematic invariants
and on the dimensional regulator d. The integration contour C is defined such that B

vanishes on its boundaries.

We can re-express it, in the language of intersection theory, as a bilinear pairing,

Ia1,a2,...,aN ⌘ K h'|C]! , (3.5)

with
! ⌘ d log(u) = �d log(B). (3.6)

2. Loop-by-Loop (LBL) Baikov Representation. In this case, after the change of
variables, the the number of integration variables M can be smaller than the N (because
M �N ISPs have been integrated out). For this case, the integral have the form
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C
u' = K h'|C]! (3.7)

2N amounts to the total number of scalar products which can be built with the loop momenta ki and
the independent external momenta pj , and corresponds to the sum of the so called reducible and irreducible
scalar products. The former can be expressed in terms of the denominators of graph propagators, while the
latter are independent of them. Nevertheless, they also can be interpreted as auxiliary denominators, not
related to any internal line of the graph.
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IBP equations

Generating an overdimensioned (sparse) systems of linear equations

Solutions:   
Gauss’ Elimination  
Groebner Bases   
Syzygy Equations  
Finite Fields + Chinese Remainder Theorem + Rational Functions Reconstruction 

Contiguity relations

[d]



Linear relations for Feynman Integrals
Decomposition in terms of independent Master Integrals

=

N-denominator  
generic Integral

N-denominator 
Master Integrals

(n<N)-denominator 
Master Integrals 
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Linear relations for Feynman Integrals
 Relations among Integrals in dim. reg.
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Polynomial Division & Integrand Recursion
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5. The Maximum Cut Theorem

At any loop `, loops we define maximum cut as the set of vanishing denominators

D0 = D1 = . . . = 0

which constrains completely the components of the loop momenta.

We assume that, in non-exceptional phase-space points, a maximum-cut has a finite number

ns of solutions, each with multiplicity one.

Then,

6. Polynomial Division

Ni1...in

Di1 · · ·Din
=

nX

=1

Ni1...i�1i+1...in Di

Di1 · · ·Di�1DiDi+1 · · ·Din
+

�i1...in

Di1 · · ·Din
(6.1)

– 7 –

3

the division. Since Gi1···in is a Gröbner basis, the remain-
der is uniquely determined once the monomial ordering
is fixed [17–20].
The term Γi1···in belongs to the ideal Ji1···in , thus it can
be expressed in terms of denominators, as

Γi1···in =
n
∑

κ=1

Ni1···iκ−1iκ+1···in(z)Diκ (z) . (7)

The explicit form of Ni1···iκ−1iκ+1···in can be found by
expressing the elements of the Gröbner basis in terms of
the denominators.

A. Reducibility criterion.

An integrand Ii1···in is said to be reducible if it can be
written in terms of lower-point integrands: that happens
when the numerator can be written in terms of denom-
inators. The concept of reducibility can be formalized
in algebraic geometry. Indeed a direct consequence of
Eqs. (6) and (7) is the following

Proposition II.1 The integrand Ii1···in is reducible iff
the remainder of the division modulo a Gröbner basis
vanishes, i.e. iff Ni1···in ∈ Ji1···in .

Proposition II.1 allows to prove

Proposition II.2 Any n-particle integrand with n > 4ℓ
is reducible.

Proof. In this case, the system is over-constrained,
namely the number n of equations is larger than the
number 4ℓ of indeterminates. The n propagators can-
not vanish simultaneously, i.e.

Di1(z) = · · · = Din(z) = 0 (8)

has no solution. Therefore, according to the weak Null-
stellensatz theorem [17],

1 =
n
∑

κ=1

wκ(z)Diκ (z) ∈ Ji1···in , (9)

for some ωκ ∈ P [z]. Irrespective of the monomial or-
dering, a (reduced) Gröbner basis is G = {g1} = {1}.
Eq. (6) becomes

Ni1···in(z) = Ni1···in(z) × 1 ∈ Ji1···in , (10)

thus Ii1···in is reducible.

B. Integrand Recursion Formula

After substituting Eqs. (6) and (7) in Eq. (3), we
get a non-homogeneous recurrence relation for the n-
denominator integrand,

Ii1···in =
k
∑

κ=1

Ii1···iκ−1iκ+1in +
∆i1···in

Di1 · · ·Din

. (11)

According to Eq. (11), Ii1···in is expressed in terms
of integrands, Ii1···iκ−1iκ+1in , with (n − 1) denomina-
tors. Ii1···iκ−1iκ+1in are obtained from Ii1···in by pinch-
ing the iκ-th denominator. The numerator of the non-
homogeneous term is the remainder ∆i1···in of the divi-
sion (6). By construction, it contains only irreducible
monomials with respect to Gi1···in , thus it is identified
with the residue at the cut (i1 . . . in).
The integrands Ii1···iκ−1iκ+1···in can be decomposed re-

peating the procedure described in Eqs. (3)-(6). In this
case the polynomial division of Ni1···iκ−1iκ+1···in has to
be performed modulo the Gröbner basis of the ideal
Ji1···iκ−1iκ+1···in , generated by the corresponding (n− 1)
denominators.
The complete multi-pole decomposition of the in-

tegrand Ii1···in is achieved by successive iterations of
Eqs. (3)-(6). Like an Erathostene’s sieve, the recursive
application of Eqs. (6) and (11) extracts the unique struc-
tures of the remainders ∆’s. The procedure naturally
stops when all cuts are exhaused, and no denominator is
left, leaving us with the integrand reduction formula.
If all quotients of the last divisions vanish, the inte-

grand is cut-constructible, i.e. it can be determined by
sampling the numerator on the solutions of the cuts. If
the quotients do not vanish, they give rise to non-cut-
constructible terms, i.e. terms vanishing at every multi-
pole. They can be reconstructed by sampling the numer-
ator away from the cuts. Non-cut-constractible terms
may occur in non-renormalizable theories, where the rank
of the numerator is higher than the number of denomi-
nators [21].

The Proposition II.2 and the recurrence relation (11)
are the two mathematical properties underlying the inte-
grand decomposition of any scattering amplitudes. The
polynomial form of each residue is univocally derived
from the division modulo the Gröbner basis of the corre-
sponding cut.

III. ONE-LOOP INTEGRAND
DECOMPOSITION

In this section we decompose an n-point integrand
I0···(n−1) of rank-n with n > 5, using the procedure de-
scribed in Section II. The reduction of higher-rank and/or
lower-point integrands proceed along the same lines.

In d-dimensions, the generic n-point one-loop inte-
grand reads as follows:

I0···(n−1) ≡
N0···(n−1)(q, µ

2)

D0(q, µ2) · · ·Dn−1(q, µ2)
. (12)

We closely follow the notation of [21, 31]. Objects living
in d = 4 − 2ϵ are denoted by a bar, e.g. /̄q = /q + /µ and
q̄2 = q2 − µ2.

For later convenience, for each Ii1···ik we define a basis
E(i1···ik) = {ei}i=1,...,4.
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integrand recurrence relation that generates the required
multi-particle pole decomposition for arbitrary ampli-
tudes, independently of the number of loops.
The algorithm treats the numerator and the denomi-

nators of any Feynman integrand, as multivariate poly-
nomials in the components of the loop variables. It uses
both the weak Nullstellensatz theorem [17] and the multi-
variate polynomial division modulo appropriate Gröbner
basis [17–20]. In the context of the integrand reduction,
univariate polynomial division has been already intro-
duced in [21] to improve the decomposition of one-loop
scattering amplitudes.

The algorithm, which is described in Section II, relies
on general properties of the loop integrand:

• When the number n of denominators is larger than
the total number of the components of the loop mo-
menta, the weak Nullstellensatz theorem [17] yields
the trivial reduction of an n-denominator integrand
in terms integrands with (n− 1) denominators.

• When n is equal or less than the total number of
components of the loop momenta, we divide the
numerator modulo the Gröbner basis of the n-ple
cut, namely modulo a set of polynomial vanishing
on the same on-shell solutions as the cut denomi-
nators. The remainder of the division is the residue
of the n-ple cut. The quotients generate integrands
with (n − 1) denominators which should undergo
the same decomposition.

• By iterating this procedure, we extract the polyno-
mial forms of all residues. The algorithm will stop
when all cuts are exhausted, and no denominator
is left, leaving us with the integrand reduction for-
mula.

In Section III we apply the algorithm to a generic one-
loop integrand, reproducing the d-dimensional integrand
decomposition formula [5, 22–24].

In Section IV we conclude by proving a theorem
on the maximum-cuts, i.e. the cuts defined by the
maximum number of on-shell conditions which can be
simultaneously satisfied by the loop momenta. The
on-shell conditions of a maximum cut lead to a zero-
dimensional system. The Finiteness Theorem [17] and
the Shape Lemma [19, 20, 25, 26] ensure that residue
at the maximum-cut is parametrised by ns coefficients,
where ns is the number of solutions of the multiple
cut-conditions. This guarantees that the corresponding
residue can always be reconstructed by evaluating the
numerator at the solutions of the cut.

During the completion of this work, Zhang has pre-
sented an algorithm [27] embedding the ideas presented
in [15] within more general techniques of algebraic geom-
etry, among which the division modulo Gröbner basis is
used as well.

II. MULTIVARIATE POLYNOMIAL DIVISION

In what follows, we assume 4-dimensional loop-
momenta. Extensions to higher-dimensional cases, ac-
cording to the chosen dimensional regularization scheme,
can be treated analogously - as we will show when dis-
cussing the one-loop integrand reduction.
The integrand reduction methods [5, 12, 15, 21–24, 28–

30] recast the problem of computing ℓ-loop amplitudes
with n denominators as the reconstruction of integrand
functions of the type

Ii1···in ≡
Ni1···in(q1, . . . , qℓ)

Di1(q1, . . . , qℓ) · · ·Din(q1, . . . , qℓ)
, (1)

where q1, . . . , qℓ are integration momenta. The generic
propagator can be written as follows:

Di =

⎛

⎝

ℓ
∑

j=1

αj qj + pi

⎞

⎠

2

−m2
i , αj ∈ {0,±1} . (2)

The numerator Ni1···in and any of the denominators Di

are polynomial in the components of the loop momenta,
say z ≡ (z1, . . . z4ℓ), i.e.

Ii1···in =
Ni1···in(z)

Di1(z) · · ·Din(z)
. (3)

Let us consider the ideal generated by the n denomi-
nators in Eq. (3) ,

Ji1···in = ⟨Di1 , · · · , Din⟩

≡

{

n
∑

κ=1

hκ(z)Diκ(z) : hκ(z) ∈ P [z]

}

, (4)

where P [z] is the set of polynomials in z. The common
zeros of the elements of Ji1···in are exactly the common
zeros of the denominators.
The multi-pole decomposition of Eq. (1) is explicitly

achieved by performing multivariate polynomial division,
yielding an expression ofNi1···in in terms of denominators
and residues.
We construct a Gröbner basis [17–20] generating the ideal
Ji1···in with respect to a chosen monomial ordering,

Gi1···in = {g1(z), . . . , gm(z)} . (5)

In our formalism, the n-ple cut-conditions Di1 = . . . =
Din = 0, are equivalent to g1 = . . . = gm = 0. The
number m of elements of the Gröbner basis is the cardi-
nality of the basis. In general, m is different from n. We
then consider the multivariate division of Ni1···in modulo
Gi1···in ,

Ni1···in(z) = Γi1···in +∆i1···in(z) , (6)

where Γi1···in =
∑m

i=1 Qi(z)gi(z) is a compact notation
for the sum of the products of the quotients Qi and the
divisors gi. The polynomial ∆i1···in is the remainder of
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the division. Since Gi1···in is a Gröbner basis, the remain-
der is uniquely determined once the monomial ordering
is fixed [17–20].
The term Γi1···in belongs to the ideal Ji1···in , thus it can
be expressed in terms of denominators, as

Γi1···in =
n
∑

κ=1

Ni1···iκ−1iκ+1···in(z)Diκ (z) . (7)

The explicit form of Ni1···iκ−1iκ+1···in can be found by
expressing the elements of the Gröbner basis in terms of
the denominators.

A. Reducibility criterion.

An integrand Ii1···in is said to be reducible if it can be
written in terms of lower-point integrands: that happens
when the numerator can be written in terms of denom-
inators. The concept of reducibility can be formalized
in algebraic geometry. Indeed a direct consequence of
Eqs. (6) and (7) is the following

Proposition II.1 The integrand Ii1···in is reducible iff
the remainder of the division modulo a Gröbner basis
vanishes, i.e. iff Ni1···in ∈ Ji1···in .

Proposition II.1 allows to prove

Proposition II.2 Any n-particle integrand with n > 4ℓ
is reducible.

Proof. In this case, the system is over-constrained,
namely the number n of equations is larger than the
number 4ℓ of indeterminates. The n propagators can-
not vanish simultaneously, i.e.

Di1(z) = · · · = Din(z) = 0 (8)

has no solution. Therefore, according to the weak Null-
stellensatz theorem [17],

1 =
n
∑

κ=1

wκ(z)Diκ (z) ∈ Ji1···in , (9)

for some ωκ ∈ P [z]. Irrespective of the monomial or-
dering, a (reduced) Gröbner basis is G = {g1} = {1}.
Eq. (6) becomes

Ni1···in(z) = Ni1···in(z) × 1 ∈ Ji1···in , (10)

thus Ii1···in is reducible.

B. Integrand Recursion Formula

After substituting Eqs. (6) and (7) in Eq. (3), we
get a non-homogeneous recurrence relation for the n-
denominator integrand,

Ii1···in =
k
∑

κ=1

Ii1···iκ−1iκ+1in +
∆i1···in

Di1 · · ·Din

. (11)

According to Eq. (11), Ii1···in is expressed in terms
of integrands, Ii1···iκ−1iκ+1in , with (n − 1) denomina-
tors. Ii1···iκ−1iκ+1in are obtained from Ii1···in by pinch-
ing the iκ-th denominator. The numerator of the non-
homogeneous term is the remainder ∆i1···in of the divi-
sion (6). By construction, it contains only irreducible
monomials with respect to Gi1···in , thus it is identified
with the residue at the cut (i1 . . . in).
The integrands Ii1···iκ−1iκ+1···in can be decomposed re-

peating the procedure described in Eqs. (3)-(6). In this
case the polynomial division of Ni1···iκ−1iκ+1···in has to
be performed modulo the Gröbner basis of the ideal
Ji1···iκ−1iκ+1···in , generated by the corresponding (n− 1)
denominators.
The complete multi-pole decomposition of the in-

tegrand Ii1···in is achieved by successive iterations of
Eqs. (3)-(6). Like an Erathostene’s sieve, the recursive
application of Eqs. (6) and (11) extracts the unique struc-
tures of the remainders ∆’s. The procedure naturally
stops when all cuts are exhaused, and no denominator is
left, leaving us with the integrand reduction formula.
If all quotients of the last divisions vanish, the inte-

grand is cut-constructible, i.e. it can be determined by
sampling the numerator on the solutions of the cuts. If
the quotients do not vanish, they give rise to non-cut-
constructible terms, i.e. terms vanishing at every multi-
pole. They can be reconstructed by sampling the numer-
ator away from the cuts. Non-cut-constractible terms
may occur in non-renormalizable theories, where the rank
of the numerator is higher than the number of denomi-
nators [21].

The Proposition II.2 and the recurrence relation (11)
are the two mathematical properties underlying the inte-
grand decomposition of any scattering amplitudes. The
polynomial form of each residue is univocally derived
from the division modulo the Gröbner basis of the corre-
sponding cut.

III. ONE-LOOP INTEGRAND
DECOMPOSITION

In this section we decompose an n-point integrand
I0···(n−1) of rank-n with n > 5, using the procedure de-
scribed in Section II. The reduction of higher-rank and/or
lower-point integrands proceed along the same lines.

In d-dimensions, the generic n-point one-loop inte-
grand reads as follows:

I0···(n−1) ≡
N0···(n−1)(q, µ

2)

D0(q, µ2) · · ·Dn−1(q, µ2)
. (12)

We closely follow the notation of [21, 31]. Objects living
in d = 4 − 2ϵ are denoted by a bar, e.g. /̄q = /q + /µ and
q̄2 = q2 − µ2.

For later convenience, for each Ii1···ik we define a basis
E(i1···ik) = {ei}i=1,...,4.

Ideal

Groebner basis

Polynomial Division

Remainder ~ Residue

Quotients

(�1)

z1z2 · · · zn
=

1

z1(z1 � z2) · · · (z1 � zn)

+
1

(z2 � z1)z2 · · · (z2 � zn)
+ . . . . . .

+
1

(zn � z1)(zn � z2) · · · (zn � zn�1)zn
(4.9)

5. The Maximum Cut Theorem

At any loop `, loops we define maximum cut as the set of vanishing denominators

D0 = D1 = . . . = 0

which constrains completely the components of the loop momenta.

We assume that, in non-exceptional phase-space points, a maximum-cut has a finite number

ns of solutions, each with multiplicity one.

Then,

6. Polynomial Division

Ji1...in = hg1, . . . , gmi ⌘
⇢ mX

=1

h̃(z)g(z) : h̃(z) 2 P (z)

�
(6.1)

Ni1...in

Di1 · · ·Din
=

nX

=1

Ni1...i�1i+1...in Di

Di1 · · ·Di�1DiDi+1 · · ·Din
+

�i1...in

Di1 · · ·Din
(6.2)
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[z]}

2

integrand recurrence relation that generates the required
multi-particle pole decomposition for arbitrary ampli-
tudes, independently of the number of loops.
The algorithm treats the numerator and the denomi-

nators of any Feynman integrand, as multivariate poly-
nomials in the components of the loop variables. It uses
both the weak Nullstellensatz theorem [17] and the multi-
variate polynomial division modulo appropriate Gröbner
basis [17–20]. In the context of the integrand reduction,
univariate polynomial division has been already intro-
duced in [21] to improve the decomposition of one-loop
scattering amplitudes.

The algorithm, which is described in Section II, relies
on general properties of the loop integrand:

• When the number n of denominators is larger than
the total number of the components of the loop mo-
menta, the weak Nullstellensatz theorem [17] yields
the trivial reduction of an n-denominator integrand
in terms integrands with (n− 1) denominators.

• When n is equal or less than the total number of
components of the loop momenta, we divide the
numerator modulo the Gröbner basis of the n-ple
cut, namely modulo a set of polynomial vanishing
on the same on-shell solutions as the cut denomi-
nators. The remainder of the division is the residue
of the n-ple cut. The quotients generate integrands
with (n − 1) denominators which should undergo
the same decomposition.

• By iterating this procedure, we extract the polyno-
mial forms of all residues. The algorithm will stop
when all cuts are exhausted, and no denominator
is left, leaving us with the integrand reduction for-
mula.

In Section III we apply the algorithm to a generic one-
loop integrand, reproducing the d-dimensional integrand
decomposition formula [5, 22–24].

In Section IV we conclude by proving a theorem
on the maximum-cuts, i.e. the cuts defined by the
maximum number of on-shell conditions which can be
simultaneously satisfied by the loop momenta. The
on-shell conditions of a maximum cut lead to a zero-
dimensional system. The Finiteness Theorem [17] and
the Shape Lemma [19, 20, 25, 26] ensure that residue
at the maximum-cut is parametrised by ns coefficients,
where ns is the number of solutions of the multiple
cut-conditions. This guarantees that the corresponding
residue can always be reconstructed by evaluating the
numerator at the solutions of the cut.

During the completion of this work, Zhang has pre-
sented an algorithm [27] embedding the ideas presented
in [15] within more general techniques of algebraic geom-
etry, among which the division modulo Gröbner basis is
used as well.

II. MULTIVARIATE POLYNOMIAL DIVISION

In what follows, we assume 4-dimensional loop-
momenta. Extensions to higher-dimensional cases, ac-
cording to the chosen dimensional regularization scheme,
can be treated analogously - as we will show when dis-
cussing the one-loop integrand reduction.
The integrand reduction methods [5, 12, 15, 21–24, 28–

30] recast the problem of computing ℓ-loop amplitudes
with n denominators as the reconstruction of integrand
functions of the type

Ii1···in ≡
Ni1···in(q1, . . . , qℓ)

Di1(q1, . . . , qℓ) · · ·Din(q1, . . . , qℓ)
, (1)

where q1, . . . , qℓ are integration momenta. The generic
propagator can be written as follows:

Di =

⎛

⎝

ℓ
∑

j=1

αj qj + pi

⎞

⎠

2

−m2
i , αj ∈ {0,±1} . (2)

The numerator Ni1···in and any of the denominators Di

are polynomial in the components of the loop momenta,
say z ≡ (z1, . . . z4ℓ), i.e.

Ii1···in =
Ni1···in(z)

Di1(z) · · ·Din(z)
. (3)

Let us consider the ideal generated by the n denomi-
nators in Eq. (3) ,

Ji1···in = ⟨Di1 , · · · , Din⟩

≡

{

n
∑

κ=1

hκ(z)Diκ(z) : hκ(z) ∈ P [z]

}

, (4)

where P [z] is the set of polynomials in z. The common
zeros of the elements of Ji1···in are exactly the common
zeros of the denominators.
The multi-pole decomposition of Eq. (1) is explicitly

achieved by performing multivariate polynomial division,
yielding an expression ofNi1···in in terms of denominators
and residues.
We construct a Gröbner basis [17–20] generating the ideal
Ji1···in with respect to a chosen monomial ordering,

Gi1···in = {g1(z), . . . , gm(z)} . (5)

In our formalism, the n-ple cut-conditions Di1 = . . . =
Din = 0, are equivalent to g1 = . . . = gm = 0. The
number m of elements of the Gröbner basis is the cardi-
nality of the basis. In general, m is different from n. We
then consider the multivariate division of Ni1···in modulo
Gi1···in ,

Ni1···in(z) = Γi1···in +∆i1···in(z) , (6)

where Γi1···in =
∑m

i=1 Qi(z)gi(z) is a compact notation
for the sum of the products of the quotients Qi and the
divisors gi. The polynomial ∆i1···in is the remainder of

it contains irreducible monomials that generate the quotient space 



The Maximum-Cut Theorem4. The Maximum-cut Theorem

At ` loops, in four dimensions, we define a maximum-cut as a (4`)-ple cut

Di1 = Di2 = · · · = Di4` = 0 ,

which constrains completely the components of the loop momenta. In four dimensions

this implies the presence of four constraints for each loop momenta. We assume that, in

non-exceptional phase-space points, a maximum-cut has a finite number ns of solutions,

each with multiplicity one. Under this assumption we have the following

Theorem 4.1 (Maximum cut). The residue at the maximum-cut is a polynomial para-

matrised by ns coe�cients, which admits a univariate representation of degree (ns � 1).

Proof. Let us parametrize the propagators using 4` variables z = (z1, . . . z4`). In this

parametrization, the solutions of the maximum-cut read,

z
(i) =

⇣
z(i)1 , . . . , z(i)4`

⌘
, with i = 1, . . . , ns .

Let Ji1···i4` be the ideal generated by the on-shell denominators, Ji1···i4` = hDi1 , . . . , Di4`i .
According to the assumptions, the number ns of the solutions is finite, and each of them

has multiplicity one, therefore Ji1···i4` is zero-dimensional and radical 1, In this case, the

Finiteness Theorem ensures that the remainder of the division of any polynomial modulo

Ji1···i4` can be parametrised exactly by ns coe�cients.

Moreover, up to a linear coordinate change, we can assume that all the solutions of the

system have distinct first coordinate z1, i.e. z(i)1 6= z(j)1 8 i 6= j. We observe that Ji1···i4`
and z1 are in the Shape Lemma position therefore a Gröbner basis for the lexicographic

order z1 < z2 < · · · < zn is Gi1···i4` = {g1, . . . , g4`}, in the form

8
>>>><

>>>>:

g1(z) = f1(z1)

g2(z) = z2 � f2(z1)
...

g4`(z) = z4` � f4`(z1) .

The functions fi are univariate polynomials in z1. In particular f1 is a rank-ns square-free

polynomial

f1(z1) =
nsY

i=1

⇣
z1 � z(i)1

⌘
,

i.e. it does not exhibits repeated roots. The multivariate division of Ni1···ı4` modulo Gi1···i4`
leaves a remainder �i1···i4` which is a univariate polynomial in z1 of degree (ns � 1) in

accordance with the Finiteness Theorem.

1Given an ideal J , the radical of J is
p
J ⌘ {f 2 P [z] : 9 s 2 N, fs 2 J }. J is radical i↵ J =

p
J .
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Mirabella, Ossola, Peraro, & P.M. (2012) 

(�1)

z1z2 · · · zn
=

1

z1(z1 � z2) · · · (z1 � zn)

+
1

(z2 � z1)z2 · · · (z2 � zn)
+ . . . . . .

+
1

(zn � z1)(zn � z2) · · · (zn � zn�1)zn
(4.9)

5. The Maximum Cut Theorem

At any loop `, loops we define maximum cut as the set of vanishing denominators

D0 = D1 = . . . = 0

which constrains completely the components of the loop momenta.

We assume that, in non-exceptional phase-space points, a maximum-cut has a finite number

ns of solutions, each with multiplicity one.

Then,

– 7 –

0-dimensional
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IV. THE MAXIMUM-CUT THEOREM

At ℓ loops, in four dimensions, we define a maximum-
cut as a (4ℓ)-ple cut

Di1 = Di2 = · · · = Di4ℓ = 0 , (23)

which constrains completely the components of the loop
momenta. In four dimensions this implies the presence of
four constraints for each loop momenta. We assume that,
in non-exceptional phase-space points, a maximum-cut
has a finite number ns of solutions, each with multiplicity
one. Under this assumption we have the following

Theorem IV.1 (Maximum cut) The residue at the
maximum-cut is a polynomial paramatrised by ns coeffi-
cients, which admits a univariate representation of degree
(ns − 1).

Proof. Let us parametrize the propagators using 4ℓ vari-
ables z = (z1, . . . z4ℓ). In this parametrization, the solu-
tions of the maximum-cut read,

z(i) =
(

z
(i)
1 , . . . , z

(i)
4ℓ

)

with i = 1, . . . , ns . (24)

Let Ji1···i4ℓ be the ideal generated by the on-shell de-
nominators, Ji1···i4ℓ = ⟨Di1 , . . . , Di4ℓ⟩ .
According to the assumptions, the number ns of the so-
lutions of (23) is finite, and each of them has multiplicity
one, therefore Ji1···i4ℓ is zero-dimensional [20, 33] and
radical [34] [17]. In this case, the Finiteness Theorem
[17, 20] ensures that the remainder of the division of any
polynomial modulo Ji1···i4ℓ can be parametrised exactly
by ns coefficients.

Moreover, up to a linear coordinate change, we can
assume that all the solutions of the system have distinct

first coordinate z1, i.e. z
(i)
1 ̸= z

(j)
1 ∀ i ̸= j. We observe

that Ji1···i4ℓ and z1 are in the Shape Lemma position [19,
20, 25, 26], therefore a Gröbner basis for the lexicographic
order z1 < z2 < · · · < zn is Gi1···i4ℓ = {g1, . . . , g4ℓ}, in
the form

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

g1(z) = f1(z1)
g2(z) = z2 − f2(z1)

...
g4ℓ(z) = z4ℓ − f4ℓ(z1)

(25)

The functions fi are univariate polynomials in z1. In
particular f1 is a rank-ns square-free polynomial [25],

f1(z1) =
ns
∏

i=1

(

z1 − z
(i)
1

)

, (26)

i.e. it does not exhibits repeated roots. The multivari-
ate division of Ni1···ı4ℓ modulo Gi1···i4ℓ leaves a remainder
∆i1···i4ℓ which is a univariate polynomial in z1 of degree
(ns−1) [26], in accordance with the Finiteness Theorem.

The maximum-cut theorem ensures that the
maximum-cut residue, at any loop, is completely

FIG. 1. The on-shell diagrams in the picture are exam-
ples of maximum-cuts. The first diagram in the left column
represents the 5ple-cut of the 5-point one-loop dimensionally
regulated amplitude. All the other on-shell diagrams are con-
sidered in four dimensions. For each of them, the general
structure of the residue ∆ (according to the Shape Lemma)
and the corresponding value of ns are provided.

determined by the ns distinct solutions of the cut-
conditions. In particular it can be reconstructed by
sampling the integrand on the solutions of the maximum
cut itself.
At one loop and in (4 − 2ϵ)-dimensions, the 5-ple

cuts are maximum-cuts. The remarkably simple struc-
ture of the Gröbner basis in Eq. (16) is dictated by the
maximum-cut theorem. Moreover in this case ns = 1,
thus the residue in Eq. (17) is a constant.
The structures of the residues of the maximum cut,

together with the corresponding values of ns, for a set
of one-, two-, and three-loop diagrams are collected in
Figure 1.

The calculations of Sections III and IV have been
carried out using the package S@M [35] and the func-
tions GroebnerBasis and PolynomialReduce of Math-

ematica, respectively needed for the generation of the
Gröbner basis and the polynomial division.

V. CONCLUSIONS

We presented a new algebraic approach, where the
evaluation of scattering amplitudes is addressed by using
multivariate polynomial division, with the components
of the loop-momenta as indeterminates. We found a re-
currence relation to construct the integrand decomposi-
tion of arbitrary scattering amplitudes, independently of
the number of loops. The recursive algorithm is based
on the Weak Nullstellensatz Theorem and on the divi-
sion modulo the Gröbner basis associated to all possi-
ble multi-particle cuts. Using this technique, we red-
erived the well-known one-loop integrand decomposition
formula. Finally, by means of the Finiteness Theorem
and of the Shape Lemma, we proved that the residue at
the maximum-cuts is parametrised exactly by a number
of coefficients equal to the number of solutions of the cut
itself.
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– Coe�cient of the 2-point Function. The expres-
sion of the 2-point coe�cient can be finally obtained
by taking the ratio of �rat in (19) and the double-cut
of I2 in (22),

c2 ⌘
�rat

�I2
=

= �Resz=0F
rat(z, z̄)� Resz 6=0F

rat(z, z̄) . (23)

– Hermite Polynomial Reduction. To optimize the
integration algorithm, one can use the so called Her-
mite Polynomial Reduction (HPR), a technique en-
abling the direct extraction of the rational term of
the primitive of a rational function, without comput-
ing the integral as a whole. Based on the square-free
factorization of the integrand, HPR can be used to
write the result of any integral of a rational function
as a pure rational term plus another integral that, if
explicitly computed, would generate the logarithmic
remainder.

As written in Eq.(23), the coe�cient of the 2-point
function comes only from the term F rat, and not from
F log, see Eqs.(15, 17); F rat is the rational term in the
result of the z̄-integration of f , which is rational in z̄,
see Eq.(13). Therefore HPR is suitable for extracting
F rat out of the z̄-integration.

The integration algorithm of Sec.1 can be imple-
mented with S@M [25] together with the routine [26]
for Hermite Polynomial Reduction.

2. Stokes’ Theorem

In this section we give a formal definition of the z-z̄
integration used in Sec.1, as an application of Stokes’
Theorem for di↵erential forms. In what follows, we
use the notation: gz = @g/@z and gz̄ = @g/@z̄.

Let us recall that the complex 1-form

� =
1

z � z0
dz , (24)

which is defined for all z except z0, is a closed form,

d� = d

✓
1

z � z0

◆
^ dz =

(�1)
(z � z0)2

dz ^ dz = 0 . (25)

We consider any complex smooth function F and dif-
ferentiate the 1-form ! = F�,

! = (z � z0)�1Fdz , (26)

obtaining the 2-form,

d! = dF ^ � = (z � z0)�1Fz̄ dz̄ ^ dz . (27)

Now we take a domain D in the complex plane and
apply Stokes’ Theorem to d!. Due to the singularity
of ! at z0, we remove a tiny disk D(z0; r), centered at
z0 with radius r, from D. Then ! has no singularity
in the regulated domain Dr = D �D(z0; r), and we
may apply Stokes’ Theorem:

ZZ

Dr

d! =
Z

@Dr

! =
Z

@D
! �

Z

@D(z0;r)
! . (28)

Here @D(z0; r) is a circle � around the point z0, which
is described by the parametric equation �(t) = z0 +
reit. Since F(z0 + reit) converges to F(z0) as the
radius r shrinks to 0, the last integral in Eq.(28),

Z

@D(z0;r)
! = i

Z 2⇡

0
F(z0 + reit)dt , (29)

converges to 2⇡iF(z0) as r goes to 0. Letting r !
0 in Eq.(28), the disk D(z0; r) disappears and Dr

fills up D. Consequently Stokes’ Theorem can be
reformulated as,

ZZ

D
d! =

Z

@D
! � 2⇡iF(z0) . (30)

By using the explicit expression of ! and d!, in
Eqs.(26, 27), and rearranging terms, we obtain the
so called Generalised Cauchy Formula or Cauchy-

Pompeiu Formula,

2⇡iF(z0) =
Z

@D

F(z)
z � z0

dz �
ZZ

D

Fz̄

z � z0
dz̄ ^ dz. (31)

Let us discuss two special cases.
First, when F is analytic, Fz̄ = 0, hence we obtain,

F(z0) =
1

2⇡i

Z

@D

F(z)
z � z0

dz (32)
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– Coe�cient of the 2-point Function. The expres-
sion of the 2-point coe�cient can be finally obtained
by taking the ratio of �rat in (19) and the double-cut
of I2 in (22),

c2 ⌘
�rat

�I2
=

= �Resz=0F
rat(z, z̄)� Resz 6=0F

rat(z, z̄) . (23)

– Hermite Polynomial Reduction. To optimize the
integration algorithm, one can use the so called Her-
mite Polynomial Reduction (HPR), a technique en-
abling the direct extraction of the rational term of
the primitive of a rational function, without comput-
ing the integral as a whole. Based on the square-free
factorization of the integrand, HPR can be used to
write the result of any integral of a rational function
as a pure rational term plus another integral that, if
explicitly computed, would generate the logarithmic
remainder.

As written in Eq.(23), the coe�cient of the 2-point
function comes only from the term F rat, and not from
F log, see Eqs.(15, 17); F rat is the rational term in the
result of the z̄-integration of f , which is rational in z̄,
see Eq.(13). Therefore HPR is suitable for extracting
F rat out of the z̄-integration.

The integration algorithm of Sec.1 can be imple-
mented with S@M [25] together with the routine [26]
for Hermite Polynomial Reduction.

2. Stokes’ Theorem

In this section we give a formal definition of the z-z̄
integration used in Sec.1, as an application of Stokes’
Theorem for di↵erential forms. In what follows, we
use the notation: gz = @g/@z and gz̄ = @g/@z̄.

Let us recall that the complex 1-form

� =
1

z � z0
dz , (24)

which is defined for all z except z0, is a closed form,

d� = d

✓
1

z � z0

◆
^ dz =

(�1)
(z � z0)2

dz ^ dz = 0 . (25)

We consider any complex smooth function F and dif-
ferentiate the 1-form ! = F�,

! = (z � z0)�1Fdz , (26)

obtaining the 2-form,

d! = dF ^ � = (z � z0)�1Fz̄ dz̄ ^ dz . (27)

Now we take a domain D in the complex plane and
apply Stokes’ Theorem to d!. Due to the singularity
of ! at z0, we remove a tiny disk D(z0; r), centered at
z0 with radius r, from D. Then ! has no singularity
in the regulated domain Dr = D �D(z0; r), and we
may apply Stokes’ Theorem:

ZZ

Dr

d! =
Z

@Dr

! =
Z

@D
! �

Z

@D(z0;r)
! . (28)

Here @D(z0; r) is a circle � around the point z0, which
is described by the parametric equation �(t) = z0 +
reit. Since F(z0 + reit) converges to F(z0) as the
radius r shrinks to 0, the last integral in Eq.(28),

Z

@D(z0;r)
! = i

Z 2⇡

0
F(z0 + reit)dt , (29)

converges to 2⇡iF(z0) as r goes to 0. Letting r !
0 in Eq.(28), the disk D(z0; r) disappears and Dr

fills up D. Consequently Stokes’ Theorem can be
reformulated as,

ZZ

D
d! =

Z

@D
! � 2⇡iF(z0) . (30)

By using the explicit expression of ! and d!, in
Eqs.(26, 27), and rearranging terms, we obtain the
so called Generalised Cauchy Formula or Cauchy-

Pompeiu Formula,

2⇡iF(z0) =
Z

@D

F(z)
z � z0

dz �
ZZ

D

Fz̄

z � z0
dz̄ ^ dz. (31)

Let us discuss two special cases.
First, when F is analytic, Fz̄ = 0, hence we obtain,

F(z0) =
1

2⇡i

Z

@D

F(z)
z � z0

dz (32)

4

– Coe�cient of the 2-point Function. The expres-
sion of the 2-point coe�cient can be finally obtained
by taking the ratio of �rat in (19) and the double-cut
of I2 in (22),

c2 ⌘
�rat

�I2
=

= �Resz=0F
rat(z, z̄)� Resz 6=0F

rat(z, z̄) . (23)

– Hermite Polynomial Reduction. To optimize the
integration algorithm, one can use the so called Her-
mite Polynomial Reduction (HPR), a technique en-
abling the direct extraction of the rational term of
the primitive of a rational function, without comput-
ing the integral as a whole. Based on the square-free
factorization of the integrand, HPR can be used to
write the result of any integral of a rational function
as a pure rational term plus another integral that, if
explicitly computed, would generate the logarithmic
remainder.

As written in Eq.(23), the coe�cient of the 2-point
function comes only from the term F rat, and not from
F log, see Eqs.(15, 17); F rat is the rational term in the
result of the z̄-integration of f , which is rational in z̄,
see Eq.(13). Therefore HPR is suitable for extracting
F rat out of the z̄-integration.

The integration algorithm of Sec.1 can be imple-
mented with S@M [25] together with the routine [26]
for Hermite Polynomial Reduction.

2. Stokes’ Theorem

In this section we give a formal definition of the z-z̄
integration used in Sec.1, as an application of Stokes’
Theorem for di↵erential forms. In what follows, we
use the notation: gz = @g/@z and gz̄ = @g/@z̄.

Let us recall that the complex 1-form

� =
1

z � z0
dz , (24)

which is defined for all z except z0, is a closed form,

d� = d

✓
1

z � z0

◆
^ dz =

(�1)
(z � z0)2

dz ^ dz = 0 . (25)

We consider any complex smooth function F and dif-
ferentiate the 1-form ! = F�,

! = (z � z0)�1Fdz , (26)

obtaining the 2-form,

d! = dF ^ � = (z � z0)�1Fz̄ dz̄ ^ dz . (27)

Now we take a domain D in the complex plane and
apply Stokes’ Theorem to d!. Due to the singularity
of ! at z0, we remove a tiny disk D(z0; r), centered at
z0 with radius r, from D. Then ! has no singularity
in the regulated domain Dr = D �D(z0; r), and we
may apply Stokes’ Theorem:

ZZ

Dr

d! =
Z

@Dr

! =
Z

@D
! �

Z

@D(z0;r)
! . (28)

Here @D(z0; r) is a circle � around the point z0, which
is described by the parametric equation �(t) = z0 +
reit. Since F(z0 + reit) converges to F(z0) as the
radius r shrinks to 0, the last integral in Eq.(28),

Z

@D(z0;r)
! = i

Z 2⇡

0
F(z0 + reit)dt , (29)

converges to 2⇡iF(z0) as r goes to 0. Letting r !
0 in Eq.(28), the disk D(z0; r) disappears and Dr

fills up D. Consequently Stokes’ Theorem can be
reformulated as,

ZZ

D
d! =

Z

@D
! � 2⇡iF(z0) . (30)

By using the explicit expression of ! and d!, in
Eqs.(26, 27), and rearranging terms, we obtain the
so called Generalised Cauchy Formula or Cauchy-

Pompeiu Formula,

2⇡iF(z0) =
Z

@D

F(z)
z � z0

dz �
ZZ

D

Fz̄

z � z0
dz̄ ^ dz. (31)

Let us discuss two special cases.
First, when F is analytic, Fz̄ = 0, hence we obtain,

F(z0) =
1

2⇡i

Z

@D

F(z)
z � z0

dz (32)
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which is the well-known Cauchy Formula, where @D
is any closed curve surrounding z0.
Secondly, when F vanishes on the boundary of D,
that is F|@D = 0, Eq.(31) becomes,

F(z0) =
1

2⇡i

ZZ

D

Fz̄

z � z0
dz ^ dz̄. (33)

where we used dz̄ ^ dz = �dz ^ dz̄.
The expression (33) is what needed to define prop-
erly the double-cut � given in Eqs.(12, 16), which
we rewrite here as,

� ⌘
ZZ

D
f(z, z̄) dz ^ dz̄ =

ZZ

D

Fz̄

z � z0
dz ^ dz̄ , (34)

by identifying f = Fz̄ = Fz̄/(z � z0), and F =
F/(z � z0), where the functions f and F were de-
fined in Eqs.(13, 15, 17). The integration domain, D,
is the whole complex plane. The vanishing of F on
the boundary is granted by the structure of the ratio-
nal integrand and relations (14) among the degrees
of numerator and denominator.
To deal with the general case, where more than one
pole might appear, the calcualtion of � trivially gen-
eralises, by the superimposition principle, to the sum
of the residues at all the poles in z,

� ⌘
ZZ

D
Fz̄ dz ^ dz̄ =

=
X

j

ZZ

D

F (j)
z̄

z � zj
dz ^ dz̄

= 2⇡i
X

j2poles

F (j)(zj) , (35)

due to the subtraction of a disk around each of the
z-poles from the domain D.
Finally, Eq.(35) validates Eq.(19), hence the expres-
sion for the coe�cient c2 in Eq.(23). Notice that the
role of z and z̄ in the application of Stokes’ Theorem
can be interchanged, reflecting the symmetry of c2

under the exchange p$ q in (4).
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1. Double-Cut

– Phase-Space Parametrization. The starting point
of our derivation is the spinorial parametrization of
the Lorentz invariant phase-space (LIPS) in the K2-
channel [23, 14, 15],
Z

d4� ⌘
Z

d4`1 �(+)(`21) �(+)((`1 �K)2) =

=
ZZ h` d`i[d` `]

h`|K|`]

Z
tdt �(+)

✓
t� K2

h`|K|`]

◆
,(1)

obtained by rescaling the original loop-variable `µ
1 as,

`µ
1 =

h`1|�µ|`1]
2

⌘ t `µ = t
h`|�µ|`]

2
, (2)

with `21 = `2 = 0. In terms of spinor variables, the
rescaling reads,

|`1i =
p

t |`i , |`1] =
p

t |`] , (3)

where t, the rescaling parameter, is frozen as a con-
sequence of the (second of the) on-shell conditions,
and `µ becomes the new loop integration variable.
– Change of Variables. We take two massless mo-
menta, say pµ and qµ fulfilling the conditions,

pµ + qµ = Kµ ,

p2 = q2 = 0 , 2p · q = 2p · K = 2q · K ⌘ K2 , (4)

and decompose `µ in a basis of four massless momenta
constructed out of them,

`µ = pµ + z z̄ qµ +
z

2
hq|�µ|p] +

z̄

2
hp|�µ|q] . (5)

Notice that the vectors hq|�µ|p]
2 and hp|�µ|q]

2 are triv-
ially orthogonal to both pµ and qµ. The above decom-
position can be realized starting from the definition
of `µ in terms of spinor variables, `µ = h`|�µ|`]

2 , and
performing the following spinor decomposition,

|`i ⌘ |pi+ z|qi , |`] ⌘ |p] + z̄|q] . (6)

By changing variables (|`i, |`]) ! (z, z̄) as in (6), and
using (4), one can write,

h` d`i[d` `] = K2 dz dz̄ , (7)
h`|K|`] = K2 (1 + zz̄) . (8)

Figure 1: Double-cut of one-loop amplitude in the K2-channel.

Hence, the LIPS in (1) reduces to the novel form,
Z

d4� =
I

dz

Z
dz̄

Z
dt t2 �

✓
t� 1

(1 + zz̄)

◆
, (9)

where t is a positive quantity as assured by the argu-
ment of the �-function.
– Double-Cut Integration. The double-cut of a
generic n-point amplitude in the K2-channel is de-
fined as

� ⌘
Z

d4� Atree
L (|`1i, |`1]) Atree

R (|`1i, |`1]) , (10)

where Atree
L,R are the tree-level amplitudes sitting at

the two sides of the cut, see Fig.1. After rescaling `µ
1

as in (3), and using expression (9) for the LIPS, one
has,

� =
Z

d4� Atree
L (t, |`i, |`]) Atree

R (t, |`i, |`])

=
I

dz

Z
dz̄

Z
t2 dt �

✓
t� 1

(1 + zz̄)

◆
⇥

t↵L+↵R Atree
L (|`i, |`]) Atree

R (|`i, |`]) , (11)

whera ↵L,R parametrizes the scaling behaviour of
Atree

L,R. The t-integration can be performed trivially,
because of the presence of the �-function. Then, by
using the decomposition (5, 6), the double-cut be-
comes a double-integral,

� =
I

dz

Z
dz̄ f(z, z̄) , (12)

where f is a rational function of z and z̄. As such, it
can be expressed as a ratio of two polynomials, say
P and Q,

f(z, z̄) =
Atree

L (z, z̄) Atree
R (z, z̄)

(1 + zz̄)↵L+↵S+1
=

P (z, z̄)
Q(z, z̄)

, (13)

2
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with the following relations between their degrees,

degzQ = degzP + 2 , degz̄Q = degz̄P + 2 . (14)

We remark that the double integration in z- and z̄-
variables appearing in Eq.(12) will be properly justi-
fied in Sec.2. For the moment, with abuse of notation,
we simlpy denote it as a convolution of an indefinite
z̄-integral and a contour z-integral, which are the ac-
tual operations we are going to carry out.
To begin with the integration, we find a primitive of f
with respect to z̄, say F , by keeping z as independent
variable,

F (z, z̄) =
Z

dz̄ f(z, z̄) , (15)

so that � becomes,

� =
I

dz F (z, z̄) =
I

dz

Z
dz̄ Fz̄ , (16)

where Fz̄ is a short-hand notation for @F/@z̄. Be-
fore proceeding with the final integration on the z-
variable, let us analyse the structure of F . Since F is
the primitive of a rational function, its general form
can only contain two types of terms: a rational term
and a logarithimc one,

F (z, z̄) = F rat(z, z̄) + F log(z, z̄) . (17)

It is important to notice that the presence of the term
F rat depends on the powers of t in Eq.(11): F rat

can be generated, after integrating f in z̄, only if
↵R +↵L � 0. The z-integration will be performed by
applying Cauchy’s Residue Theorem, therefore the
final structure of the double-cut is determined by the
nature of F . Namely, the z-integration of F rat [F log]
is responsible of the rational [logarithmic] term of �.
– 2-point Function. We also know apriori that
the double-cut of a 2-point scalar function in 4-
dimension is a rational, or better (to account for the
massive case as well) a non-logarithmic term; while
the double-cut of higher-point scalar functions might
contain logarithms (with K2-dependent argument).
Hence, the coe�cient of a 2-point function in the K2-
channel will appear in �rat, the integration of F rat

in z,

�rat ⌘
I

dz F rat(z, z̄) , (18)

where the z-integration is performed via Cauchy’s
Residue Theorem. The integrand F rat is rational in
z, and contains poles whose location in the complex
plane is a unique signature of the Feynman integral
they come from [17, 18, 24]. The choice of p and q
specified in Eqs.(4) grants that there exists a pole at
z = 0 associated to the 2-point function in the K2-
channel, I2(K2); while the reduction of higher-point
functions that have I2(K2) as subdiagram can gener-
ate poles at finite z-values. Because of the presence
of z̄, through the term (1 + zz̄), F rat is non-analytic.
The Residue Theorem has to be applied by reading
the residues in z, and substituting the corresponding
complex-conjugate values where z̄ appears. There-
fore, the result of �rat can be implicitly written as,

�rat = 2⇡i
⇣
Resz=0F

rat(z, z̄) + Resz 6=0F
rat(z, z̄)

⌘
.

(19)

– Double-cut of the Scalar Function I2. Let us eval-
uate the double-cut of the 2-point scalar function I2,
which also is a prototype example:

�I2 =
Z

d4� =

=
I

dz

Z
dz̄

Z
t2 dt �

✓
t� 1

(1 + zz̄)

◆
=

=
I

dz

Z
dz̄

1
(1 + zz̄)2

=

=
I

dz
(�1)

(1 + zz̄) z
, (20)

where we notice that the primitive in z̄, called F in
(15), has only a rational term (the logarithmic con-
tribution is absent),

F (z, z̄) =
Z

dz̄ f(z, z̄) =
(�1)

(1 + zz̄) z
⌘ F rat(z, z̄). (21)

For the last integration in z, by applying the Residue
Theorem, we take the residue of the unique simple
pole at z = 0, since the term (1 + zz̄) = (1 + |z|2)
never vanishes, being always positive. The final result
of the double-cut of the scalar 2-point function reads,

�I2 = (2⇡i) Resz=0F
rat(z, z̄) = �2⇡i . (22)
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nature of F . Namely, the z-integration of F rat [F log]
is responsible of the rational [logarithmic] term of �.
– 2-point Function. We also know apriori that
the double-cut of a 2-point scalar function in 4-
dimension is a rational, or better (to account for the
massive case as well) a non-logarithmic term; while
the double-cut of higher-point scalar functions might
contain logarithms (with K2-dependent argument).
Hence, the coe�cient of a 2-point function in the K2-
channel will appear in �rat, the integration of F rat

in z,

�rat ⌘
I

dz F rat(z, z̄) , (18)

where the z-integration is performed via Cauchy’s
Residue Theorem. The integrand F rat is rational in
z, and contains poles whose location in the complex
plane is a unique signature of the Feynman integral
they come from [17, 18, 24]. The choice of p and q
specified in Eqs.(4) grants that there exists a pole at
z = 0 associated to the 2-point function in the K2-
channel, I2(K2); while the reduction of higher-point
functions that have I2(K2) as subdiagram can gener-
ate poles at finite z-values. Because of the presence
of z̄, through the term (1 + zz̄), F rat is non-analytic.
The Residue Theorem has to be applied by reading
the residues in z, and substituting the corresponding
complex-conjugate values where z̄ appears. There-
fore, the result of �rat can be implicitly written as,

�rat = 2⇡i
⇣
Resz=0F

rat(z, z̄) + Resz 6=0F
rat(z, z̄)

⌘
.

(19)

– Double-cut of the Scalar Function I2. Let us eval-
uate the double-cut of the 2-point scalar function I2,
which also is a prototype example:

�I2 =
Z

d4� =

=
I

dz

Z
dz̄

Z
t2 dt �

✓
t� 1

(1 + zz̄)

◆
=

=
I

dz

Z
dz̄

1
(1 + zz̄)2

=

=
I

dz
(�1)

(1 + zz̄) z
, (20)

where we notice that the primitive in z̄, called F in
(15), has only a rational term (the logarithmic con-
tribution is absent),

F (z, z̄) =
Z

dz̄ f(z, z̄) =
(�1)

(1 + zz̄) z
⌘ F rat(z, z̄). (21)

For the last integration in z, by applying the Residue
Theorem, we take the residue of the unique simple
pole at z = 0, since the term (1 + zz̄) = (1 + |z|2)
never vanishes, being always positive. The final result
of the double-cut of the scalar 2-point function reads,

�I2 = (2⇡i) Resz=0F
rat(z, z̄) = �2⇡i . (22)

3

Case-1

Case-2

Cauchy’s residue theorem
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– Coe�cient of the 2-point Function. The expres-
sion of the 2-point coe�cient can be finally obtained
by taking the ratio of �rat in (19) and the double-cut
of I2 in (22),

c2 ⌘
�rat

�I2
=

= �Resz=0F
rat(z, z̄)� Resz 6=0F

rat(z, z̄) . (23)

– Hermite Polynomial Reduction. To optimize the
integration algorithm, one can use the so called Her-
mite Polynomial Reduction (HPR), a technique en-
abling the direct extraction of the rational term of
the primitive of a rational function, without comput-
ing the integral as a whole. Based on the square-free
factorization of the integrand, HPR can be used to
write the result of any integral of a rational function
as a pure rational term plus another integral that, if
explicitly computed, would generate the logarithmic
remainder.

As written in Eq.(23), the coe�cient of the 2-point
function comes only from the term F rat, and not from
F log, see Eqs.(15, 17); F rat is the rational term in the
result of the z̄-integration of f , which is rational in z̄,
see Eq.(13). Therefore HPR is suitable for extracting
F rat out of the z̄-integration.

The integration algorithm of Sec.1 can be imple-
mented with S@M [25] together with the routine [26]
for Hermite Polynomial Reduction.

2. Stokes’ Theorem

In this section we give a formal definition of the z-z̄
integration used in Sec.1, as an application of Stokes’
Theorem for di↵erential forms. In what follows, we
use the notation: gz = @g/@z and gz̄ = @g/@z̄.

Let us recall that the complex 1-form

� =
1

z � z0
dz , (24)

which is defined for all z except z0, is a closed form,

d� = d

✓
1

z � z0

◆
^ dz =

(�1)
(z � z0)2

dz ^ dz = 0 . (25)

We consider any complex smooth function F and dif-
ferentiate the 1-form ! = F�,

! = (z � z0)�1Fdz , (26)

obtaining the 2-form,

d! = dF ^ � = (z � z0)�1Fz̄ dz̄ ^ dz . (27)

Now we take a domain D in the complex plane and
apply Stokes’ Theorem to d!. Due to the singularity
of ! at z0, we remove a tiny disk D(z0; r), centered at
z0 with radius r, from D. Then ! has no singularity
in the regulated domain Dr = D �D(z0; r), and we
may apply Stokes’ Theorem:

ZZ

Dr

d! =
Z

@Dr

! =
Z

@D
! �

Z

@D(z0;r)
! . (28)

Here @D(z0; r) is a circle � around the point z0, which
is described by the parametric equation �(t) = z0 +
reit. Since F(z0 + reit) converges to F(z0) as the
radius r shrinks to 0, the last integral in Eq.(28),

Z

@D(z0;r)
! = i

Z 2⇡

0
F(z0 + reit)dt , (29)

converges to 2⇡iF(z0) as r goes to 0. Letting r !
0 in Eq.(28), the disk D(z0; r) disappears and Dr

fills up D. Consequently Stokes’ Theorem can be
reformulated as,

ZZ

D
d! =

Z

@D
! � 2⇡iF(z0) . (30)

By using the explicit expression of ! and d!, in
Eqs.(26, 27), and rearranging terms, we obtain the
so called Generalised Cauchy Formula or Cauchy-

Pompeiu Formula,

2⇡iF(z0) =
Z

@D

F(z)
z � z0

dz �
ZZ

D

Fz̄

z � z0
dz̄ ^ dz. (31)

Let us discuss two special cases.
First, when F is analytic, Fz̄ = 0, hence we obtain,

F(z0) =
1

2⇡i

Z

@D

F(z)
z � z0

dz (32)
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– Coe�cient of the 2-point Function. The expres-
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by taking the ratio of �rat in (19) and the double-cut
of I2 in (22),
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abling the direct extraction of the rational term of
the primitive of a rational function, without comput-
ing the integral as a whole. Based on the square-free
factorization of the integrand, HPR can be used to
write the result of any integral of a rational function
as a pure rational term plus another integral that, if
explicitly computed, would generate the logarithmic
remainder.

As written in Eq.(23), the coe�cient of the 2-point
function comes only from the term F rat, and not from
F log, see Eqs.(15, 17); F rat is the rational term in the
result of the z̄-integration of f , which is rational in z̄,
see Eq.(13). Therefore HPR is suitable for extracting
F rat out of the z̄-integration.

The integration algorithm of Sec.1 can be imple-
mented with S@M [25] together with the routine [26]
for Hermite Polynomial Reduction.
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use the notation: gz = @g/@z and gz̄ = @g/@z̄.

Let us recall that the complex 1-form

� =
1
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dz , (24)

which is defined for all z except z0, is a closed form,
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1
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(z � z0)2
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We consider any complex smooth function F and dif-
ferentiate the 1-form ! = F�,

! = (z � z0)�1Fdz , (26)

obtaining the 2-form,

d! = dF ^ � = (z � z0)�1Fz̄ dz̄ ^ dz . (27)

Now we take a domain D in the complex plane and
apply Stokes’ Theorem to d!. Due to the singularity
of ! at z0, we remove a tiny disk D(z0; r), centered at
z0 with radius r, from D. Then ! has no singularity
in the regulated domain Dr = D �D(z0; r), and we
may apply Stokes’ Theorem:

ZZ

Dr

d! =
Z

@Dr

! =
Z

@D
! �

Z

@D(z0;r)
! . (28)

Here @D(z0; r) is a circle � around the point z0, which
is described by the parametric equation �(t) = z0 +
reit. Since F(z0 + reit) converges to F(z0) as the
radius r shrinks to 0, the last integral in Eq.(28),

Z

@D(z0;r)
! = i

Z 2⇡

0
F(z0 + reit)dt , (29)

converges to 2⇡iF(z0) as r goes to 0. Letting r !
0 in Eq.(28), the disk D(z0; r) disappears and Dr

fills up D. Consequently Stokes’ Theorem can be
reformulated as,

ZZ

D
d! =

Z

@D
! � 2⇡iF(z0) . (30)

By using the explicit expression of ! and d!, in
Eqs.(26, 27), and rearranging terms, we obtain the
so called Generalised Cauchy Formula or Cauchy-

Pompeiu Formula,

2⇡iF(z0) =
Z

@D

F(z)
z � z0

dz �
ZZ

D

Fz̄

z � z0
dz̄ ^ dz. (31)

Let us discuss two special cases.
First, when F is analytic, Fz̄ = 0, hence we obtain,

F(z0) =
1

2⇡i

Z

@D

F(z)
z � z0

dz (32)
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which is the well-known Cauchy Formula, where @D
is any closed curve surrounding z0.
Secondly, when F vanishes on the boundary of D,
that is F|@D = 0, Eq.(31) becomes,

F(z0) =
1

2⇡i

ZZ

D

Fz̄

z � z0
dz ^ dz̄. (33)

where we used dz̄ ^ dz = �dz ^ dz̄.
The expression (33) is what needed to define prop-
erly the double-cut � given in Eqs.(12, 16), which
we rewrite here as,

� ⌘
ZZ

D
f(z, z̄) dz ^ dz̄ =

ZZ

D

Fz̄

z � z0
dz ^ dz̄ , (34)

by identifying f = Fz̄ = Fz̄/(z � z0), and F =
F/(z � z0), where the functions f and F were de-
fined in Eqs.(13, 15, 17). The integration domain, D,
is the whole complex plane. The vanishing of F on
the boundary is granted by the structure of the ratio-
nal integrand and relations (14) among the degrees
of numerator and denominator.
To deal with the general case, where more than one
pole might appear, the calcualtion of � trivially gen-
eralises, by the superimposition principle, to the sum
of the residues at all the poles in z,

� ⌘
ZZ

D
Fz̄ dz ^ dz̄ =

=
X

j

ZZ

D

F (j)
z̄

z � zj
dz ^ dz̄

= 2⇡i
X

j2poles

F (j)(zj) , (35)

due to the subtraction of a disk around each of the
z-poles from the domain D.
Finally, Eq.(35) validates Eq.(19), hence the expres-
sion for the coe�cient c2 in Eq.(23). Notice that the
role of z and z̄ in the application of Stokes’ Theorem
can be interchanged, reflecting the symmetry of c2

under the exchange p$ q in (4).
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which is the well-known Cauchy Formula, where @D
is any closed curve surrounding z0.
Secondly, when F vanishes on the boundary of D,
that is F|@D = 0, Eq.(31) becomes,

F(z0) =
1

2⇡i

ZZ

D

Fz̄

z � z0
dz ^ dz̄. (33)

where we used dz̄ ^ dz = �dz ^ dz̄.
The expression (33) is what needed to define prop-
erly the double-cut � given in Eqs.(12, 16), which
we rewrite here as,

� ⌘
ZZ

D
f(z, z̄) dz ^ dz̄ =

ZZ

D

Fz̄

z � z0
dz ^ dz̄ , (34)

by identifying f = Fz̄ = Fz̄/(z � z0), and F =
F/(z � z0), where the functions f and F were de-
fined in Eqs.(13, 15, 17). The integration domain, D,
is the whole complex plane. The vanishing of F on
the boundary is granted by the structure of the ratio-
nal integrand and relations (14) among the degrees
of numerator and denominator.
To deal with the general case, where more than one
pole might appear, the calcualtion of � trivially gen-
eralises, by the superimposition principle, to the sum
of the residues at all the poles in z,

� ⌘
ZZ

D
Fz̄ dz ^ dz̄ =

=
X

j

ZZ

D

F (j)
z̄

z � zj
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X

j2poles

F (j)(zj) , (35)

due to the subtraction of a disk around each of the
z-poles from the domain D.
Finally, Eq.(35) validates Eq.(19), hence the expres-
sion for the coe�cient c2 in Eq.(23). Notice that the
role of z and z̄ in the application of Stokes’ Theorem
can be interchanged, reflecting the symmetry of c2

under the exchange p$ q in (4).
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1. Double-Cut

– Phase-Space Parametrization. The starting point
of our derivation is the spinorial parametrization of
the Lorentz invariant phase-space (LIPS) in the K2-
channel [23, 14, 15],
Z

d4� ⌘
Z

d4`1 �(+)(`21) �(+)((`1 �K)2) =

=
ZZ h` d`i[d` `]

h`|K|`]

Z
tdt �(+)

✓
t� K2

h`|K|`]

◆
,(1)

obtained by rescaling the original loop-variable `µ
1 as,

`µ
1 =

h`1|�µ|`1]
2

⌘ t `µ = t
h`|�µ|`]

2
, (2)

with `21 = `2 = 0. In terms of spinor variables, the
rescaling reads,

|`1i =
p

t |`i , |`1] =
p

t |`] , (3)

where t, the rescaling parameter, is frozen as a con-
sequence of the (second of the) on-shell conditions,
and `µ becomes the new loop integration variable.
– Change of Variables. We take two massless mo-
menta, say pµ and qµ fulfilling the conditions,

pµ + qµ = Kµ ,

p2 = q2 = 0 , 2p · q = 2p · K = 2q · K ⌘ K2 , (4)

and decompose `µ in a basis of four massless momenta
constructed out of them,

`µ = pµ + z z̄ qµ +
z

2
hq|�µ|p] +

z̄

2
hp|�µ|q] . (5)

Notice that the vectors hq|�µ|p]
2 and hp|�µ|q]

2 are triv-
ially orthogonal to both pµ and qµ. The above decom-
position can be realized starting from the definition
of `µ in terms of spinor variables, `µ = h`|�µ|`]

2 , and
performing the following spinor decomposition,

|`i ⌘ |pi+ z|qi , |`] ⌘ |p] + z̄|q] . (6)

By changing variables (|`i, |`]) ! (z, z̄) as in (6), and
using (4), one can write,

h` d`i[d` `] = K2 dz dz̄ , (7)
h`|K|`] = K2 (1 + zz̄) . (8)

Figure 1: Double-cut of one-loop amplitude in the K2-channel.

Hence, the LIPS in (1) reduces to the novel form,
Z

d4� =
I

dz

Z
dz̄

Z
dt t2 �

✓
t� 1

(1 + zz̄)

◆
, (9)

where t is a positive quantity as assured by the argu-
ment of the �-function.
– Double-Cut Integration. The double-cut of a
generic n-point amplitude in the K2-channel is de-
fined as

� ⌘
Z

d4� Atree
L (|`1i, |`1]) Atree

R (|`1i, |`1]) , (10)

where Atree
L,R are the tree-level amplitudes sitting at

the two sides of the cut, see Fig.1. After rescaling `µ
1

as in (3), and using expression (9) for the LIPS, one
has,

� =
Z

d4� Atree
L (t, |`i, |`]) Atree

R (t, |`i, |`])

=
I

dz

Z
dz̄

Z
t2 dt �

✓
t� 1

(1 + zz̄)

◆
⇥

t↵L+↵R Atree
L (|`i, |`]) Atree

R (|`i, |`]) , (11)

whera ↵L,R parametrizes the scaling behaviour of
Atree

L,R. The t-integration can be performed trivially,
because of the presence of the �-function. Then, by
using the decomposition (5, 6), the double-cut be-
comes a double-integral,

� =
I

dz

Z
dz̄ f(z, z̄) , (12)

where f is a rational function of z and z̄. As such, it
can be expressed as a ratio of two polynomials, say
P and Q,

f(z, z̄) =
Atree

L (z, z̄) Atree
R (z, z̄)

(1 + zz̄)↵L+↵S+1
=

P (z, z̄)
Q(z, z̄)

, (13)
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with the following relations between their degrees,

degzQ = degzP + 2 , degz̄Q = degz̄P + 2 . (14)

We remark that the double integration in z- and z̄-
variables appearing in Eq.(12) will be properly justi-
fied in Sec.2. For the moment, with abuse of notation,
we simlpy denote it as a convolution of an indefinite
z̄-integral and a contour z-integral, which are the ac-
tual operations we are going to carry out.
To begin with the integration, we find a primitive of f
with respect to z̄, say F , by keeping z as independent
variable,

F (z, z̄) =
Z

dz̄ f(z, z̄) , (15)

so that � becomes,

� =
I

dz F (z, z̄) =
I

dz

Z
dz̄ Fz̄ , (16)

where Fz̄ is a short-hand notation for @F/@z̄. Be-
fore proceeding with the final integration on the z-
variable, let us analyse the structure of F . Since F is
the primitive of a rational function, its general form
can only contain two types of terms: a rational term
and a logarithimc one,

F (z, z̄) = F rat(z, z̄) + F log(z, z̄) . (17)

It is important to notice that the presence of the term
F rat depends on the powers of t in Eq.(11): F rat

can be generated, after integrating f in z̄, only if
↵R +↵L � 0. The z-integration will be performed by
applying Cauchy’s Residue Theorem, therefore the
final structure of the double-cut is determined by the
nature of F . Namely, the z-integration of F rat [F log]
is responsible of the rational [logarithmic] term of �.
– 2-point Function. We also know apriori that
the double-cut of a 2-point scalar function in 4-
dimension is a rational, or better (to account for the
massive case as well) a non-logarithmic term; while
the double-cut of higher-point scalar functions might
contain logarithms (with K2-dependent argument).
Hence, the coe�cient of a 2-point function in the K2-
channel will appear in �rat, the integration of F rat

in z,

�rat ⌘
I

dz F rat(z, z̄) , (18)

where the z-integration is performed via Cauchy’s
Residue Theorem. The integrand F rat is rational in
z, and contains poles whose location in the complex
plane is a unique signature of the Feynman integral
they come from [17, 18, 24]. The choice of p and q
specified in Eqs.(4) grants that there exists a pole at
z = 0 associated to the 2-point function in the K2-
channel, I2(K2); while the reduction of higher-point
functions that have I2(K2) as subdiagram can gener-
ate poles at finite z-values. Because of the presence
of z̄, through the term (1 + zz̄), F rat is non-analytic.
The Residue Theorem has to be applied by reading
the residues in z, and substituting the corresponding
complex-conjugate values where z̄ appears. There-
fore, the result of �rat can be implicitly written as,

�rat = 2⇡i
⇣
Resz=0F

rat(z, z̄) + Resz 6=0F
rat(z, z̄)

⌘
.

(19)

– Double-cut of the Scalar Function I2. Let us eval-
uate the double-cut of the 2-point scalar function I2,
which also is a prototype example:

�I2 =
Z

d4� =

=
I

dz

Z
dz̄

Z
t2 dt �

✓
t� 1

(1 + zz̄)

◆
=

=
I

dz

Z
dz̄

1
(1 + zz̄)2

=

=
I

dz
(�1)

(1 + zz̄) z
, (20)

where we notice that the primitive in z̄, called F in
(15), has only a rational term (the logarithmic con-
tribution is absent),

F (z, z̄) =
Z

dz̄ f(z, z̄) =
(�1)

(1 + zz̄) z
⌘ F rat(z, z̄). (21)

For the last integration in z, by applying the Residue
Theorem, we take the residue of the unique simple
pole at z = 0, since the term (1 + zz̄) = (1 + |z|2)
never vanishes, being always positive. The final result
of the double-cut of the scalar 2-point function reads,

�I2 = (2⇡i) Resz=0F
rat(z, z̄) = �2⇡i . (22)
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fore proceeding with the final integration on the z-
variable, let us analyse the structure of F . Since F is
the primitive of a rational function, its general form
can only contain two types of terms: a rational term
and a logarithimc one,

F (z, z̄) = F rat(z, z̄) + F log(z, z̄) . (17)

It is important to notice that the presence of the term
F rat depends on the powers of t in Eq.(11): F rat

can be generated, after integrating f in z̄, only if
↵R +↵L � 0. The z-integration will be performed by
applying Cauchy’s Residue Theorem, therefore the
final structure of the double-cut is determined by the
nature of F . Namely, the z-integration of F rat [F log]
is responsible of the rational [logarithmic] term of �.
– 2-point Function. We also know apriori that
the double-cut of a 2-point scalar function in 4-
dimension is a rational, or better (to account for the
massive case as well) a non-logarithmic term; while
the double-cut of higher-point scalar functions might
contain logarithms (with K2-dependent argument).
Hence, the coe�cient of a 2-point function in the K2-
channel will appear in �rat, the integration of F rat

in z,

�rat ⌘
I

dz F rat(z, z̄) , (18)

where the z-integration is performed via Cauchy’s
Residue Theorem. The integrand F rat is rational in
z, and contains poles whose location in the complex
plane is a unique signature of the Feynman integral
they come from [17, 18, 24]. The choice of p and q
specified in Eqs.(4) grants that there exists a pole at
z = 0 associated to the 2-point function in the K2-
channel, I2(K2); while the reduction of higher-point
functions that have I2(K2) as subdiagram can gener-
ate poles at finite z-values. Because of the presence
of z̄, through the term (1 + zz̄), F rat is non-analytic.
The Residue Theorem has to be applied by reading
the residues in z, and substituting the corresponding
complex-conjugate values where z̄ appears. There-
fore, the result of �rat can be implicitly written as,

�rat = 2⇡i
⇣
Resz=0F

rat(z, z̄) + Resz 6=0F
rat(z, z̄)

⌘
.

(19)

– Double-cut of the Scalar Function I2. Let us eval-
uate the double-cut of the 2-point scalar function I2,
which also is a prototype example:

�I2 =
Z

d4� =

=
I

dz

Z
dz̄

Z
t2 dt �

✓
t� 1

(1 + zz̄)

◆
=

=
I

dz

Z
dz̄

1
(1 + zz̄)2

=

=
I

dz
(�1)

(1 + zz̄) z
, (20)

where we notice that the primitive in z̄, called F in
(15), has only a rational term (the logarithmic con-
tribution is absent),

F (z, z̄) =
Z

dz̄ f(z, z̄) =
(�1)

(1 + zz̄) z
⌘ F rat(z, z̄). (21)

For the last integration in z, by applying the Residue
Theorem, we take the residue of the unique simple
pole at z = 0, since the term (1 + zz̄) = (1 + |z|2)
never vanishes, being always positive. The final result
of the double-cut of the scalar 2-point function reads,

�I2 = (2⇡i) Resz=0F
rat(z, z̄) = �2⇡i . (22)

3

Case-1

Case-2

which is the well-known Cauchy Formula, where @D
is any closed curve surrounding z0.
Secondly, when F vanishes on the boundary of D,
that is F|@D = 0, Eq.(31) becomes,

F(z0) =
1

2⇡i

ZZ

D

Fz̄

z � z0
dz ^ dz̄. (33)

where we used dz̄ ^ dz = �dz ^ dz̄.
The expression (33) is what needed to define prop-
erly the double-cut � given in Eqs.(12, 16), which
we rewrite here as,

� ⌘
ZZ

D
f(z, z̄) dz ^ dz̄ =

ZZ

D

Fz̄

z � z0
dz ^ dz̄ , (34)

by identifying f = Fz̄ = Fz̄/(z � z0), and F =
F/(z � z0), where the functions f and F were de-
fined in Eqs.(13, 15, 17). The integration domain, D,
is the whole complex plane. The vanishing of F on
the boundary is granted by the structure of the ratio-
nal integrand and relations (14) among the degrees
of numerator and denominator.
To deal with the general case, where more than one
pole might appear, the calcualtion of � trivially gen-
eralises, by the superimposition principle, to the sum
of the residues at all the poles in z,

� ⌘
ZZ

D
Fz̄ dz ^ dz̄ =

=
X

j

ZZ

D

F (j)
z̄

z � zj
dz ^ dz̄

= 2⇡i
X

j2poles

F (j)(zj) , (35)

due to the subtraction of a disk around each of the
z-poles from the domain D.
Finally, Eq.(35) validates Eq.(19), hence the expres-
sion for the coe�cient c2 in Eq.(23). Notice that the
role of z and z̄ in the application of Stokes’ Theorem
can be interchanged, reflecting the symmetry of c2

under the exchange p$ q in (4).
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2.7 Vector Space Decomposition

⌫ = dimension of the vector space of Feynman integrals

I =
⌫X

i=1

ci Ji (2.45)

Projection

if Ji · Jj = �ij ,

I·Ji = ci , (2.46)

if Ji · Jj = Cij 6= �ij (metric matrix)

X

i,j

I · Jj(C
�1)ji =

⌫X

i,j,k=1

ck Jk · Jj(C
�1)ji =

⌫X

i,j,k=1

ck Ckj(C
�1)ji =

⌫X

i,k=1

ck �ki = ci

Completeness

Plugging back in

I =
X

i,j

I · Jj(C
�1)ji Ji ()

X

i,j

Jj (C
�1)ji Ji = I⌫⇥⌫ (2.47)

The two questions:

1) what is the vector space dimension ⌫ ?

2) what is the scalar product “·” between integrals ?
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Vector decomposition

Projections

Completeness

�1 �2 �3 �4 e1 e2 e3 e4 (4.169)

P (t� t0) = e
H(t�t0)

Z
t

ti

dt P (t� ti)V (4.170)

X

FeynmanGraphs

(4.171)

B(@C) = 0 (4.172)

h'L|'Ri =

Z

X

'L ^ 'R =
X

zi2P (!)

I

�i

 i 'R (4.173)

ai = [�i|�] , [�i|�j ] = �ij (4.174)

ci = h'|eii , hei|eji = �ij (4.175)

ci = I · Ji , Ji · Jj = �ij (4.176)
X

i

Ji Ji = I⌫⇥⌫ (4.177)
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Consider an integral I over the variables z = (z1, z2, . . . , zm) of the general form:

I =

Z

C
u(z)'(z), (2.1)

where u(z) is a multi-valued function and '(z) = '̂(z)dmz is a differential m-form. We
assume that u(z) vanishes on the boundaries of C, u(@C) = 0, so that, upon integration no
surface-term is leftover. For example, choosing

u(z) = z
a(z � 1)b, '(z) =

dz

z(z � 1)
, C = [0, 1] (2.2)

gives the Euler beta function B(a, b) for Re(a),Re(b) > 0. More generally, integrals of
the type (2.1) are called Aomoto–Gel’fand hypergeometric functions [78, 79], or simply
hypergeometric functions.

As with any integral, there could exist many forms ' that integrate to give the same
result I. Let us consider the total derivative of u times any (m�1)-differential form ⇠:

Z

C
d (u ⇠) = 0. (2.3)

By Stokes’ theorem, the result is zero due to our choice of the integration domain C. Let us
manipulate the above integral so that it is of the form (2.1):

0 =

Z

C
d (u ⇠) =

Z

C
(du ^ ⇠ + u d⇠) =

Z

C
u

✓
du

u
^+ d

◆
⇠ ⌘

Z

C
ur!⇠. (2.4)

In the final equality we defined a connection r!, which differs from the usual derivative by
the one-form !:

r! ⌘ d+ !^, where ! ⌘ d log u. (2.5)

Since the above expression integrates to zero, we have
Z

C
u' =

Z

C
u ('+r!⇠) . (2.6)

Hence ' and ' + r!⇠ carry the same information and we can talk about equivalence
(cohomology) classes !h'| of forms that integrate to the same result:

!h'| : ' ⇠ '+r!⇠. (2.7)

In other words, whenever two forms are equal to each other up to integration-by-parts
identities, they belong to the same equivalence class. This class is called a twisted cocycle.
The word twisted refers to the fact that the usual derivative operator d is replaced by the
covariant derivative r! given in (2.5), as a consequence of the presence of the multi-valued
function u in the hypergeometric integral. We often refer to any representative of the class
(2.7) as twisted cocycle, as well as drop the subscript ! when it is clear from the context.1 A

1For completeness, let us mention that, similarly, there are equivalence (homology) classes of integration
domains C that give the same result for the integral (2.1), called twisted cycles |C]!, though we do not make
use of this fact in the current manuscript.
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2.6 Intersection Theory

I =

Z

C
u(z) 'm(z) (2.34)

'm(z) = '̂(z)dmz d
m
z = dz1 ^ . . . ^ dzm (2.35)

'm(z) is a di↵erential m-form

u(z) is a multivalued function (regulating all poles of 'm)

I =

Z

C
u(z)

| {z }
twisted
cycle

'm(z)| {z }
twisted
cocycle

(2.36)

There could exist many forms 'm that upon integration give the same result I

Consider the (m� 1)-di↵erential form 'm�1,

0 =

Z

C
d

⇣
u 'm�1

⌘
=

Z

C

⇣
u d'm�1 + du ^ 'm�1

⌘
=

Z

C
u

⇣
d+ ! ^

⌘
'm�1 =

Z

C
u r!'m�1

r! ⌘ d+ !^ , ! = dlogu (2.37)

I =

Z

C
u 'm =

Z

C
u

⇣
'm +r!'m�1

⌘
(2.38)

h'| ⌘ 'm ⇠ 'm +r!'m�1 2 H
m
! (2.39)

H
m
! ⌘ {m�forms 'm |r!'m = 0}/{r!'m�1}, (2.40)

Ĩ =

Z

C
u
�1

�m =

Z

C
u
�1

⇣
�m +r�!�m�1

⌘
(2.41)

|�i ⌘ �m ⇠ �m +r�!�m�1 2 H
m
�! (2.42)

H
m
�! ⌘ {m�forms �m |r�!�m = 0}/{r�!�m�1}, (2.43)

r�! ⌘ d� ! ^ (2.44)
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Integrals as a Pairing

∫domain
integrand dmz

Twisted Period Integrals
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use of this fact in the current manuscript.
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Consider an integral I over the variables z = (z1, z2, . . . , zm) of the general form:

I =

Z

C
u(z)'(z), (2.1)

where u(z) is a multi-valued function and '(z) = '̂(z)dmz is a differential m-form. We
assume that u(z) vanishes on the boundaries of C, u(@C) = 0, so that, upon integration no
surface-term is leftover. For example, choosing

u(z) = z
a(z � 1)b, '(z) =

dz

z(z � 1)
, C = [0, 1] (2.2)

gives the Euler beta function B(a, b) for Re(a),Re(b) > 0. More generally, integrals of
the type (2.1) are called Aomoto–Gel’fand hypergeometric functions [78, 79], or simply
hypergeometric functions.

As with any integral, there could exist many forms ' that integrate to give the same
result I. Let us consider the total derivative of u times any (m�1)-differential form ⇠:

Z

C
d (u ⇠) = 0. (2.3)

By Stokes’ theorem, the result is zero due to our choice of the integration domain C. Let us
manipulate the above integral so that it is of the form (2.1):
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In the final equality we defined a connection r!, which differs from the usual derivative by
the one-form !:

r! ⌘ d+ !^, where ! ⌘ d log u. (2.5)

Since the above expression integrates to zero, we have
Z

C
u' =

Z

C
u ('+r!⇠) . (2.6)

Hence ' and ' + r!⇠ carry the same information and we can talk about equivalence
(cohomology) classes !h'| of forms that integrate to the same result:

!h'| : ' ⇠ '+r!⇠. (2.7)

In other words, whenever two forms are equal to each other up to integration-by-parts
identities, they belong to the same equivalence class. This class is called a twisted cocycle.
The word twisted refers to the fact that the usual derivative operator d is replaced by the
covariant derivative r! given in (2.5), as a consequence of the presence of the multi-valued
function u in the hypergeometric integral. We often refer to any representative of the class
(2.7) as twisted cocycle, as well as drop the subscript ! when it is clear from the context.1 A

1For completeness, let us mention that, similarly, there are equivalence (homology) classes of integration
domains C that give the same result for the integral (2.1), called twisted cycles |C]!, though we do not make
use of this fact in the current manuscript.
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(2.7) as twisted cocycle, as well as drop the subscript ! when it is clear from the context.1 A

1For completeness, let us mention that, similarly, there are equivalence (homology) classes of integration
domains C that give the same result for the integral (2.1), called twisted cycles |C]!, though we do not make
use of this fact in the current manuscript.
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Ĩ =

Z

C
u
�1

�m =

Z

C
u
�1

⇣
�m +r�!�m�1

⌘
(2.41)

|�i ⌘ �m ⇠ �m +r�!�m�1 2 H
m
�! (2.42)

H
m
�! ⌘ {m�forms �m |r�!�m = 0}/{r�!�m�1}, (2.43)

r�! ⌘ d� ! ^ (2.44)

– 8 –

∫domain
integrand dmz integrand dmz ≡ (multivalued f′ n) × (differential form)

I = ∫domain
(multivalued f′ n)(differential form)

(multivalued f′ n)
∂(domain)

= 0 ⟹ ∫domain
d(integrand)dmz = 0 = ∫∂(domain)

(integrand)dmz

Twisted Period Integrals

Important property:

Integrals as a Pairing

I = ∫domain
multivalued f′ n differential form

The domain and the diff. form are  
elements of certain vector spaces Pairing



Basics of Intersection Theory



Consider an integral I over the variables z = (z1, z2, . . . , zm) of the general form:
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assume that u(z) vanishes on the boundaries of C, u(@C) = 0, so that, upon integration no
surface-term is leftover. For example, choosing

u(z) = z
a(z � 1)b, '(z) =

dz

z(z � 1)
, C = [0, 1] (2.2)

gives the Euler beta function B(a, b) for Re(a),Re(b) > 0. More generally, integrals of
the type (2.1) are called Aomoto–Gel’fand hypergeometric functions [78, 79], or simply
hypergeometric functions.

As with any integral, there could exist many forms ' that integrate to give the same
result I. Let us consider the total derivative of u times any (m�1)-differential form ⇠:
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By Stokes’ theorem, the result is zero due to our choice of the integration domain C. Let us
manipulate the above integral so that it is of the form (2.1):
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In the final equality we defined a connection r!, which differs from the usual derivative by
the one-form !:

r! ⌘ d+ !^, where ! ⌘ d log u. (2.5)

Since the above expression integrates to zero, we have
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u' =
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Hence ' and ' + r!⇠ carry the same information and we can talk about equivalence
(cohomology) classes !h'| of forms that integrate to the same result:

!h'| : ' ⇠ '+r!⇠. (2.7)

In other words, whenever two forms are equal to each other up to integration-by-parts
identities, they belong to the same equivalence class. This class is called a twisted cocycle.
The word twisted refers to the fact that the usual derivative operator d is replaced by the
covariant derivative r! given in (2.5), as a consequence of the presence of the multi-valued
function u in the hypergeometric integral. We often refer to any representative of the class
(2.7) as twisted cocycle, as well as drop the subscript ! when it is clear from the context.1 A

1For completeness, let us mention that, similarly, there are equivalence (homology) classes of integration
domains C that give the same result for the integral (2.1), called twisted cycles |C]!, though we do not make
use of this fact in the current manuscript.
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Ĩ =

Z

C
u
�1

�m =

Z

C
u
�1

⇣
�m +r�!�m�1

⌘
(2.41)

|�i ⌘ �m ⇠ �m +r�!�m�1 2 H
m
�! (2.42)

H
m
�! ⌘ {m�forms �m |r�!�m = 0}/{r�!�m�1}, (2.43)

r�! ⌘ d� ! ^ (2.44)

– 8 –

Aomoto, Brown, Cho, Goto, Kita, Matsubara-Heo, Mazumoto, Mimachi, Mizera, Ohara, Yoshida,… 

Basics of Intersection Theory / De Rham Twisted Co-Homology Groups
Consider an integral I over the variables z = (z1, z2, . . . , zm) of the general form:

I =

Z

C
u(z)'(z), (2.1)

where u(z) is a multi-valued function and '(z) = '̂(z)dmz is a differential m-form. We
assume that u(z) vanishes on the boundaries of C, u(@C) = 0, so that, upon integration no
surface-term is leftover. For example, choosing

u(z) = z
a(z � 1)b, '(z) =

dz

z(z � 1)
, C = [0, 1] (2.2)

gives the Euler beta function B(a, b) for Re(a),Re(b) > 0. More generally, integrals of
the type (2.1) are called Aomoto–Gel’fand hypergeometric functions [78, 79], or simply
hypergeometric functions.

As with any integral, there could exist many forms ' that integrate to give the same
result I. Let us consider the total derivative of u times any (m�1)-differential form ⇠:

Z

C
d (u ⇠) = 0. (2.3)

By Stokes’ theorem, the result is zero due to our choice of the integration domain C. Let us
manipulate the above integral so that it is of the form (2.1):

0 =

Z

C
d (u ⇠) =

Z

C
(du ^ ⇠ + u d⇠) =

Z

C
u

✓
du

u
^+ d

◆
⇠ ⌘

Z

C
ur!⇠. (2.4)

In the final equality we defined a connection r!, which differs from the usual derivative by
the one-form !:

r! ⌘ d+ !^, where ! ⌘ d log u. (2.5)

Since the above expression integrates to zero, we have
Z

C
u' =

Z

C
u ('+r!⇠) . (2.6)

Hence ' and ' + r!⇠ carry the same information and we can talk about equivalence
(cohomology) classes !h'| of forms that integrate to the same result:

!h'| : ' ⇠ '+r!⇠. (2.7)

In other words, whenever two forms are equal to each other up to integration-by-parts
identities, they belong to the same equivalence class. This class is called a twisted cocycle.
The word twisted refers to the fact that the usual derivative operator d is replaced by the
covariant derivative r! given in (2.5), as a consequence of the presence of the multi-valued
function u in the hypergeometric integral. We often refer to any representative of the class
(2.7) as twisted cocycle, as well as drop the subscript ! when it is clear from the context.1 A

1For completeness, let us mention that, similarly, there are equivalence (homology) classes of integration
domains C that give the same result for the integral (2.1), called twisted cycles |C]!, though we do not make
use of this fact in the current manuscript.

– 7 –

2.6 Intersection Theory

I =

Z

C
u(z) 'm(z) (2.34)

'm(z) = '̂(z)dmz d
m
z = dz1 ^ . . . ^ dzm (2.35)

'm(z) is a di↵erential m-form

u(z) is a multivalued function (regulating all poles of 'm)

I =

Z

C
u(z)

| {z }
twisted
cycle

'm(z)| {z }
twisted
cocycle

(2.36)

There could exist many forms 'm that upon integration give the same result I

Consider the (m� 1)-di↵erential form 'm�1,

0 =

Z

C
d

⇣
u 'm�1

⌘
=

Z

C

⇣
u d'm�1 + du ^ 'm�1

⌘
=

Z

C
u

⇣
d+ ! ^

⌘
'm�1 =

Z

C
u r!'m�1

r! ⌘ d+ !^ , ! = dlogu (2.37)

I =

Z

C
u 'm =

Z

C
u

⇣
'm +r!'m�1

⌘
(2.38)

h'| ⌘ 'm ⇠ 'm +r!'m�1 2 H
m
! (2.39)

H
m
! ⌘ {m�forms 'm |r!'m = 0}/{r!'m�1}, (2.40)

Ĩ =

Z

C
u
�1

�m =

Z

C
u
�1

⇣
�m +r�!�m�1

⌘
(2.41)

|�i ⌘ �m ⇠ �m +r�!�m�1 2 H
m
�! (2.42)

H
m
�! ⌘ {m�forms �m |r�!�m = 0}/{r�!�m�1}, (2.43)

r�! ⌘ d� ! ^ (2.44)

– 8 –

2.6 Intersection Theory

I =

Z

C
u(z) 'm(z) (2.34)

'm(z) = '̂(z)dmz d
m
z = dz1 ^ . . . ^ dzm (2.35)

'm(z) is a di↵erential m-form

u(z) is a multivalued function (regulating all poles of 'm)

I =

Z

C
u(z)

| {z }
twisted
cycle

'm(z)| {z }
twisted
cocycle

(2.36)

There could exist many forms 'm that upon integration give the same result I

Consider the (m� 1)-di↵erential form 'm�1,

0 =

Z

C
d

⇣
u 'm�1

⌘
=

Z

C

⇣
u d'm�1 + du ^ 'm�1

⌘
=

Z

C
u

⇣
d+ ! ^

⌘
'm�1 =

Z

C
u r!'m�1

r! ⌘ d+ !^ , ! = dlogu (2.37)

I =

Z

C
u 'm =

Z

C
u

⇣
'm +r!'m�1

⌘
(2.38)

h'| ⌘ 'm ⇠ 'm +r!'m�1 2 H
m
! (2.39)

H
m
! ⌘ {m�forms 'm |r!'m = 0}/{r!'m�1}, (2.40)
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Consider an integral I over the variables z = (z1, z2, . . . , zm) of the general form:

I =

Z

C
u(z)'(z), (2.1)

where u(z) is a multi-valued function and '(z) = '̂(z)dmz is a differential m-form. We
assume that u(z) vanishes on the boundaries of C, u(@C) = 0, so that, upon integration no
surface-term is leftover. For example, choosing

u(z) = z
a(z � 1)b, '(z) =

dz

z(z � 1)
, C = [0, 1] (2.2)

gives the Euler beta function B(a, b) for Re(a),Re(b) > 0. More generally, integrals of
the type (2.1) are called Aomoto–Gel’fand hypergeometric functions [78, 79], or simply
hypergeometric functions.

As with any integral, there could exist many forms ' that integrate to give the same
result I. Let us consider the total derivative of u times any (m�1)-differential form ⇠:

Z

C
d (u ⇠) = 0. (2.3)

By Stokes’ theorem, the result is zero due to our choice of the integration domain C. Let us
manipulate the above integral so that it is of the form (2.1):

0 =

Z

C
d (u ⇠) =

Z

C
(du ^ ⇠ + u d⇠) =

Z

C
u

✓
du

u
^+ d

◆
⇠ ⌘

Z

C
ur!⇠. (2.4)

In the final equality we defined a connection r!, which differs from the usual derivative by
the one-form !:

r! ⌘ d+ !^, where ! ⌘ d log u. (2.5)

Since the above expression integrates to zero, we have
Z

C
u' =

Z

C
u ('+r!⇠) . (2.6)

Hence ' and ' + r!⇠ carry the same information and we can talk about equivalence
(cohomology) classes !h'| of forms that integrate to the same result:

!h'| : ' ⇠ '+r!⇠. (2.7)

In other words, whenever two forms are equal to each other up to integration-by-parts
identities, they belong to the same equivalence class. This class is called a twisted cocycle.
The word twisted refers to the fact that the usual derivative operator d is replaced by the
covariant derivative r! given in (2.5), as a consequence of the presence of the multi-valued
function u in the hypergeometric integral. We often refer to any representative of the class
(2.7) as twisted cocycle, as well as drop the subscript ! when it is clear from the context.1 A

1For completeness, let us mention that, similarly, there are equivalence (homology) classes of integration
domains C that give the same result for the integral (2.1), called twisted cycles |C]!, though we do not make
use of this fact in the current manuscript.
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Basics of Intersection Theory / De Rham Twisted Co-Homology Groups
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2F1 Hypergeometric

Gamma function

… and many more

Consider an integral I over the variables z = (z1, z2, . . . , zm) of the general form:

I =

Z

C
u(z)'(z), (2.1)

where u(z) is a multi-valued function and '(z) = '̂(z)dmz is a differential m-form. We
assume that u(z) vanishes on the boundaries of C, u(@C) = 0, so that, upon integration no
surface-term is leftover. For example, choosing

u(z) = z
a(z � 1)b, '(z) =

dz

z(z � 1)
, C = [0, 1] (2.2)

gives the Euler beta function B(a, b) for Re(a),Re(b) > 0. More generally, integrals of
the type (2.1) are called Aomoto–Gel’fand hypergeometric functions [78, 79], or simply
hypergeometric functions.

As with any integral, there could exist many forms ' that integrate to give the same
result I. Let us consider the total derivative of u times any (m�1)-differential form ⇠:

Z

C
d (u ⇠) = 0. (2.3)

By Stokes’ theorem, the result is zero due to our choice of the integration domain C. Let us
manipulate the above integral so that it is of the form (2.1):

0 =

Z

C
d (u ⇠) =

Z

C
(du ^ ⇠ + u d⇠) =

Z

C
u

✓
du

u
^+ d

◆
⇠ ⌘

Z

C
ur!⇠. (2.4)

In the final equality we defined a connection r!, which differs from the usual derivative by
the one-form !:

r! ⌘ d+ !^, where ! ⌘ d log u. (2.5)

Since the above expression integrates to zero, we have
Z

C
u' =

Z

C
u ('+r!⇠) . (2.6)

Hence ' and ' + r!⇠ carry the same information and we can talk about equivalence
(cohomology) classes !h'| of forms that integrate to the same result:

!h'| : ' ⇠ '+r!⇠. (2.7)

In other words, whenever two forms are equal to each other up to integration-by-parts
identities, they belong to the same equivalence class. This class is called a twisted cocycle.
The word twisted refers to the fact that the usual derivative operator d is replaced by the
covariant derivative r! given in (2.5), as a consequence of the presence of the multi-valued
function u in the hypergeometric integral. We often refer to any representative of the class
(2.7) as twisted cocycle, as well as drop the subscript ! when it is clear from the context.1 A

1For completeness, let us mention that, similarly, there are equivalence (homology) classes of integration
domains C that give the same result for the integral (2.1), called twisted cycles |C]!, though we do not make
use of this fact in the current manuscript.
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Consider an integral I over the variables z = (z1, z2, . . . , zm) of the general form:

I =

Z

C
u(z)'(z), (2.1)

where u(z) is a multi-valued function and '(z) = '̂(z)dmz is a differential m-form. We
assume that u(z) vanishes on the boundaries of C, u(@C) = 0, so that, upon integration no
surface-term is leftover. For example, choosing

u(z) = z
a(z � 1)b, '(z) =

dz

z(z � 1)
, C = [0, 1] (2.2)

gives the Euler beta function B(a, b) for Re(a),Re(b) > 0. More generally, integrals of
the type (2.1) are called Aomoto–Gel’fand hypergeometric functions [78, 79], or simply
hypergeometric functions.

As with any integral, there could exist many forms ' that integrate to give the same
result I. Let us consider the total derivative of u times any (m�1)-differential form ⇠:

Z

C
d (u ⇠) = 0. (2.3)

By Stokes’ theorem, the result is zero due to our choice of the integration domain C. Let us
manipulate the above integral so that it is of the form (2.1):

0 =

Z

C
d (u ⇠) =

Z

C
(du ^ ⇠ + u d⇠) =

Z

C
u

✓
du

u
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⇠ ⌘
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C
ur!⇠. (2.4)

In the final equality we defined a connection r!, which differs from the usual derivative by
the one-form !:

r! ⌘ d+ !^, where ! ⌘ d log u. (2.5)

Since the above expression integrates to zero, we have
Z

C
u' =

Z

C
u ('+r!⇠) . (2.6)

Hence ' and ' + r!⇠ carry the same information and we can talk about equivalence
(cohomology) classes !h'| of forms that integrate to the same result:

!h'| : ' ⇠ '+r!⇠. (2.7)

In other words, whenever two forms are equal to each other up to integration-by-parts
identities, they belong to the same equivalence class. This class is called a twisted cocycle.
The word twisted refers to the fact that the usual derivative operator d is replaced by the
covariant derivative r! given in (2.5), as a consequence of the presence of the multi-valued
function u in the hypergeometric integral. We often refer to any representative of the class
(2.7) as twisted cocycle, as well as drop the subscript ! when it is clear from the context.1 A

1For completeness, let us mention that, similarly, there are equivalence (homology) classes of integration
domains C that give the same result for the integral (2.1), called twisted cycles |C]!, though we do not make
use of this fact in the current manuscript.
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Equivalence Classes of DIFFERENTIAL FORMS 

The dawn of Integration by parts identities:

Equivalence Classes of INTEGRATION CONTOURS 

4.6 Intersection Theory
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Consider an integral I over the variables z = (z1, z2, . . . , zm) of the general form:

I =

Z

C
u(z)'(z), (2.1)

where u(z) is a multi-valued function and '(z) = '̂(z)dmz is a differential m-form. We
assume that u(z) vanishes on the boundaries of C, u(@C) = 0, so that, upon integration no
surface-term is leftover. For example, choosing

u(z) = z
a(z � 1)b, '(z) =

dz

z(z � 1)
, C = [0, 1] (2.2)

gives the Euler beta function B(a, b) for Re(a),Re(b) > 0. More generally, integrals of
the type (2.1) are called Aomoto–Gel’fand hypergeometric functions [78, 79], or simply
hypergeometric functions.

As with any integral, there could exist many forms ' that integrate to give the same
result I. Let us consider the total derivative of u times any (m�1)-differential form ⇠:

Z

C
d (u ⇠) = 0. (2.3)

By Stokes’ theorem, the result is zero due to our choice of the integration domain C. Let us
manipulate the above integral so that it is of the form (2.1):

0 =

Z

C
d (u ⇠) =

Z

C
(du ^ ⇠ + u d⇠) =

Z

C
u

✓
du

u
^+ d

◆
⇠ ⌘

Z

C
ur!⇠. (2.4)

In the final equality we defined a connection r!, which differs from the usual derivative by
the one-form !:

r! ⌘ d+ !^, where ! ⌘ d log u. (2.5)

Since the above expression integrates to zero, we have
Z

C
u' =

Z

C
u ('+r!⇠) . (2.6)

Hence ' and ' + r!⇠ carry the same information and we can talk about equivalence
(cohomology) classes !h'| of forms that integrate to the same result:

!h'| : ' ⇠ '+r!⇠. (2.7)

In other words, whenever two forms are equal to each other up to integration-by-parts
identities, they belong to the same equivalence class. This class is called a twisted cocycle.
The word twisted refers to the fact that the usual derivative operator d is replaced by the
covariant derivative r! given in (2.5), as a consequence of the presence of the multi-valued
function u in the hypergeometric integral. We often refer to any representative of the class
(2.7) as twisted cocycle, as well as drop the subscript ! when it is clear from the context.1 A

1For completeness, let us mention that, similarly, there are equivalence (homology) classes of integration
domains C that give the same result for the integral (2.1), called twisted cycles |C]!, though we do not make
use of this fact in the current manuscript.
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2.6 Intersection Theory

I =

Z

C
u(z) 'm(z) (2.34)

'm(z) = '̂(z)dmz d
m
z = dz1 ^ . . . ^ dzm (2.35)

'm(z) is a di↵erential m-form

u(z) is a multivalued function (regulating all poles of 'm)

I =

Z

C
u(z)

| {z }
twisted
cycle

'm(z)| {z }
twisted
cocycle

(2.36)

There could exist many forms 'm that upon integration give the same result I

Consider the (m� 1)-di↵erential form 'm�1,

0 =

Z

C
d

⇣
u 'm�1

⌘
=

Z

C

⇣
u d'm�1 + du ^ 'm�1

⌘
=

Z

C
u

⇣
d+ ! ^

⌘
'm�1 =

Z

C
u r!'m�1

r! ⌘ d+ !^ , ! = dlogu (2.37)

I =

Z

C
u 'm =

Z

C
u

⇣
'm +r!'m�1

⌘
(2.38)

h'| ⌘ 'm ⇠ 'm +r!'m�1 2 H
m
! (2.39)

H
m
! ⌘ {m�forms 'm |r!'m = 0}/{r!'m�1}, (2.40)

Ĩ =

Z

C
u
�1

�m =

Z

C
u
�1

⇣
�m +r�!�m�1

⌘
(2.41)

|�i ⌘ �m ⇠ �m +r�!�m�1 2 H
m
�! (2.42)

H
m
�! ⌘ {m�forms �m |r�!�m = 0}/{r�!�m�1}, (2.43)

r�! ⌘ d� ! ^ (2.44)
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Consider an integral I over the variables z = (z1, z2, . . . , zm) of the general form:
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u(z)'(z), (2.1)

where u(z) is a multi-valued function and '(z) = '̂(z)dmz is a differential m-form. We
assume that u(z) vanishes on the boundaries of C, u(@C) = 0, so that, upon integration no
surface-term is leftover. For example, choosing

u(z) = z
a(z � 1)b, '(z) =

dz

z(z � 1)
, C = [0, 1] (2.2)

gives the Euler beta function B(a, b) for Re(a),Re(b) > 0. More generally, integrals of
the type (2.1) are called Aomoto–Gel’fand hypergeometric functions [78, 79], or simply
hypergeometric functions.

As with any integral, there could exist many forms ' that integrate to give the same
result I. Let us consider the total derivative of u times any (m�1)-differential form ⇠:
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d (u ⇠) = 0. (2.3)

By Stokes’ theorem, the result is zero due to our choice of the integration domain C. Let us
manipulate the above integral so that it is of the form (2.1):
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ur!⇠. (2.4)

In the final equality we defined a connection r!, which differs from the usual derivative by
the one-form !:

r! ⌘ d+ !^, where ! ⌘ d log u. (2.5)

Since the above expression integrates to zero, we have
Z

C
u' =
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C
u ('+r!⇠) . (2.6)

Hence ' and ' + r!⇠ carry the same information and we can talk about equivalence
(cohomology) classes !h'| of forms that integrate to the same result:

!h'| : ' ⇠ '+r!⇠. (2.7)

In other words, whenever two forms are equal to each other up to integration-by-parts
identities, they belong to the same equivalence class. This class is called a twisted cocycle.
The word twisted refers to the fact that the usual derivative operator d is replaced by the
covariant derivative r! given in (2.5), as a consequence of the presence of the multi-valued
function u in the hypergeometric integral. We often refer to any representative of the class
(2.7) as twisted cocycle, as well as drop the subscript ! when it is clear from the context.1 A

1For completeness, let us mention that, similarly, there are equivalence (homology) classes of integration
domains C that give the same result for the integral (2.1), called twisted cycles |C]!, though we do not make
use of this fact in the current manuscript.
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I(g) =

Z
g(x)e�f(x)

dx (2.99)

[...]

di↵erential N-form

If h'L| and h'R| are dLog n-forms (hence contain only simple poles)

h'L|'Ri =

Z
dz1 · · · dzn �(!1) · · · �(!n) '̂L '̂R = (2.100)

In the 1-variate case:

h'L|'Ri = Resz2P!1

✓
'̂L '̂R

!

◆

=

Z
dz1 �(!1) '̂L '̂R =

X

(z⇤1 )

'̂L '̂R

@!1/@z1
(2.101)

⌘ u
�1

· d · u

⌘ u · d · u
�1 (2.102)

h'
(n)
L |'

(n)
R i = h'

(n)
L |

✓X

i,j

|h
(n�1)
j i(C(n�1))

�1
j,i he

(n�1)
i |

◆
|'

(n)
R i (2.103)
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Basics of Intersection Theory / De Rham Twisted Co-Homology Groups

u → u−1

2.6 Intersection Theory

I =

Z

C
u(z) 'm(z) (2.35)

'm(z) = '̂(z)dmz d
m
z = dz1 ^ . . . ^ dzm (2.36)

'm(z) is a di↵erential m-form

u(z) is a multivalued function (regulating all poles of 'm)

I =

Z

C
u(z)

| {z }
twisted
cycle

'm(z)| {z }
twisted
cocycle

(2.37)

There could exist many forms 'm that upon integration give the same result I

Consider the (m� 1)-di↵erential form 'm�1,

0 =

Z

C
d

⇣
u 'm�1

⌘
=

Z

C

⇣
u d'm�1 + du ^ 'm�1

⌘
=

Z

C
u

⇣
d+ ! ^

⌘
'm�1 =

Z

C
u r!'m�1

r! ⌘ d+ !^ , ! = dlogu (2.38)

I =

Z

C
u 'm =

Z

C
u

⇣
'm +r!'m�1

⌘
(2.39)

h'| ⌘ 'm ⇠ 'm +r!'m�1 2 H
m
! (2.40)

H
m
! ⌘ {m�forms 'm |r!'m = 0}/{r!'m�1}, (2.41)

Ĩ =

Z

C
u
�1

�m =

Z

C
u
�1

⇣
�m +r�!�m�1

⌘
(2.42)

|�i ⌘ �m ⇠ �m +r�!�m�1 2 H
m
�! (2.43)

H
m
�! ⌘ {m�forms �m |r�!�m = 0}/{r�!�m�1}, (2.44)

r�! ⌘ d� !^ (2.45)
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Dual Covariant Derivative

∫C
u φ = ∫C

u (φ + ∇ω ϕ) = ∫C+∂Γ
u φ0 = ∫C

d(u φ) = ∫∂C
u φ

0 = ∫C
d(u−1 φ) = ∫∂C

u−1 φ ∫C
u−1 φ = ∫C

u−1 (φ + ∇−ω ϕ) = ∫C+∂Γ
u−1 φ

Integral invariance from the vanishing of total differential

Stokes’ theorem relating the invariance upon shifting the differential forms to the invariance upon contour deformation!



De Rham Twisted Co-Homology Groups

4.6 Intersection Theory

I =

Z

C
u(z) 'm(z) (4.35)

'm(z) = '̂(z)dmz d
mz = dz1 ^ . . . ^ dzm (4.36)

'm(z) is a di↵erential m-form

u(z) is a multivalued function (regulating all poles of 'm)

I =

Z

C
u(z)

| {z }
twisted
cycle

'm(z)| {z }
twisted
cocycle

(4.37)

There could exist many forms 'm that upon integration give the same result I

There could exist many contours C that do not alter the the result of I

H
m

! (X) =
Ker(r! : 'm ! 'm+1)

Im(r! : 'm�1 ! 'm)
(4.38)

Hp(X) =
Ker(@p)

Im(@p)
(4.39)

Consider the (m� 1)-di↵erential form 'm�1,

0 =

Z

C
d

⇣
u 'm�1

⌘
=

Z

C

⇣
u d'm�1 + du ^ 'm�1

⌘
=

Z

C
u

⇣
d+ ! ^

⌘
'm�1 =

Z

C
u r!'m�1

0 =

Z

C
d

⇣
u
�1

'm�1

⌘
=

Z

C

⇣
u
�1

d'm�1 � u
�2

du ^ 'm�1

⌘
=

Z

C
u
�1

⇣
d� ! ^

⌘
'm�1 =

Z

C
u
�1

r�!'m�1

r! ⌘ d+ !^ , ! = dlogu (4.40)

I =

Z

C
u 'm =

Z

C
u

⇣
'm +r!'m�1

⌘
(4.41)
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(dual) Homology groups  and (dual) Co-homology groups  are isomorphicH±ω
m Hm

±ω
[same dimension]

[same # of generators]

Cohomology group Dual Cohomology group

Homology group Dual Homology group

Closed modulo exact m-forms Closed modulo exact dual m-forms

m-cycles modulo boundaries Dual m-cycles modulo boundaries



De Rham Twisted Co-Homology Groups / Elements

[same dimension]

[same # of generators]

H
m
! ⌘ {m�forms 'm |r!'m = 0}/{r!'m�1}, (2.32)

H
m
�! , r�! = d� ! ^ (2.33)

|CL] ⌘

Z

CL
u(z) (2.34)

[CR| ⌘

Z

CR
u(z)�1 (2.35)

h'L| ⌘ 'L(z) 2 H
m
! (2.36)

|'Ri ⌘ 'R(z) 2 H
m
�! (2.37)

! ⌘ d log(u) (2.38)

h 'L | CL ] ⌘

Z

CL
u(z) 'L(z) = I (2.39)

[ CR | 'R i ⌘

Z

CR
u(z)�1

'R(z) = Ĩ (2.40)

h 'L | 'R i ⌘

Z

C
◆('L) ^ 'R (2.41)

⇥
CL | CR

⇤
⌘ intersection number (2.42)

h 'L | 'R i = h 'L | CL
⇤ ⇥

CL | CR
⇤�1 ⇥

CR | 'R i (2.43)

r! = 'L (2.44)

(2.45)
d

dz
 + ! = 'L (2.46)
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Z

CL
u(z) 'L(z) = I (2.39)

[ CR | 'R i ⌘

Z

CR
u(z)�1

'R(z) = Ĩ (2.40)

h 'L | 'R i ⌘

Z

C
◆('L) ^ 'R (2.41)

⇥
CL | CR

⇤
⌘ intersection number (2.42)

h 'L | 'R i = h 'L | CL
⇤ ⇥

CL | CR
⇤�1 ⇥

CR | 'R i (2.43)

r! = 'L (2.44)

(2.45)
d

dz
 + ! = 'L (2.46)
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CL
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Z

CL
u(z)�1
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Z

C
◆('L) ^ 'R (4.69)

⇥
CL | CR

⇤
⌘ intersection number (4.70)

h 'L | 'R i =
X

i,j

h 'L | CR,j

⇤ ⇥
CL,j | CR,i

⇤�1 ⇥
CL,i | 'R i (4.71)

⇥
CL | CR

⇤
=

X

i,j

⇥
CL | 'R,j i h 'L,j | 'R,i i

�1
h 'L | CR

⇤
(4.72)

X

i,j

| CR,j

⇤ ⇥
CL,j | CR,i

⇤�1 ⇥
CL,i | = Ih (4.73)
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(dual) Homology groups  and (dual) Co-homology groups  are isomorphicH±ω
m Hm

±ω

Closed modulo exact m-forms Closed modulo exact dual m-forms

m-cycles modulo boundaries Dual m-cycles modulo boundaries



De Rham Twisted Co-Homology Groups / Pairing / Integrals

[same dimension]

[same # of generators]

H
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CL | CR

⇤
⌘ intersection number (2.42)

h 'L | 'R i = h 'L | CL
⇤ ⇥
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2 H
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Integrals :: pairings of cycles and co-cycles

H
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CL
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C
◆('L) ^ 'R (2.41)
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CL | CR

⇤
⌘ intersection number (2.42)

h 'L | 'R i =
X

i,j

h 'L | CR,j
⇤ ⇥

CL,i | CR,j
⇤�1 ⇥

CL,i | 'R i (2.43)

⇥
CL | CR

⇤
=

X

i,j

⇥
CL,i | 'R,j i h 'L,i | 'R,j i

�1
h 'L | CR

⇤
(2.44)
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(dual) Homology groups  and (dual) Co-homology groups  are isomorphicH±ω
m Hm

±ω



De Rham Twisted Co-Homology Groups / Pairing / Dual Integrals

[same dimension]

[same # of generators]
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⇤ ⇥

CL | CR
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CR | 'R i (2.43)
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(2.45)
d
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 + ! = 'L (2.46)
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Dual Integrals :: pairings of cycles and co-cycles
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⇥
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(dual) Homology groups  and (dual) Co-homology groups  are isomorphicH±ω
m Hm

±ω
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⇤
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⇥
CL | 'R,j i h 'L,j | 'R,i i

�1
h 'L | CR
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i,j

| CR,j

⇤ ⇥
CL,j | CR,i

⇤�1 ⇥
CL,i | = Ih (4.73)
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De Rham Twisted Co-Homology Groups / Pairing / Homology Intersection Number

[same dimension]

[same # of generators]

h'L| ⌘ 'L(z) 2 H
m
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�!
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!
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�!
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⇤ ⇥
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⇥
CL | CR
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⇥
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�1
h 'L | CR
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⇤ ⇥
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Intersection numbers for cycles :: pairings of cycles

h ' | C ] ⌘

Z

C
u(z) '(z) = I (2.35)

h 'L | 'R i ⌘

Z

C
◆('L) ^ 'R (2.36)

⇥
CL | CR

⇤
⌘ intersection number (2.37)

h 'L | 'R i = h 'L | CL
⇤ ⇥

CL | CR
⇤�1 ⇥

CR | 'R i (2.38)

– 7 –

(dual) Homology groups  and (dual) Co-homology groups  are isomorphicH±ω
m Hm

±ω

Generalising Gauss’ linking number



De Rham Twisted Co-Homology Groups / Pairing / Cohomology Intersection Number

[same dimension]

[same # of generators]

H
m
! ⌘ {m�forms 'm |r!'m = 0}/{r!'m�1}, (2.32)

H
m
�! , r�! = d� ! ^ (2.33)
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h 'L | 'R i ⌘
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C
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⇥
CL | CR

⇤
⌘ intersection number (2.42)

h 'L | 'R i = h 'L | CL
⇤ ⇥

CL | CR
⇤�1 ⇥

CR | 'R i (2.43)

r! = 'L (2.44)

(2.45)
d

dz
 + ! = 'L (2.46)
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'R(z) = Ĩ (2.40)

h 'L | 'R i ⌘

Z

C
◆('L) ^ 'R (2.41)

⇥
CL | CR

⇤
⌘ intersection number (2.42)

h 'L | 'R i = h 'L | CL
⇤ ⇥

CL | CR
⇤�1 ⇥

CR | 'R i (2.43)

r! = 'L (2.44)

(2.45)
d

dz
 + ! = 'L (2.46)

– 6 –
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CR
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!

m
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Z
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u(z)�1

2 H
�!

m

Intersection numbers for co-cycles :: pairings of co-cycles

⌫ = number of independent forms (twisted cocycles)

|C] ⌘

Z

C
u(z) (2.32)

h'| ⌘ '(z) (2.33)

! ⌘ d log(u) (2.34)

h ' | C ] ⌘

Z

C
u(z) '(z) = I (2.35)

h 'L | 'R i ⌘

Z

C
◆('L) ^ 'R (2.36)

⇥
CL | CR

⇤
⌘ intersection numbers (2.37)

h 'L | 'R i = h 'L | CL
⇤ ⇥

CL | CR
⇤�1 ⇥

CR | 'R i (2.38)

– 6 –

2.1 Intersection numbers for 1-forms

The intersection number is an integral of the product between the left and right forms. To define it
consistently, one of the forms has to be regulated by expressing it as a specific representative of its
cohomology class:

h'L |'Ri :=
1

2⇡i

Z

X
◆('L) ^ 'R = �

1

2⇡i

Z

X
'L ^ ◆('R) , (2.11)

where the ◆-operator denotes the regularization procedure defined in the univariate case as:

◆('L) := 'L �r!(h L) , ◆('R) := 'R �r�!(h R) , (2.12)

with the Heaviside functions

h :=
X

i2P!

(1� ✓z,i) , ✓z,i := ✓(|z�zi|� ✏) , P! :=
�
poles of !

 
. (2.13)

The domain of integration in eq. (2.11) is defined as X := CP \ P! , and the set of singularities P!

includes also z = 1. The functions  L and  R are the solutions to the di↵erential equations:

r! L = 'L , r�! R = 'R . (2.14)

To compute intersection numbers eq. (2.14) must be solved around each pole p 2 P! . Considering
the pole at z = p, the solution around this pole formally reads [2, 50],

 L,p(z) =
1

(⌘+ � 1)u(z)

Z

Cp(z)
u(t)'L(t) ,

 R,p(z) =
u(z)

(⌘� � 1)

Z

Cp(z)

'R(t)

u(t)
.

(2.15)

Here Cp(z) is the contour given in Figure 1 and ⌘± = e±2⇡i↵p , with ↵p being the non-integer exponent
of u at z = p (and thus �↵p the exponent of u�1).

p z

Cp(z)

Figure 1: The integration contour Cp(z) used in eq. (2.15).

Following [14, 15] we may then derive the expression for the univariate intersection number as

h'L |'Ri =
X

p2P!

Resz=p( L,p 'R) = �

X

p2P!

Resz=p( R,p 'L) . (2.16)
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(dual) Homology groups  and (dual) Co-homology groups  are isomorphicH±ω
m Hm

±ω



Identity Resolution

Metric matrix for Forms 
PoS(MA2019)015

From Diagrammar to Diagrammalgebra

can be determined by counting the number of critical points of B, namely a = dim(Zl) [24], or
equivalently from the Euler characterisics j(Pl) of the projective variety generated by the poles of
l, as a = (�1)= (= + 1 � j(Pl)) [33], see also [74], or by the Shape Lemma [35].

The corresponding elements, generically denoted as hi! | 2 �=
l , |i'i 2 �=

�l , [C! | 2 �=
l ,

|C'] 2 �=
�l , can be used to define four types of natural twisted Poincarè pairings:

• Integrals:

� = hi! |C'] ⌘
π
C'

D i! ; (9)

• Dual Integrals:

�̃ = [C! |i'i ⌘
π
C!

D�1 i' ; (10)

• Intersection numbers for twisted cycles (or topological intersection numbers):

[C! |C'] ; (11)

• Intersection numbers for twisted cocycles

hi! |i'i ⌘
π
"
(D i!) ^ (D�1 i') =

π
"

i! ^ i' . (12)

where i!,' are understood to have compact support on " .

2.1 Linear and Bilinear Relations

Consider the following bases generating the four spaces introduced above: {h48 |}8=1,...,a 2 �=
l

and {|⌘8i}8=1,...,a 2 �=
�l , respectively for the cohomology and for the dual cohomoloygy spaces;

as well as, {[W8 |}8=1,...,a 2 �l
= , and {|[8]}8=1,...,a 2 ��l

= , respectively for the homology and for the
dual homoloygy spaces. The bases of cocycles {h48 |}8=1,...,a 2 �=

l and {|⌘8i}8=1,...,a 2 �=
�l , can

be used to express the identity operator in the cohomology space as [27, 31],

I2 =
a’

8, 9=1

|⌘8i
⇣
C
�1
⌘
8 9
h4 9 | (13)

where we defined the metric matrix
C8 9 ⌘ h48 |⌘ 9i , (14)

whose elements are intersection numbers of the twisted basic forms. Similarly, by using the bases of
cycles {[W8 |}8=1,...,a 2 �l

= and {|[8]}8=1,...,a 2 ��l
= , the resolution of the identity in the homology

space reads as,

I⌘ =
a’

8, 9=1

|W8]
⇣
H

�1
⌘
8 9
[[ 9 | , (15)

where
H8 9 ⌘ [[8 |W 9] , (16)

is the metric matrix, in terms of intersection numbers of the basic twisted cycles.
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can be determined by counting the number of critical points of B, namely a = dim(Zl) [24], or
equivalently from the Euler characterisics j(Pl) of the projective variety generated by the poles of
l, as a = (�1)= (= + 1 � j(Pl)) [33], see also [74], or by the Shape Lemma [35].

The corresponding elements, generically denoted as hi! | 2 �=
l , |i'i 2 �=

�l , [C! | 2 �=
l ,

|C'] 2 �=
�l , can be used to define four types of natural twisted Poincarè pairings:

• Integrals:

� = hi! |C'] ⌘
π
C'

D i! ; (9)

• Dual Integrals:

�̃ = [C! |i'i ⌘
π
C!

D�1 i' ; (10)

• Intersection numbers for twisted cycles (or topological intersection numbers):

[C! |C'] ; (11)

• Intersection numbers for twisted cocycles

hi! |i'i ⌘
π
"
(D i!) ^ (D�1 i') =

π
"

i! ^ i' . (12)

where i!,' are understood to have compact support on " .

2.1 Linear and Bilinear Relations

Consider the following bases generating the four spaces introduced above: {h48 |}8=1,...,a 2 �=
l

and {|⌘8i}8=1,...,a 2 �=
�l , respectively for the cohomology and for the dual cohomoloygy spaces;

as well as, {[W8 |}8=1,...,a 2 �l
= , and {|[8]}8=1,...,a 2 ��l

= , respectively for the homology and for the
dual homoloygy spaces. The bases of cocycles {h48 |}8=1,...,a 2 �=

l and {|⌘8i}8=1,...,a 2 �=
�l , can

be used to express the identity operator in the cohomology space as [27, 31],

I2 =
a’

8, 9=1

|⌘8i
⇣
C
�1
⌘
8 9
h4 9 | (13)

where we defined the metric matrix
C8 9 ⌘ h48 |⌘ 9i , (14)

whose elements are intersection numbers of the twisted basic forms. Similarly, by using the bases of
cycles {[W8 |}8=1,...,a 2 �l

= and {|[8]}8=1,...,a 2 ��l
= , the resolution of the identity in the homology

space reads as,

I⌘ =
a’

8, 9=1

|W8]
⇣
H

�1
⌘
8 9
[[ 9 | , (15)

where
H8 9 ⌘ [[8 |W 9] , (16)

is the metric matrix, in terms of intersection numbers of the basic twisted cycles.
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where: z = (z1, . . . , zn) are integration variables; C is the
integration domain; u is a multi-valued function of the
form u =

Q
i Bi(z)�i with �i /2 Z, such that

Q
i Bi vanishes

on the integration boundary @C; and ' is a single-valued
differential n-form,

'(z) = '̂(z) dnz , d
nz ⌘ dz1 ^ . . . ^ dzn , (2)

with '̂ being a rational function with all poles regulated by
u(z). Then employing Stokes’ theorem we find equivalence
classes of n-forms,

' ⇠ '+r!⇠, (3)

for any (n�1)-form ⇠ and where r! ⌘ d + !^ is a co-
variant derivative with a one-form ! ⌘ d log u. The space
of n-forms modulo the relation eq. (3) forms a vector
space called a twisted cohomology group1

H
n
! . We denote

its elements by h'| 2 H
n
! . Within this framework, the

integral I from eq. (1) can be interpreted as a pairing of
h'| with the integration contour |C],

I = h'|C] . (4)

Since in our applications |C] will always stay constant,
the vector space of such integrals is the same as that of
h'|.

Consider a set of ⌫ MIs, say Ji, defined as

Ji =

Z

C
u(z) ei(z) = hei|C] , i = 1, . . . , ⌫ , (5)

in terms of any independent set of differential forms hei|.
Then, the decomposition of a generic integral I in terms
of the MIs Ji,

I =
⌫X

i=1

ci Ji , (6)

can be interpreted as coming from the more fundamental
decomposition of the differential form h'| in terms of the
basis forms hei| , namely

h'| =
⌫X

i=1

ci hei| , (7)

with the coefficients determined by the master decompo-
sition formula [8, 10],

ci =
⌫X

j=1

h'|hji
�
C�1

�
ji

, Cij = hei|hji , (8)

1
We refer the interested reader to [20–22] for reviews of twisted

(co)homologies and their intersection theory, as well as [8, 10, 18,

20, 23–28] and [29–32] for some recent applications of these ideas

to physics.

where |hji (j = 1, . . . , ⌫)2, span a dual (and auxiliary)
vector space (Hn

! )
⇤ = H

n
�!. The scalar product h'L|'Ri

between the two vector spaces is called an intersection
number of differential forms [9].

Using eqs. (6,8), our algorithm for expressing any inte-
gral of the type of eq. (1) as linear combinations of MIs
proceeds along three steps:

1. Determination of the number ⌫ of MIs.

2. Choice of the bases of forms hei| and |hii.

3. Evaluation of the intersection numbers for multi-variate
forms, appearing in the entries of the C-matrix, and
in h'|hji.

Number of Master Integrals. Under some assump-
tions one can show that all other vector spaces H

k 6=n
±! are

trivial, which means that ' can only be n-forms [33]. In
those cases the dimension of these vector spaces, i.e. the
number ⌫ of MIs, can be determined topologically3,

⌫ ⌘ dimH
n
±! = (�1)n (n+1� �(P!)) , (9)

in terms of the Euler characteristic �(P!) of the projective
variety P! defined as the set of poles of !.

This connection allows us to use complex Morse (Picard–
Lefschetz) theory to determine ⌫ as the number of critical
points of the function log u(z). Let us define

! ⌘ dlog u(z) =
nX

i=1

!̂i dzi , (10)

then the number of critical points is given by the number
of solutions of the system of equations

!̂i ⌘ @zi log u(z) = 0 , i = 1, . . . , n , (11)

with the short-hand notation @zi ⌘ @/@zi, provided that
the set of solutions is finite. Additional details are pro-
vided in the App. A.

INTERSECTION NUMBERS

In this section we review a recursive algorithm for
the evaluation of intersection numbers of multivariate
differential forms introduced in [20].

We start by decomposing the n-dimensional space with
coordinates (z1, . . . , zn) into a (n�1)-dimensional sub-
space parametrized by (z1, . . . , zn�1), which we call inner

2
Suitable choices of the basis forms hei| and |hii can be made,

such that C = I⌫⇥⌫ , yielding a simplified decomposition formula

[8, 10], h'| =
P⌫

i=1h'|hii hei|.
3

In the Feynman integral literature, the finiteness of ⌫ was first

considered in [34], while its connection to the number of critical

points and Euler characteristics were previously explored in [8,

10, 35–38].

Mizera & P.M. (2018)

  Frellesvig, Gasparotto, Laporta, Mandal, Mattiazzi, Mizera & P.M. (2019)

  Frellesvig, Gasparotto, Mandal, Mattiazzi, Mizera & P.M. (2019)
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The identity resolutions I2 and I⌘ can be derived purely algebraically, as in [27, 31]; also,
in the context of di�erential topology, the bilinear Riemann relations for periods of holomorphic
di�erentials, see f.i. [44], can be suitably expressed in order to identify I⌘ (for non twisted-forms),
as shown later.

Linear and bilinear relations for Aomoto-Gel’fand-Feynman integrals, as well as the di�erential
equations and the finite di�erence equation they obey are a consequence of the purely algebraic
application of the identity operators defined above [27].

In the context of Feynman integrals calculus, the decomposition of scattering amplitudes in
terms of MIs, as well as the equations obeyd by the latter, are derived by means of IBPs [69] and of
the Laporta method [70]. In the following, we show how these relations emerge by employing the
algebraic properties of twisted cycles and co-cycles.

2.1.1 Linear Relations

• Decomposition of di�erential forms. Generic twisted cocycles and dual twisted cocycles
can be projected onto the bases in the correspsonding vector spaces as,

hi! | = hi! |I2 =
a’
8=1

28 h48 | , with 28 =
a’
9=1

hi! |⌘ 9i
⇣
C
�1
⌘
98

; (17)

|i'i = I2 |i'i =
a’
8=1

2̃8 |⌘8i , with 2̃8 =
a’
9=1

⇣
C
�1
⌘
8 9

h4 9 |i'i . (18)

The latter two formulas, dubbed master decomposition formulas for (dual) twisted cocycles
[27, 31], imply that the decomposition of any (dual) Aomoto-Gel’fand-Feynman integral can
be expressed as linear combination of (dual) master integrals is an algebraic operation, similar
to the decomposition/projection of any vector within a vector space, which can be carried out
by computing intersection numbers of twisted de Rham di�erential forms.

• Integral decomposition (1). By using the master decomposition formulas of forms and dual
forms, integrals and dual integrals can be straightforwardly written as,

� = hi! |C'] =
a’
8=1

28 �8 , and �̃ = [C! |i'i =
a’
8=1

2̃8 �̃8 , (19)

respectively in terms the MIs �8 = h48 |C'], and of the dual MIs �̃8 = [C! |⌘8i, for 8 = 1, . . . , a.

• Decomposition of integration contours. Equivalently, using the resolution of the identity in
the homology space. twisted cycles and dual twisted cycles can be projected onto the bases
in the corresponding vector spaces as,

|C'] = I⌘ |C'] =
’
8

08 |W8] , with 08 =
a’
9=1

⇣
H

�1
⌘
8 9
[[ 9 |C'] , (20)

[C! | = [C! | I⌘ =
’
8

0̃8 [[8 | , with 0̃8 =
a’
8=1

[C! |W 9]
⇣
H

�1
⌘
98

(21)

The latter two formulas are dubbed master decomposition formulas for (dual) twisted cycles,
and may lead to alternative decomposition of integrals and dual integrals.
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can be determined by counting the number of critical points of B, namely a = dim(Zl) [24], or
equivalently from the Euler characterisics j(Pl) of the projective variety generated by the poles of
l, as a = (�1)= (= + 1 � j(Pl)) [33], see also [74], or by the Shape Lemma [35].

The corresponding elements, generically denoted as hi! | 2 �=
l , |i'i 2 �=

�l , [C! | 2 �=
l ,

|C'] 2 �=
�l , can be used to define four types of natural twisted Poincarè pairings:

• Integrals:

� = hi! |C'] ⌘
π
C'

D i! ; (9)

• Dual Integrals:

�̃ = [C! |i'i ⌘
π
C!

D�1 i' ; (10)

• Intersection numbers for twisted cycles (or topological intersection numbers):

[C! |C'] ; (11)

• Intersection numbers for twisted cocycles

hi! |i'i ⌘
π
"
(D i!) ^ (D�1 i') =

π
"

i! ^ i' . (12)

where i!,' are understood to have compact support on " .

2.1 Linear and Bilinear Relations

Consider the following bases generating the four spaces introduced above: {h48 |}8=1,...,a 2 �=
l

and {|⌘8i}8=1,...,a 2 �=
�l , respectively for the cohomology and for the dual cohomoloygy spaces;

as well as, {[W8 |}8=1,...,a 2 �l
= , and {|[8]}8=1,...,a 2 ��l

= , respectively for the homology and for the
dual homoloygy spaces. The bases of cocycles {h48 |}8=1,...,a 2 �=

l and {|⌘8i}8=1,...,a 2 �=
�l , can

be used to express the identity operator in the cohomology space as [27, 31],

I2 =
a’

8, 9=1

|⌘8i
⇣
C
�1
⌘
8 9
h4 9 | (13)

where we defined the metric matrix
C8 9 ⌘ h48 |⌘ 9i , (14)

whose elements are intersection numbers of the twisted basic forms. Similarly, by using the bases of
cycles {[W8 |}8=1,...,a 2 �l

= and {|[8]}8=1,...,a 2 ��l
= , the resolution of the identity in the homology

space reads as,

I⌘ =
a’

8, 9=1

|W8]
⇣
H

�1
⌘
8 9
[[ 9 | , (15)

where
H8 9 ⌘ [[8 |W 9] , (16)

is the metric matrix, in terms of intersection numbers of the basic twisted cycles.
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H
m
! ⌘ {m�forms 'm |r!'m = 0}/{r!'m�1}, (2.32)

H
m
�! , r�! = d� ! ^ (2.33)

|CR] ⌘

Z

CR
u(z) (2.34)

[CL| ⌘

Z

CL
u(z)�1 (2.35)

h'L| ⌘ 'L(z) 2 H
m
! (2.36)

|'Ri ⌘ 'R(z) 2 H
m
�! (2.37)

! ⌘ d log(u) (2.38)

h 'L | CR ] ⌘

Z

CR
u(z) 'L(z) = I (2.39)

[ CR | 'L i ⌘

Z

CL
u(z)�1

'R(z) = Ĩ (2.40)

h 'L | 'R i ⌘

Z

C
◆('L) ^ 'R (2.41)

⇥
CL | CR

⇤
⌘ intersection number (2.42)

h 'L | 'R i =
X

i,j

h 'L | CR,j
⇤ ⇥

CL,i | CR,j
⇤�1 ⇥

CL,i | 'R i (2.43)

⇥
CL | CR

⇤
=

X

i,j

⇥
CL,i | 'R,j i h 'L,i | 'R,j i

�1
h 'L | CR

⇤
(2.44)
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The latter two formulas are dubbed master decomposition formulas for (dual) twisted cycles,
and may lead to alternative decomposition of integrals and dual integrals.
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where: z = (z1, . . . , zn) are integration variables; C is the
integration domain; u is a multi-valued function of the
form u =

Q
i Bi(z)�i with �i /2 Z, such that

Q
i Bi vanishes

on the integration boundary @C; and ' is a single-valued
differential n-form,

'(z) = '̂(z) dnz , d
nz ⌘ dz1 ^ . . . ^ dzn , (2)

with '̂ being a rational function with all poles regulated by
u(z). Then employing Stokes’ theorem we find equivalence
classes of n-forms,

' ⇠ '+r!⇠, (3)

for any (n�1)-form ⇠ and where r! ⌘ d + !^ is a co-
variant derivative with a one-form ! ⌘ d log u. The space
of n-forms modulo the relation eq. (3) forms a vector
space called a twisted cohomology group1

H
n
! . We denote

its elements by h'| 2 H
n
! . Within this framework, the

integral I from eq. (1) can be interpreted as a pairing of
h'| with the integration contour |C],

I = h'|C] . (4)

Since in our applications |C] will always stay constant,
the vector space of such integrals is the same as that of
h'|.

Consider a set of ⌫ MIs, say Ji, defined as

Ji =

Z

C
u(z) ei(z) = hei|C] , i = 1, . . . , ⌫ , (5)

in terms of any independent set of differential forms hei|.
Then, the decomposition of a generic integral I in terms
of the MIs Ji,

I =
⌫X

i=1

ci Ji , (6)

can be interpreted as coming from the more fundamental
decomposition of the differential form h'| in terms of the
basis forms hei| , namely

h'| =
⌫X

i=1

ci hei| , (7)

with the coefficients determined by the master decompo-
sition formula [8, 10],

ci =
⌫X

j=1

h'|hji
�
C�1

�
ji

, Cij = hei|hji , (8)

1
We refer the interested reader to [20–22] for reviews of twisted

(co)homologies and their intersection theory, as well as [8, 10, 18,

20, 23–28] and [29–32] for some recent applications of these ideas

to physics.

where |hji (j = 1, . . . , ⌫)2, span a dual (and auxiliary)
vector space (Hn

! )
⇤ = H

n
�!. The scalar product h'L|'Ri

between the two vector spaces is called an intersection
number of differential forms [9].

Using eqs. (6,8), our algorithm for expressing any inte-
gral of the type of eq. (1) as linear combinations of MIs
proceeds along three steps:

1. Determination of the number ⌫ of MIs.

2. Choice of the bases of forms hei| and |hii.

3. Evaluation of the intersection numbers for multi-variate
forms, appearing in the entries of the C-matrix, and
in h'|hji.

Number of Master Integrals. Under some assump-
tions one can show that all other vector spaces H

k 6=n
±! are

trivial, which means that ' can only be n-forms [33]. In
those cases the dimension of these vector spaces, i.e. the
number ⌫ of MIs, can be determined topologically3,

⌫ ⌘ dimH
n
±! = (�1)n (n+1� �(P!)) , (9)

in terms of the Euler characteristic �(P!) of the projective
variety P! defined as the set of poles of !.

This connection allows us to use complex Morse (Picard–
Lefschetz) theory to determine ⌫ as the number of critical
points of the function log u(z). Let us define

! ⌘ dlog u(z) =
nX

i=1

!̂i dzi , (10)

then the number of critical points is given by the number
of solutions of the system of equations

!̂i ⌘ @zi log u(z) = 0 , i = 1, . . . , n , (11)

with the short-hand notation @zi ⌘ @/@zi, provided that
the set of solutions is finite. Additional details are pro-
vided in the App. A.

INTERSECTION NUMBERS

In this section we review a recursive algorithm for
the evaluation of intersection numbers of multivariate
differential forms introduced in [20].

We start by decomposing the n-dimensional space with
coordinates (z1, . . . , zn) into a (n�1)-dimensional sub-
space parametrized by (z1, . . . , zn�1), which we call inner

2
Suitable choices of the basis forms hei| and |hii can be made,

such that C = I⌫⇥⌫ , yielding a simplified decomposition formula

[8, 10], h'| =
P⌫

i=1h'|hii hei|.
3

In the Feynman integral literature, the finiteness of ⌫ was first

considered in [34], while its connection to the number of critical

points and Euler characteristics were previously explored in [8,

10, 35–38].
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From Diagrammar to Diagrammalgebra

The identity resolutions I2 and I⌘ can be derived purely algebraically, as in [27, 31]; also,
in the context of di�erential topology, the bilinear Riemann relations for periods of holomorphic
di�erentials, see f.i. [44], can be suitably expressed in order to identify I⌘ (for non twisted-forms),
as shown later.

Linear and bilinear relations for Aomoto-Gel’fand-Feynman integrals, as well as the di�erential
equations and the finite di�erence equation they obey are a consequence of the purely algebraic
application of the identity operators defined above [27].

In the context of Feynman integrals calculus, the decomposition of scattering amplitudes in
terms of MIs, as well as the equations obeyd by the latter, are derived by means of IBPs [69] and of
the Laporta method [70]. In the following, we show how these relations emerge by employing the
algebraic properties of twisted cycles and co-cycles.

2.1.1 Linear Relations

• Decomposition of di�erential forms. Generic twisted cocycles and dual twisted cocycles
can be projected onto the bases in the correspsonding vector spaces as,

hi! | = hi! |I2 =
a’
8=1

28 h48 | , with 28 =
a’
9=1

hi! |⌘ 9i
⇣
C
�1
⌘
98

; (17)

|i'i = I2 |i'i =
a’
8=1

2̃8 |⌘8i , with 2̃8 =
a’
9=1

⇣
C
�1
⌘
8 9

h4 9 |i'i . (18)

The latter two formulas, dubbed master decomposition formulas for (dual) twisted cocycles
[27, 31], imply that the decomposition of any (dual) Aomoto-Gel’fand-Feynman integral can
be expressed as linear combination of (dual) master integrals is an algebraic operation, similar
to the decomposition/projection of any vector within a vector space, which can be carried out
by computing intersection numbers of twisted de Rham di�erential forms.

• Integral decomposition (1). By using the master decomposition formulas of forms and dual
forms, integrals and dual integrals can be straightforwardly written as,

� = hi! |C'] =
a’
8=1

28 �8 , and �̃ = [C! |i'i =
a’
8=1

2̃8 �̃8 , (19)

respectively in terms the MIs �8 = h48 |C'], and of the dual MIs �̃8 = [C! |⌘8i, for 8 = 1, . . . , a.

• Decomposition of integration contours. Equivalently, using the resolution of the identity in
the homology space. twisted cycles and dual twisted cycles can be projected onto the bases
in the corresponding vector spaces as,

|C'] = I⌘ |C'] =
’
8

08 |W8] , with 08 =
a’
9=1

⇣
H

�1
⌘
8 9
[[ 9 |C'] , (20)

[C! | = [C! | I⌘ =
’
8

0̃8 [[8 | , with 0̃8 =
a’
8=1

[C! |W 9]
⇣
H

�1
⌘
98

(21)

The latter two formulas are dubbed master decomposition formulas for (dual) twisted cycles,
and may lead to alternative decomposition of integrals and dual integrals.
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where the product between generally non commuting matrices is understood.

Following a similar approach, in the homology space, hence using I⌘, it is possible to derive
di�erential equations for (dual) master cycles, |W8] and [[8 |, and the secondary equations
obeyed the corresponding H intersection matrix.

2.1.3 Bilinear Relations

Riemann bilinear relations for periods of closed holomorphic (non-twisted) di�erentials forms,
q! and q', see [44] reads as,

hq! |q'i =
π
⌃
q! ^ q' =

6’
8=1

⇣ π
08

q!

π
18

q' �
π
18

q!

π
08

q'

⌘
, (27)

where ⌃ is an oriented Riemann surface of genus 6 > 0, built out of a 46-gon with edgesŒ6
8=1 08180

�1
8 1�1

8 (where the exponent ±1 stands for clock/anticlockwise orientation) and gluing
each edge with its inverse. The integration contours 08 and 18 , for 8 = 1, . . . 6, are a canoni-
cal bases of cycles, hence intersect transversally, i.e. their pairwise intersection numbers are:
08 · 0 9 = 18 · 1 9 = 0 , and 08 · 1 9 = �1 9 · 08 = X8 9 . Riemann bilinear relation can be cast as,

hq! |q'i =
26’
8, 9

π
W8

q! (H�1)8 9
π
W 9

q' , (28)

where {W8}8=1,...,6 = 08 and {W8}8=6+1,...,26 = 18 , and H8 9 = [W8 |W 9] , namely

H =

 
0 I6⇥6

�I6⇥6 0

!
, yielding H

�1 =

 
0 �I6⇥6
I6⇥6 0

!
, (29)

and I6⇥6 is the identity matrix in the (6 ⇥ 6)-space.

Bilinear relations can be derived also for the cases of twisted co-cycles. The operators I2 and
I⌘ can be inserted in the pairing between twisted (co)cyles, to obtain the following identities:

• Twisted Riemann Periods Relations.

hi! |i'i = hi! |I⌘ |i'i =
a’

8, 9=1

hi! |W8]
⇣
H

�1
⌘
8 9
[[ 9 |q'i (30)

[C! |C'] = [C! |I2 |C'] =
a’

8, 9=1

[C! |⌘8i
⇣
C
�1

⌘
8 9
h4 9 |C'] , (31)

which are the Twisted Riemann Period Relations (TRPR) [50]. TRPR relates intersection
numbers for (co)-homologies to products of integrals and dual integrals.

2.1.4 Trilinear Identies

Multiple insertions of the identity resolutions I⌘ and I2 can generate multilinear relations.
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54 2 Differential Geometry of Riemann Surfaces

Corollary 2.4.2 Every compact Riemann surface of the form H/Γ has a
non-abelian fundamental group. ⊓⊔

Fig. 2.4.10.

Exercises for § 2.4

1) Let H/Γ be a compact Riemann surface. Show that each nontrivial
abelian subgroup of Γ is infinite cyclic.

2) Provide the details of the construction of a metric fundamental polygon
for a group of Euclidean motions.

2.4.A The Topological Classification of Compact
Riemann Surfaces

We start with

Definition 2.4.A.1 A differentiable manifold M is called orientable if it
possesses an atlas whose chart transitions all have positive functional deter-
minant. An orientation of M consists in the choice of such an atlas.

Corollary 2.4.A.1 Any Riemann surface is orientable, and a conformal
atlas provides an orientation.

Proof. All transition maps of a conformal atlas are holomorphic and there-
fore have positive functional determinant. ⊓⊔
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Vector Space Structure of Feynman Integrals



Vector Space Dimensions / counting “holes”

De Rahm  
Co-Homology 

ν = dimH

Number of Master Integrals
Chetyrkin, Tkachov (1981);  Remiddi, Laporta (1996);  Laporta (2000)

Number of Critical Points Lee, Pomeranski (2013)

Relation with χE

Bitoun, Bogner, Klausen, Panzer (2018)

Aluffi, Marcolli (2008)

Frellesvig, Gasparotto, Mandal, Mattiazzi, Mizera & P.M. (2019)  

Primo, Tancredi (2017)Bosma, Sogaard, Zhang (2017)

Number of Independent Contours

Number of Independent Forms
Mizera & P.M. (2018)

  Frellesvig, Gasparotto, Laporta, Mandal, Mattiazzi, Mizera & P.M. (2019)

Ideal saturation / dimension of quotient space
  Frellesvig, Gasparotto, Laporta, Mandal, Mattiazzi, Mizera & P.M. (2020)

Mixed volume of Newton Polyhedra
  Bernstein-Khobaskii-Kushnirenko

  Saito Sturmfels Takayama

Holonomic rank of GKZ systems
  Gelfand Kapranov Zelevinski

Maximum likelihood degree
  Agostini, Brysiewicz, Fevola, Sturmfels, Tellen (2021)

Betti numbers

… … … … …



Parametric Representation(s)
Upon a change of integration variables
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Feynman Integrals :: Baikov Representation
Denominators as integration variables

2.2 Baikov

Z LY

i=1

ddki
⇡d/2

@

@kµj

✓
vµ

NY

n=1

1

Dan
n

◆
= 0 (2.9)

vµ = vµ(pi, kj) (2.10)

{D1, . . . , DN} ! {z1, . . . , zN} ⌘ z (2.11)

– 5 –

Baikov (1996)

3.3 Two special cases
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• Polynomial insertion:

Z

q1...q`

P (qi · pj , qi · qj) mi(x̄, ȳ) =
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(2.14)

2.4 Baikov

{D1, . . . , DN} ! {z1, . . . , zN} ⌘ z (2.15)

Ia1,...,aN ⌘ K(d, sij)

Z

C
dz B(z)�

NY

i=1

1

z
an
i

(2.16)

B(z) = det(qi · qj) (2.17)

� ⌘ (d� E � L� 1)/2 (2.18)
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The identity resolutions I2 and I⌘ can be derived purely algebraically, as in [27, 31]; also,
in the context of di�erential topology, the bilinear Riemann relations for periods of holomorphic
di�erentials, see f.i. [44], can be suitably expressed in order to identify I⌘ (for non twisted-forms),
as shown later.

Linear and bilinear relations for Aomoto-Gel’fand-Feynman integrals, as well as the di�erential
equations and the finite di�erence equation they obey are a consequence of the purely algebraic
application of the identity operators defined above [27].

In the context of Feynman integrals calculus, the decomposition of scattering amplitudes in
terms of MIs, as well as the equations obeyd by the latter, are derived by means of IBPs [69] and of
the Laporta method [70]. In the following, we show how these relations emerge by employing the
algebraic properties of twisted cycles and co-cycles.

2.1.1 Linear Relations

• Decomposition of di�erential forms. Generic twisted cocycles and dual twisted cocycles
can be projected onto the bases in the correspsonding vector spaces as,

hi! | = hi! |I2 =
a’
8=1

28 h48 | , with 28 =
a’
9=1

hi! |⌘ 9i
⇣
C
�1
⌘
98

; (17)

|i'i = I2 |i'i =
a’
8=1

2̃8 |⌘8i , with 2̃8 =
a’
9=1

⇣
C
�1
⌘
8 9

h4 9 |i'i . (18)

The latter two formulas, dubbed master decomposition formulas for (dual) twisted cocycles
[27, 31], imply that the decomposition of any (dual) Aomoto-Gel’fand-Feynman integral can
be expressed as linear combination of (dual) master integrals is an algebraic operation, similar
to the decomposition/projection of any vector within a vector space, which can be carried out
by computing intersection numbers of twisted de Rham di�erential forms.

• Integral decomposition (1). By using the master decomposition formulas of forms and dual
forms, integrals and dual integrals can be straightforwardly written as,

� = hi! |C'] =
a’
8=1

28 �8 , and �̃ = [C! |i'i =
a’
8=1

2̃8 �̃8 , (19)

respectively in terms the MIs �8 = h48 |C'], and of the dual MIs �̃8 = [C! |⌘8i, for 8 = 1, . . . , a.

• Decomposition of integration contours. Equivalently, using the resolution of the identity in
the homology space. twisted cycles and dual twisted cycles can be projected onto the bases
in the corresponding vector spaces as,

|C'] = I⌘ |C'] =
’
8

08 |W8] , with 08 =
a’
9=1

⇣
H

�1
⌘
8 9
[[ 9 |C'] , (20)

[C! | = [C! | I⌘ =
’
8

0̃8 [[8 | , with 0̃8 =
a’
8=1

[C! |W 9]
⇣
H

�1
⌘
98

(21)

The latter two formulas are dubbed master decomposition formulas for (dual) twisted cycles,
and may lead to alternative decomposition of integrals and dual integrals.
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for any generic (= � 1)-form i=�1.
Aomoto-Gel’fand integrals represent rather a wide class of integrals, such as Gauss hypergeo-

metric functions, Lauricella functions, and their generalizations, Euler-type integrals, and Feynman
integrals [27]. The considered class of integrals are invariant, under the following transformations:

• either shifting the di�erential =-form, by a term containing a covariant derivative, i.e. i= !
i= + rl i=�1;

• or shifting the integration domain, by a pure boundary term (containing no holes), i.e.
�= ! �= + m�=+1;

namely,
π
�=

D i= =
π
�=

D (i= + rl i=�1) =
π
�=+m�=+1

D i= , (4)

Similar results are obtained also for the so called dual integrals, obtained from the integrals defined
above by replacing D ! D�1 (and correspondingly l ! �l, in the definition of the covariant
derivative).

In the case of Feynman integrals, according to the chosen parametric representation, the factors
⌫8 that appear in D are identified with (or built out of) the graph polynomial(s) and the denominators.
For these set of functions, analyticity, unitarity, and algebraic structure are related to the geometry
captured by the Morse function ⌘ ⌘ '4(log(D)).

The multivalued twist D carries informations on the regularization: for dimensionally regulated
Feynman integrals, it depends on the integration variables as well as on external scales, such as
Mandelstam invariants and masses (all appearing in the polynomials ⌫8), and on the space time 3

(appearing in the U8). The topological information of integrals and dual integrals are contained in
l that is a di�erential form with zeroes and poles, collected in the respective sets,

Zl = {zeroes of l} , and Pl = {poles of l} [ {1} . (5)

The invariance of integrals and dual integrals under the two types of transformation mentioned
above can be exploited to expose the algebraic structure of Aomoto-Gel’fand integrals. Let us
introduce four vector spaces, for twisted cycles and cocycles: the de Rham =-th homology group,

�l
= =

Ker(m : �=+1 ! �=)
Im(m : �= ! �=�1)

, (6)

and the de Rham =-th co-homology group,

�=
l =

Ker(rl : i= ! i=+1)
Im(rl : i=�1 ! i=)

, (7)

which is the quotient space of closed =-forms, (i= | rli= = 0) modulo exact forms (i= | i= =
rli=�1); and their dual spaces, (�l

= )⇤ = ��l
= , and (�=

l)⇤ = �=
�l , respectively. These spaces are

isomorphic, and their dimension a,

a ⌘ dim(�=
±l) = dim(�±l

= ) , (8)
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can be determined by counting the number of critical points of B, namely a = dim(Zl) [24], or
equivalently from the Euler characterisics j(Pl) of the projective variety generated by the poles of
l, as a = (�1)= (= + 1 � j(Pl)) [33], see also [74], or by the Shape Lemma [35].

The corresponding elements, generically denoted as hi! | 2 �=
l , |i'i 2 �=

�l , [C! | 2 �=
l ,

|C'] 2 �=
�l , can be used to define four types of natural twisted Poincarè pairings:

• Integrals:

� = hi! |C'] ⌘
π
C'

D i! ; (9)

• Dual Integrals:

�̃ = [C! |i'i ⌘
π
C!

D�1 i' ; (10)

• Intersection numbers for twisted cycles (or topological intersection numbers):

[C! |C'] ; (11)

• Intersection numbers for twisted cocycles

hi! |i'i ⌘
π
"
(D i!) ^ (D�1 i') =

π
"

i! ^ i' . (12)

where i!,' are understood to have compact support on " .

2.1 Linear and Bilinear Relations

Consider the following bases generating the four spaces introduced above: {h48 |}8=1,...,a 2 �=
l

and {|⌘8i}8=1,...,a 2 �=
�l , respectively for the cohomology and for the dual cohomoloygy spaces;

as well as, {[W8 |}8=1,...,a 2 �l
= , and {|[8]}8=1,...,a 2 ��l

= , respectively for the homology and for the
dual homoloygy spaces. The bases of cocycles {h48 |}8=1,...,a 2 �=

l and {|⌘8i}8=1,...,a 2 �=
�l , can

be used to express the identity operator in the cohomology space as [27, 31],

I2 =
a’

8, 9=1

|⌘8i
⇣
C
�1
⌘
8 9
h4 9 | (13)

where we defined the metric matrix
C8 9 ⌘ h48 |⌘ 9i , (14)

whose elements are intersection numbers of the twisted basic forms. Similarly, by using the bases of
cycles {[W8 |}8=1,...,a 2 �l

= and {|[8]}8=1,...,a 2 ��l
= , the resolution of the identity in the homology

space reads as,

I⌘ =
a’

8, 9=1

|W8]
⇣
H

�1
⌘
8 9
[[ 9 | , (15)

where
H8 9 ⌘ [[8 |W 9] , (16)

is the metric matrix, in terms of intersection numbers of the basic twisted cycles.
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discus its solution locally around each intersection point. Section 3 contains application of our new
approach to integrals and functions of interests for physics and mathematics. In Section 4 we give
a closed, algebraic expression for each residue, contributing to the multivariate intersection number.
Section 5 contains our concluding remarks. The paper includes four appendices: Appendix A contains
the link of our new approach to Matsumoto’s algorithm, explicitly shown in the simple case of 2-forms;
Appendix B contains further details of the examples discussed in Section 3; Appendix C contains the
derivation of the algebraic expression given in Section 4.

2 Intersection numbers for twisted n-forms

2.1 Twisted cohomology

Let Bi, with i = 1, . . . ,m , be complex polynomials in the variables z = (z1, . . . , zn). We introduce an
oriented manifold X = CPn

�
Sm

i=1 Si, where the hypersurfaces Si are identified by the equations:

Si :=
�
z | Bi(z) = 0

 
, (2.1)

and the variables z are recognized as local coordinates of the projective space. We introduce the
Aomoto-Gel’fand integrals, defined as twisted period integrals,

Z

�(n)

u '
(n)

⌘

Z

�(n)

u '̂
(n) dnz , with dnz := dz1 ^ . . . ^ dzn , (2.2)

where: u is a multivalued function called the twist, which regulates the integral; �(n) is a regularised
cycle called twisted or loaded cycle, i.e. a n-chain with empty boundary on X (usually �(n) is denoted
as �(n)

⌘ �(n)
⌦ u to separate the integration domain �(n) and a specific choice of the branch of

multivalued u along it); '(n) is a meromorphic di↵erential n-form defined on X, called the twisted
cocycle. In general u is a multivalued function that “vanishes” on the integration boundary: u(@�(n)) =
0. The latter property ensures that for any generic (n� 1)-form '

(n�1) the integral of the total
di↵erential is zero:

0 =

Z

�(n)

d(u'(n�1)) =

Z

�(n)

ur! '
(n�1)

, (2.3)

where we introduced the covariant derivative:

r! := d + !^ = u
�1

· d · u , with ! ⌘

nX

i=1

!̂i dzi = d log(u) , (2.4)

with d =
Pn

i=i dzi , where dzi = @zidzi , and !̂i = u
�1

@ziu , using the short hand notation @zi ⌘

@/@zi. When dealing with individual integration variables, it might be convenient to consider the
decomposition of the full covariant derivative:

r! =
nX

i=1

r!i , (2.5)

with the partial covariant derivatives defined as:

r!i := r̂!idzi , and r̂!i = @zi + !̂i . (2.6)

Aomoto-Gel’fand integrals represent a wide class of special functions, such as Gauss hypergeo-
metric functions, Lauricella functions, and their generalizations, Euler-type integrals, and Feynman
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is well-behaved at infinity (if this were not true, then the whole integral I would not
converge), we can connect at infinity the m paths one can draw around the m cuts. The
resulting closed path is actually contractible in a single point; hence, only m � 1 paths are
independent (Figure 1).

Qualitatively, notice that if m is the order of the polynomial B(z1), then m � 1 is the
order of the polynomial ∂z1 B, and hence it is related to the number of zeros of ∂z1 B. Getting
back to the notation

I =
Z

C
uf , (26)

where u = Bg, it is equivalent to the number of solutions of

w = d log u = g(∂z1 B/B)dz1 = 0 , (27)

called the number of proper zeros. Equation (27) suggests a deep connection between the
number n of MIs and the number of critical points of B.Version August 26, 2021 submitted to Universe 10 of 74

Im(z)Im(z)Im(z)

Re(z)Re(z)Re(z)

Figure 1. Complex plane with m = 5 cuts (undulate blue curves). Each cut is encircled by a path going
to infinity while never crossing any cut. Dashed green lines connect at infinity the full green lines and
overall create a closed path which is clearly contractible in 0.

As shown more extensively in [53], this connection is actually much more general: given an
integral of the form (26), in which f is a holomorphic M-form and u is a multivalued function such
that u(∂C) = 0 , then the number of Master Integrals is

n = number of solutions of the system

8
>><

>>:

w1 = 0
...

wn = 0

, (28)

where

w = d log u(~z) =
n

Â
i=1

∂zi log u(~z)dzi =
n

Â
i=1

widzi. (29)

Summing up, the number n of MIs, which is the dimension of both the cohomology and homology
groups thanks to the Poincaré duality, is equivalent to the number of proper critical points of B, which
solve w = 0. We mention that n is also related to another geometrical object: the Euler characteristic c

[53][87]. It is found that is linked to c(Pw), where Pw is a projective variety defined as the set of poles
of w, through the relation [63]

n = dim Hn
±w = (�1)n (n + 1 � c(Pw)) . (30)

While we do not delve into the details of this particular result, we highlight how, once again, n relates245

the physical problem of solving a Feynman integral into a geometrical one.246

Figure 1. Complex plane with m = 5 cuts (undulating blue curves). Each cut is encircled by a path
going to infinity while never crossing any cut. Dashed green lines connect at infinity the full green
lines and overall create a closed path that is clearly contractible in 0.

As shown more extensively in [53], this connection is actually much more general:
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3 Feynman Integral Decomposition

Consider scalar Feynman integrals with L loops, E+1 external momenta, and N = LE +
1
2L(L+1) (generalised) denominators2 in a generic dimension d:

Ia1,a2,...,aN ⌘
Z LY

i=1

d
d
ki

⇡d/2

NY

j=1

1

D
aj

j

. (3.1)

where Dj stands for either a genuine denominator or an irreducible scalar product (ISP).
In Baikov representation, one changes the integration variables, from the loop momenta

ki to the denominators Dj , at the cost of introducing a Jacobian, see, e.g., [12, 83] or
Appendix A of [1]. Here we summarize the final forms of the standard and Loop-by-
Loop Baikov representations.

1. Standard Baikov Representation. In this case, after the change of variables, the
Feynman integral may be written as,

Ia1,a2,...,aN ⌘ K

Z

C
u' (3.2)

where
u = B

�
, � ⌘ (d�E�L�1)/2 (3.3)

and

' ⌘ '̂ d
Nz , '̂ ⌘ 1

z
a1
1 z

a2
2 · · · zaN

N

, d
Nz ⌘ dz1 ^ dz2 ^ · · · ^ dzN , (3.4)

and where B is the Baikov polynomial computed as a determinant of the Gram matrix of
scalar products, depending on loop momenta, and K is a constant pre-factor (independent
of the integration variables), which may depend on the external kinematic invariants
and on the dimensional regulator d. The integration contour C is defined such that B

vanishes on its boundaries.

We can re-express it, in the language of intersection theory, as a bilinear pairing,

Ia1,a2,...,aN ⌘ K h'|C]! , (3.5)

with
! ⌘ d log(u) = �d log(B). (3.6)

2. Loop-by-Loop (LBL) Baikov Representation. In this case, after the change of
variables, the the number of integration variables M can be smaller than the N (because
M �N ISPs have been integrated out). For this case, the integral have the form

Ia1,a2,...,aM ,aM+1,...,aN ⌘ K

Z

C
u' = K h'|C]! (3.7)

2N amounts to the total number of scalar products which can be built with the loop momenta ki and
the independent external momenta pj , and corresponds to the sum of the so called reducible and irreducible
scalar products. The former can be expressed in terms of the denominators of graph propagators, while the
latter are independent of them. Nevertheless, they also can be interpreted as auxiliary denominators, not
related to any internal line of the graph.
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Vector space dimension

Decomposing Forms for Decomposing Integrals

(dual) bases choices: Master Forms for Master Integrals



Four special applications:



i) Differential Equations / Pfaffian system

External Derivative

3.2 System of Differential Equations

Let us give more details about deriving systems of differential equations using intersection
numbers.

Consider the system of differential equations in x for the basis hei|,

@xhei| = ⌦ij hej | , ⌦ = ⌦(d, x), (3.39)

in general depending on the space-time dimension d and external variables x. Let us consider
the l.h.s. of eq. (3.39), after taking the derivative in x,

@xhei| = h(@x + �^)ei| ⌘ h�i| , (3.40)

where � = @x log u. Here h�i| can be decomposed in terms of hei|, by means of intersection
numbers,

h�i| = h�i|hki
�
C�1

�
kj

hej | (3.41)

= Fik

�
C�1

�
kj
hej | (3.42)

= ⌦ijhej | , (3.43)

where summation over indices j, k is implied and we introduced the intersection matrix

Fik ⌘ h�i|hki (3.44)

as well as defined the matrix ⌦ as,

⌦ ⌘ FC�1 (3.45)

appearing in the r.h.s. of eq. (3.39).
In [1], it was observed that in the case of dlog-basis defined for integrals within the

standard Baikov representation (for which u = B
�), the matrix C�1 is �-factorized, and

so it is the ⌦ matrix. Therefore the system of differential equations for the dlog-basis is
canonical [9] by construction, around the critical dimension � = 0.

Master Integrals in d dimensions correspond to integrals of the form

Ji ⌘ K Ei , with Ei ⌘ hei|C], (3.46)

where K may depend on x as well. Therefore, if,

@xhei| = ⌦ij hej | , (3.47)

then the system of differential equations for Ji reads,

@xJi = Aij Jj , (3.48)
where A ⌘ ⌦+K , with K = @x log(K) I . (3.49)
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System of DEQ for Master Forms
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numbers,

@xI = @xh'|C] = @x

Z

C
u' =

Z

C
u

✓
@xu

u
^+@x

◆
' = h(@x + �)'|C] (2.21)

3.2 System of Differential Equations

Let us give more details about deriving systems of differential equations using intersection
numbers.

Consider the system of differential equations in x for the basis hei|,

@xhei| = ⌦ij hej | , ⌦ = ⌦(d, x), (3.39)

in general depending on the space-time dimension d and external variables x. Let us consider
the l.h.s. of eq. (3.39), after taking the derivative in x,

@xhei| = h(@x + �^)ei| ⌘ h�i| , (3.40)

where � = @x log u. Here h�i| can be decomposed in terms of hei|, by means of intersection
numbers,

h�i| = h�i|hki
�
C�1

�
kj

hej | (3.41)

= Fik

�
C�1

�
kj
hej | (3.42)

= ⌦ijhej | , (3.43)

where summation over indices j, k is implied and we introduced the intersection matrix

Fik ⌘ h�i|hki (3.44)

as well as defined the matrix ⌦ as,

⌦ ⌘ FC�1 (3.45)

appearing in the r.h.s. of eq. (3.39).
In [1], it was observed that in the case of dlog-basis defined for integrals within the

standard Baikov representation (for which u = B
�), the matrix C�1 is �-factorized, and

so it is the ⌦ matrix. Therefore the system of differential equations for the dlog-basis is
canonical [9] by construction, around the critical dimension � = 0.

Master Integrals in d dimensions correspond to integrals of the form

Ji ⌘ K Ei , with Ei ⌘ hei|C], (3.46)

where K may depend on x as well. Therefore, if,

@xhei| = ⌦ij hej | , (3.47)

then the system of differential equations for Ji reads,

@xJi = Aij Jj , (3.48)
where A ⌘ ⌦+K , with K = @x log(K) I . (3.49)

– 15 –

External (connection) dLog-form

Derivative of Master Forms

rx,� ⌘ @x + �

=1

Mizera & P.M. (2018)
Frellesvig, Gasparotto, Laporta, Mandal, Mattiazzi, Mizera & P.M. (2019)

An analogous System of DEQ can be derived for dual forms:

f(z, z̄) =
AL(z, z̄)AR(z, z̄)

(1 + zz̄)2+↵L+↵R

Z
d
4
`1 �(`

2
1) �((`1 �K)

2
) AL(`1) AR(`1)

AL(t`) AR(t`)

= c2 (3.106)

I =

Z
d
d
`1 . . . d

d
`L Ii1···in (3.107)

�’s are the remainders of the polynomial divisions (modulo Gröbner bases)

The number ns of solutions of a zero dimensional system, whose polynomials generate

the ideal I(V ), with V ⇢ Cn
, corresponds to the dimension of the Quotient Ring:

ns = dim

⇣
C[z]/I(V )

⌘
= dim

⇣
C[z]/ < G >

⌘

rx,� ⌘ @x + �

u ! u
�1

=) rx,� ! rx,�� (3.108)
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∂x ⟨ei | = ⟨∇x,σ ei | = ⟨∇x,σ ei |hk⟩ (C−1)kj ⟨ej |



Generic Bases
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Special Bases 1 Decomposition

Higher-order Diff.Eq. for the i-th Master Form
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3 Feynman Integral Decomposition

Consider scalar Feynman integrals with L loops, E+1 external momenta, and N = LE +
1
2L(L+1) (generalised) denominators2 in a generic dimension d:

Ia1,a2,...,aN ⌘
Z LY

i=1

d
d
ki

⇡d/2

NY

j=1

1

D
aj

j

. (3.1)

where Dj stands for either a genuine denominator or an irreducible scalar product (ISP).
In Baikov representation, one changes the integration variables, from the loop momenta

ki to the denominators Dj , at the cost of introducing a Jacobian, see, e.g., [12, 83] or
Appendix A of [1]. Here we summarize the final forms of the standard and Loop-by-
Loop Baikov representations.

1. Standard Baikov Representation. In this case, after the change of variables, the
Feynman integral may be written as,

Ia1,a2,...,aN ⌘ K

Z

C
u' (3.2)

where
u = B

�
, � ⌘ (d�E�L�1)/2 (3.3)

and

' ⌘ '̂ d
Nz , '̂ ⌘ 1

z
a1
1 z

a2
2 · · · zaN

N

, d
Nz ⌘ dz1 ^ dz2 ^ · · · ^ dzN , (3.4)

and where B is the Baikov polynomial computed as a determinant of the Gram matrix of
scalar products, depending on loop momenta, and K is a constant pre-factor (independent
of the integration variables), which may depend on the external kinematic invariants
and on the dimensional regulator d. The integration contour C is defined such that B

vanishes on its boundaries.

We can re-express it, in the language of intersection theory, as a bilinear pairing,

Ia1,a2,...,aN ⌘ K h'|C]! , (3.5)

with
! ⌘ d log(u) = �d log(B). (3.6)

2. Loop-by-Loop (LBL) Baikov Representation. In this case, after the change of
variables, the the number of integration variables M can be smaller than the N (because
M �N ISPs have been integrated out). For this case, the integral have the form

Ia1,a2,...,aM ,aM+1,...,aN ⌘ K

Z

C
u' = K h'|C]! (3.7)

2N amounts to the total number of scalar products which can be built with the loop momenta ki and
the independent external momenta pj , and corresponds to the sum of the so called reducible and irreducible
scalar products. The former can be expressed in terms of the denominators of graph propagators, while the
latter are independent of them. Nevertheless, they also can be interpreted as auxiliary denominators, not
related to any internal line of the graph.
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Generic Bases

Special Bases 2

J[d]
i = ∫C

u ei = ⟨ei |C]

J[d + 2j]
i = ∫C

u Bj ei = ⟨Bj ei |C]

(bi,ν ≡ − 1)
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j

. (3.1)

where Dj stands for either a genuine denominator or an irreducible scalar product (ISP).
In Baikov representation, one changes the integration variables, from the loop momenta

ki to the denominators Dj , at the cost of introducing a Jacobian, see, e.g., [12, 83] or
Appendix A of [1]. Here we summarize the final forms of the standard and Loop-by-
Loop Baikov representations.
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N
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and where B is the Baikov polynomial computed as a determinant of the Gram matrix of
scalar products, depending on loop momenta, and K is a constant pre-factor (independent
of the integration variables), which may depend on the external kinematic invariants
and on the dimensional regulator d. The integration contour C is defined such that B

vanishes on its boundaries.
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2N amounts to the total number of scalar products which can be built with the loop momenta ki and
the independent external momenta pj , and corresponds to the sum of the so called reducible and irreducible
scalar products. The former can be expressed in terms of the denominators of graph propagators, while the
latter are independent of them. Nevertheless, they also can be interpreted as auxiliary denominators, not
related to any internal line of the graph.

– 10 –

5.1 Change of bases
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Decomposition

Decomposition

Generic Bases

Special Bases 2

J[d]
i = ∫C

u ei = ⟨ei |C]

J[d + 2j]
i = ∫C

u Bj ei = ⟨Bj ei |C]

(bi,ν ≡ − 1)
ν

∑
j=0

bi,j J[d+2j]
i = 0 ,
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• Integral decomposition (2). By using the master decomposition formulas of contours and
dual contours, integrals and dual integrals can be straightforwardly written as,

� = hi! |C'] =
a’
8=1

08 �
0
8 , and �̃ = [C! |i'i =

a’
8=1

0̃8 �̃
0
8 , (22)

respectively in terms the MIs � 08 = hi! |W8], and of the dual MIs �̃ 08 = [[8 |i'i, for 8 = 1, . . . , a.

In the above formulas, C and H are (a⇥a)-matrices of intersection numbers, which, in general,
di�er from the identity matrix. For intersections number of orthonormal elelements they turn
into unit matrices, hence simplifying the decomposition formulas. The Gram-Schmidt algorithm
can be employed to build orthonormal bases from generic sets of independent elements, using
the intersection numbers as scalar products. More generally the coe�cients appearing in the four
types of decomposition formulas for twisted cocycles and cycles and their duals given above are
independent of the respective dual elements. Therefore, by exploiting the freedom in choosing the
corresponding dual bases may yield striking simplifications [31, 102, 103].

Let me remark that the above discussion and the decomposition formulas defined above hold
also in the case of relative twisted de Rham theory, namely releasing the non-integer conditions for
the exponents U8 that appear in the definition of D [102–104].

2.1.2 Di�erential Equations

• Di�erential Forms. The identity resolution I2 can be used to derive the system of di�erential
equation obeyed by the master forms h48 |. In fact, let as assume that the D depends on an
external variables, say G, then

mG h48 | = h(mG + fG)48 | = h(mG + fG)48 | I2 = ⌦8 9 h4 9 | , (23)

where the entries of the matrix of the system are ⌦8 9 = h(mG + fG)48 |⌘:i (C�1): 9 , and
fG ⌘ mG log(D).
Following similar steps, the system of di�erential equations for the master dual forms |⌘8i
reads,

mG |⌘8i = | (mG � fG)⌘8i = I2 | (mG � fG)⌘8i = ⌦̃8 9 |⌘ 9i , (24)

where the entries of the matrix ⌦̃ are ⌦̃8 9 = (C�1) 9: h4: | (mG � fG)⌘8i .

• Master Integrals Since integrals are obtained by pairing forms and integration contours, the
matrices ⌦ and ⌦̃, whose entries are computed by evaluating intersection numbers, are the
matrix of the system of di�erential equations obeyed by the master integrals �8 and by the
dual master integrals �̃, respectively ,

mG �8 = ⌦8 9 � 9 , mG �̃8 = ⌦8 9 �̃ 9 . (25)

• Intersection Matrices. The systems of di�erential equations for forms and dual forms can be
used to show that the intersection matrices C and its inverse C

�1 satisfy di�erential equations,
known as secondary equations [35, 36, 105],

mGC = ⌦.C + C.⌦̃ , mGC
�1 = ⌦̃.C�1 � C

�1.⌦ , (26)
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• Di�erential Forms. The identity resolution I2 can be used to derive the system of di�erential
equation obeyed by the master forms h48 |. In fact, let as assume that the D depends on an
external variables, say G, then

mG h48 | = h(mG + fG)48 | = h(mG + fG)48 | I2 = ⌦8 9 h4 9 | , (23)

where the entries of the matrix of the system are ⌦8 9 = h(mG + fG)48 |⌘:i (C�1): 9 , and
fG ⌘ mG log(D).
Following similar steps, the system of di�erential equations for the master dual forms |⌘8i
reads,

mG |⌘8i = | (mG � fG)⌘8i = I2 | (mG � fG)⌘8i = ⌦̃8 9 |⌘ 9i , (24)

where the entries of the matrix ⌦̃ are ⌦̃8 9 = (C�1) 9: h4: | (mG � fG)⌘8i .

• Master Integrals Since integrals are obtained by pairing forms and integration contours, the
matrices ⌦ and ⌦̃, whose entries are computed by evaluating intersection numbers, are the
matrix of the system of di�erential equations obeyed by the master integrals �8 and by the
dual master integrals �̃, respectively ,

mG �8 = ⌦8 9 � 9 , mG �̃8 = ⌦8 9 �̃ 9 . (25)

• Intersection Matrices. The systems of di�erential equations for forms and dual forms can be
used to show that the intersection matrices C and its inverse C

�1 satisfy di�erential equations,
known as secondary equations [35, 36, 105],

mGC = ⌦.C + C.⌦̃ , mGC
�1 = ⌦̃.C�1 � C

�1.⌦ , (26)

7

j i

PoS(MA2019)015

From Diagrammar to Diagrammalgebra
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0
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di�er from the identity matrix. For intersections number of orthonormal elelements they turn
into unit matrices, hence simplifying the decomposition formulas. The Gram-Schmidt algorithm
can be employed to build orthonormal bases from generic sets of independent elements, using
the intersection numbers as scalar products. More generally the coe�cients appearing in the four
types of decomposition formulas for twisted cocycles and cycles and their duals given above are
independent of the respective dual elements. Therefore, by exploiting the freedom in choosing the
corresponding dual bases may yield striking simplifications [31, 102, 103].

Let me remark that the above discussion and the decomposition formulas defined above hold
also in the case of relative twisted de Rham theory, namely releasing the non-integer conditions for
the exponents U8 that appear in the definition of D [102–104].

2.1.2 Di�erential Equations

• Di�erential Forms. The identity resolution I2 can be used to derive the system of di�erential
equation obeyed by the master forms h48 |. In fact, let as assume that the D depends on an
external variables, say G, then

mG h48 | = h(mG + fG)48 | = h(mG + fG)48 | I2 = ⌦8 9 h4 9 | , (23)

where the entries of the matrix of the system are ⌦8 9 = h(mG + fG)48 |⌘:i (C�1): 9 , and
fG ⌘ mG log(D).
Following similar steps, the system of di�erential equations for the master dual forms |⌘8i
reads,

mG |⌘8i = | (mG � fG)⌘8i = I2 | (mG � fG)⌘8i = ⌦̃8 9 |⌘ 9i , (24)

where the entries of the matrix ⌦̃ are ⌦̃8 9 = (C�1) 9: h4: | (mG � fG)⌘8i .

• Master Integrals Since integrals are obtained by pairing forms and integration contours, the
matrices ⌦ and ⌦̃, whose entries are computed by evaluating intersection numbers, are the
matrix of the system of di�erential equations obeyed by the master integrals �8 and by the
dual master integrals �̃, respectively ,

mG �8 = ⌦8 9 � 9 , mG �̃8 = ⌦8 9 �̃ 9 . (25)

• Intersection Matrices. The systems of di�erential equations for forms and dual forms can be
used to show that the intersection matrices C and its inverse C

�1 satisfy di�erential equations,
known as secondary equations [35, 36, 105],

mGC = ⌦.C + C.⌦̃ , mGC
�1 = ⌦̃.C�1 � C

�1.⌦ , (26)

7

PoS(MA2019)015

From Diagrammar to Diagrammalgebra

• Integral decomposition (2). By using the master decomposition formulas of contours and
dual contours, integrals and dual integrals can be straightforwardly written as,

� = hi! |C'] =
a’
8=1

08 �
0
8 , and �̃ = [C! |i'i =

a’
8=1

0̃8 �̃
0
8 , (22)

respectively in terms the MIs � 08 = hi! |W8], and of the dual MIs �̃ 08 = [[8 |i'i, for 8 = 1, . . . , a.

In the above formulas, C and H are (a⇥a)-matrices of intersection numbers, which, in general,
di�er from the identity matrix. For intersections number of orthonormal elelements they turn
into unit matrices, hence simplifying the decomposition formulas. The Gram-Schmidt algorithm
can be employed to build orthonormal bases from generic sets of independent elements, using
the intersection numbers as scalar products. More generally the coe�cients appearing in the four
types of decomposition formulas for twisted cocycles and cycles and their duals given above are
independent of the respective dual elements. Therefore, by exploiting the freedom in choosing the
corresponding dual bases may yield striking simplifications [31, 102, 103].

Let me remark that the above discussion and the decomposition formulas defined above hold
also in the case of relative twisted de Rham theory, namely releasing the non-integer conditions for
the exponents U8 that appear in the definition of D [102–104].

2.1.2 Di�erential Equations

• Di�erential Forms. The identity resolution I2 can be used to derive the system of di�erential
equation obeyed by the master forms h48 |. In fact, let as assume that the D depends on an
external variables, say G, then

mG h48 | = h(mG + fG)48 | = h(mG + fG)48 | I2 = ⌦8 9 h4 9 | , (23)

where the entries of the matrix of the system are ⌦8 9 = h(mG + fG)48 |⌘:i (C�1): 9 , and
fG ⌘ mG log(D).
Following similar steps, the system of di�erential equations for the master dual forms |⌘8i
reads,

mG |⌘8i = | (mG � fG)⌘8i = I2 | (mG � fG)⌘8i = ⌦̃8 9 |⌘ 9i , (24)

where the entries of the matrix ⌦̃ are ⌦̃8 9 = (C�1) 9: h4: | (mG � fG)⌘8i .

• Master Integrals Since integrals are obtained by pairing forms and integration contours, the
matrices ⌦ and ⌦̃, whose entries are computed by evaluating intersection numbers, are the
matrix of the system of di�erential equations obeyed by the master integrals �8 and by the
dual master integrals �̃, respectively ,

mG �8 = ⌦8 9 � 9 , mG �̃8 = ⌦8 9 �̃ 9 . (25)

• Intersection Matrices. The systems of di�erential equations for forms and dual forms can be
used to show that the intersection matrices C and its inverse C

�1 satisfy di�erential equations,
known as secondary equations [35, 36, 105],

mGC = ⌦.C + C.⌦̃ , mGC
�1 = ⌦̃.C�1 � C

�1.⌦ , (26)

7

Weinzierl (2020)

Chestnov, Gasparotto, Munch, Matsubara-Heo, Takayama & P.M. (2022)

DEQ dual-forms

PoS(MA2019)015

From Diagrammar to Diagrammalgebra

can be determined by counting the number of critical points of B, namely a = dim(Zl) [24], or
equivalently from the Euler characterisics j(Pl) of the projective variety generated by the poles of
l, as a = (�1)= (= + 1 � j(Pl)) [33], see also [74], or by the Shape Lemma [35].

The corresponding elements, generically denoted as hi! | 2 �=
l , |i'i 2 �=

�l , [C! | 2 �=
l ,

|C'] 2 �=
�l , can be used to define four types of natural twisted Poincarè pairings:

• Integrals:

� = hi! |C'] ⌘
π
C'

D i! ; (9)

• Dual Integrals:

�̃ = [C! |i'i ⌘
π
C!

D�1 i' ; (10)

• Intersection numbers for twisted cycles (or topological intersection numbers):

[C! |C'] ; (11)

• Intersection numbers for twisted cocycles

hi! |i'i ⌘
π
"
(D i!) ^ (D�1 i') =

π
"

i! ^ i' . (12)

where i!,' are understood to have compact support on " .

2.1 Linear and Bilinear Relations

Consider the following bases generating the four spaces introduced above: {h48 |}8=1,...,a 2 �=
l

and {|⌘8i}8=1,...,a 2 �=
�l , respectively for the cohomology and for the dual cohomoloygy spaces;

as well as, {[W8 |}8=1,...,a 2 �l
= , and {|[8]}8=1,...,a 2 ��l

= , respectively for the homology and for the
dual homoloygy spaces. The bases of cocycles {h48 |}8=1,...,a 2 �=

l and {|⌘8i}8=1,...,a 2 �=
�l , can

be used to express the identity operator in the cohomology space as [27, 31],

I2 =
a’

8, 9=1

|⌘8i
⇣
C
�1
⌘
8 9
h4 9 | (13)

where we defined the metric matrix
C8 9 ⌘ h48 |⌘ 9i , (14)

whose elements are intersection numbers of the twisted basic forms. Similarly, by using the bases of
cycles {[W8 |}8=1,...,a 2 �l

= and {|[8]}8=1,...,a 2 ��l
= , the resolution of the identity in the homology

space reads as,

I⌘ =
a’

8, 9=1

|W8]
⇣
H

�1
⌘
8 9
[[ 9 | , (15)

where
H8 9 ⌘ [[8 |W 9] , (16)

is the metric matrix, in terms of intersection numbers of the basic twisted cycles.
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2. Regularized Forms

Logarithmic twisted cocycles 'L can have simple poles only at zi’s. To construct '
c
L with

compact support, we must find a cocycle in the sme cohomology class, which vanishes in a

small tubular neighborhood around each zi.

Let’s divide the space X = CP1
\ [

k
i=1{z = zi}, into regions:

where Vi and Ui are discs centered in zi with small radii 0 < ✏V < ✏U . For convenience, let

us define the annulus Di = Ui \ Vi.

We introduce the regulating function

hi = hi(z, z̄) ⌘

8
><

>:

0, on Ui

0 < hi < 1, on Di = Ui \ Vi

1, on Vi

(2.1)

and define

'
c
L ⌘ 'L �

X

zi2P!

r!(hi i) (2.2)

For notation ease, we omit the sum over the poles of !, and restore it at the end. Observe

that,

r!(hi i) = (d+ !)(hi i) =  i(dhi) + hi(d i) + hi! i =  i(dhi) + hir! i (2.3)

Therefore,

'
c
L = 'L � ( i(dhi) + hir! i) (2.4)

I↵

r! i = 'L , for z ! zi, namely on Ui \ {zi} (2.5)

then

'
c
L ⌘

8
><

>:

0, on Vi

'L � ( i(dhi) + hi'L) , on Di = Ui \ Vi

'L , on X \ Ui

(2.6)

hence '
c
L has compact support, because 'c

L = 0 on [
k
i=1Vi.

Let us consider the following two identities:

1. Since '
c
L = 'L , on X \ Ui,

Z

X\Ui

'
c
L ^ 'R = 0 (2.7)

– 2 –

Zeroes and Poles of 

Notation. In the following examples, for ease of notation, we drop the prime symbol 0,
and use directly K, u, !, ' and z to express the various quantities on the cut. Moreover,
in the univariate case where after the maximal cut the integrals are characterized by a
single ISP, we use the notation Ia1,a2,...,aN

��
m-cut ⌘ Ia1,...,am;am+1 , where am+1 is the power

of the remaining irreducible scalar product.

3.1 Intersection Numbers of One-Forms

In this section we specialize to the case when ' are 1-forms. Consider,

⌫ = {the number of solutions of ! = 0} , (3.20)

and define P as the set of poles of ! ,

P ⌘ { z | z is a pole of ! } . (3.21)

Note that P can also include the pole at infinity if Resz=1(!) 6= 0.3

Given two (univariate) 1-forms 'L and 'R, we define the intersection number as [74, 75]

h'L|'Ri! =
X

p2P
Resz=p

⇣
 p 'R

⌘
, (3.22)

where,  p is a function (0-form), solution to the differential equation r! = 'L, around p,
i.e.,

r!p p = 'L,p , (3.23)

where r! was defined in eq. (2.5) (the notation fp indicates the Laurent expansion of f
around z = p). The above equation can be also solved globally, however only a handful of
terms in the Laurent expansion around z = p are needed to evaluate the residue in (3.22).
In particular, after defining ⌧ ⌘ z � p, and the ansatz,

 p =
maxX

j=min

 
(j)
p ⌧

j +O
�
⌧
max+1

�
, (3.24)

min = ordp('L) + 1 , max = �ordp('R)� 1 , (3.25)

the differential equation in eq. (3.23) freezes all unknown coefficients  (j)
p . In other words,

the Laurent expansion of  p around each p, is determined by the Laurent expansion of 'L,R

and of !. A given point p contributes only if the condition min  max is satisfied, and the
above expansion exists only if Resz=p(!) is not a non-positive integer.

3 The number ⌫ of master integrals is equal, up to a sign, to the Euler characteristic � = �⌫ of the space
CP1

\ P, on which the forms are defined, where the number of poles in P is exactly ⌫+2, provided that
all Resz=p(!) are not non-negeative integers. See also [56, 59] for discussion of Euler characteristic in the
context of Feynman integrals. Earlier considerations on possible relations between the number of MIs and
geometric properties of differential manifolds can be found in [84, 85]
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3 Feynman Integral Decomposition

Consider scalar Feynman integrals with L loops, E+1 external momenta, and N = LE +
1
2L(L+1) (generalised) denominators2 in a generic dimension d:

Ia1,a2,...,aN ⌘
Z LY

i=1

d
d
ki

⇡d/2

NY

j=1

1

D
aj

j

. (3.1)

where Dj stands for either a genuine denominator or an irreducible scalar product (ISP).
In Baikov representation, one changes the integration variables, from the loop momenta

ki to the denominators Dj , at the cost of introducing a Jacobian, see, e.g., [12, 83] or
Appendix A of [1]. Here we summarize the final forms of the standard and Loop-by-
Loop Baikov representations.

1. Standard Baikov Representation. In this case, after the change of variables, the
Feynman integral may be written as,

Ia1,a2,...,aN ⌘ K

Z

C
u' (3.2)

where
u = B

�
, � ⌘ (d�E�L�1)/2 (3.3)

and

' ⌘ '̂ d
Nz , '̂ ⌘ 1

z
a1
1 z

a2
2 · · · zaN

N

, d
Nz ⌘ dz1 ^ dz2 ^ · · · ^ dzN , (3.4)

and where B is the Baikov polynomial computed as a determinant of the Gram matrix of
scalar products, depending on loop momenta, and K is a constant pre-factor (independent
of the integration variables), which may depend on the external kinematic invariants
and on the dimensional regulator d. The integration contour C is defined such that B

vanishes on its boundaries.

We can re-express it, in the language of intersection theory, as a bilinear pairing,

Ia1,a2,...,aN ⌘ K h'|C]! , (3.5)

with
! ⌘ d log(u) = �d log(B). (3.6)

2. Loop-by-Loop (LBL) Baikov Representation. In this case, after the change of
variables, the the number of integration variables M can be smaller than the N (because
M �N ISPs have been integrated out). For this case, the integral have the form

Ia1,a2,...,aM ,aM+1,...,aN ⌘ K

Z

C
u' = K h'|C]! (3.7)

2N amounts to the total number of scalar products which can be built with the loop momenta ki and
the independent external momenta pj , and corresponds to the sum of the so called reducible and irreducible
scalar products. The former can be expressed in terms of the denominators of graph propagators, while the
latter are independent of them. Nevertheless, they also can be interpreted as auxiliary denominators, not
related to any internal line of the graph.

– 10 –

�1 �2 �3 �4 e1 e2 e3 e4 (4.169)

P (t� t0) = e
H(t�t0)

Z
t

ti

dt P (t� ti)V (4.170)

X

FeynmanGraphs
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B(@C) = 0 (4.172)

h'L|'Ri =

Z

X

'L ^ 'R =
X
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I

�i

 i 'R (4.173)

ai = [�i|�] , [�i|�j ] = �ij (4.174)

ci = h'|eii , hei|eji = �ij (4.175)

ci = I · Ji , Ji · Jj = �ij (4.176)
X

i

Ji Ji = I⌫⇥⌫ (4.177)

P (!) = {poles of !, including 1} (4.178)
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! ⌘
du

u
= dlogu (4.167)

Z(!) = {solutions of ! = 0} = critical points of u (4.168)
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Calculus and Differential Forms

1 Introduction

Feynman integrals constitute the basic mathematical entities in computational Field Theory.
Feynman diagrams were introduced in the context of quantum interacting field theory, as
they offer a graphical representation of the solution of systems of first order differential
equations expressed in Dyson series, which can be used to describe the evolution of physical
systems controlled by Volterra-type model in several contexts, within quantum as well as
classical physics. Therefore the predictive power of a theoretical model, aiming at describing
the interactions among the elementary objects that compose the system under study (being
them as small as elementary particles or as big as black-holes) strongly depends on the
developments of mathematical methods for evaluating the Feynman integrals that occur in
the evaluation of scattering amplitudes. "Perturbation theory means Feynman diagram"
[? ]. "perturbation theory is a very useful device to discover very useful equations and
properties that may hold true even if the perturbation expansion fails" [? ].

Dimensional regularization played a crucial role in the formal mathematical developments
of gauge theories and of Feynman integrals. Exploiting the analytic continuation in the
space-time dimensions d of the interacting fields, it is possible to modify the number of
integration variables in order to stabilize otherwise ill-defined (mathematically non existing)
integrals emerging in the evaluation of quantities which ultimately have to be compared
with numbers coming from (physically existing) experiments.

Feynman integrals, within the dimensional regularization scheme, obey contiguity
relations known as integration-by-parts (IBP) identities [], which play a crucial role in the
evaluation of scattering amplitudes beyond the tree-level approximation. IBP identities
yield the identification of an elementary set of integrals, the so-called master integrals (MIs),
which can be used as a basis for the decomposition of multi-loop amplitudes. At the same
time, IBP relations can be used to derive differential equations [], finite difference equations
[], and dimensional recurrence relations [] obeyed by MIs. The solutions of those equations
are valuable methods for the evaluation of MIs, as alternatives to their direct integration.

In [? ], Feynman integrals have been classified as Aomoto-Gel’fand integrals, and it
has been proposed to study that their algebraic properties within the intersection theory
for twisted deRham co-homology, which is a branch of differential geometry and algebraic
topology focusing on hypergeometric integrals and their generalisation []. Later studies []
have enhanced and completed the basic ideas proposed earlier, demonstrating the existence
of a vector space structure for Feynman integrals controlled by intersection numbers.

2 Intersection Numbers for 1-forms

Consider the wedge product of two closed forms '1 ^ '2, and assume it can be written as
d⌦. Then, their intersection number can be computed via Stokes’ theorem.

Z

X
'1 ^ '2 =

Z

X
d⌦ =

Z

@X
⌦ . (2.1)

Indeed, if we introduce the potential  1, such that

d 1 = '1 (2.2)
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then, we can define

⌦ ⌘  1 '2 . (2.3)

In fact, d⌦ = d 1^'2+ 1 d'2 = '1^'2+0, as we need (the second term vanishes because
of the closure).
Finally, if the integration boundary @X contains poles, then the integration along the
boundary @X can be substituted by a sum of contour integrals around each pole, and the
intersection number can be evaluated by Cauchy’s residue theorem, yielding

Z

X
'1 ^ '2 =

X

p2Poles
Resz=p

⇣
⌦
⌘
. (2.4)

For Aomoto-Gel’Fand/Feynman integrals, we need to consider the twisted (and dual-
twisted) forms

'1 ⌘ u'L , '2 ⌘ u�1 'R . (2.5)

In this case, to look for the the potential that obeys eq. (2.2), we choose a solution written
as,

 1 ⌘ u L , (2.6)

(namely, explicitly factoring u), so that the differential equation d 1 = '1 becomes,

d(u L) = u'L (2.7)
(du) L + u d L = u'L (2.8)

ur! L = u'L (2.9)
r! L = 'L . (2.10)

where we introduced the covariant derivative

r! ⌘ d+ !^ , with ! ⌘ d log u . (2.11)

Equation (2.10) is the differential equation proposed by Matsumoto. Therefore one has,

⌦ =  1 '2 = u L u�1 'R =  L 'R (2.12)

and
Z

X
(u'L) ^ (u�1'R) =

Z

X
'L ^ 'R =

X

p2Poles
Resz=p

⇣
 L 'R

⌘
. (2.13)
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Intersection Numbers for 1-forms
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ai = [�i|�] , [�i|�j ] = �ij (4.180)

ci = h'|eii , hei|eji = �ij (4.181)

ci = I · Ji , Ji · Jj = �ij (4.182)
X

i

Ji Ji = I⌫⇥⌫ (4.183)

⌫ = number of critical points 2 Z(!) (4.184)

P (!) = {poles of !, including 1} (4.185)

X = C� P (!) (4.186)
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2. Regularized Forms

Logarithmic twisted cocycles 'L can have simple poles only at zi’s. To construct '
c
L with

compact support, we must find a cocycle in the sme cohomology class, which vanishes in a

small tubular neighborhood around each zi.

Let’s divide the space X = CP1
\ [

k
i=1{z = zi}, into regions:

where Vi and Ui are discs centered in zi with small radii 0 < ✏V < ✏U . For convenience, let

us define the annulus Di = Ui \ Vi.

We introduce the regulating function

hi = hi(z, z̄) ⌘

8
><

>:

0, on Ui

0 < hi < 1, on Di = Ui \ Vi

1, on Vi

(2.1)

and define

'
c
L ⌘ 'L �

X

zi2P!

r!(hi i) (2.2)

For notation ease, we omit the sum over the poles of !, and restore it at the end. Observe

that,

r!(hi i) = (d+ !)(hi i) =  i(dhi) + hi(d i) + hi! i =  i(dhi) + hir! i (2.3)

Therefore,

'
c
L = 'L � ( i(dhi) + hir! i) (2.4)

I↵

r! i = 'L , for z ! zi, namely on Ui \ {zi} (2.5)

then

'
c
L ⌘

8
><

>:

0, on Vi

'L � ( i(dhi) + hi'L) , on Di = Ui \ Vi

'L , on X \ Ui

(2.6)

hence '
c
L has compact support, because 'c

L = 0 on [
k
i=1Vi.

Let us consider the following two identities:

1. Since '
c
L = 'L , on X \ Ui,

Z

X\Ui

'
c
L ^ 'R = 0 (2.7)
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Zeroes and Poles of 

Notation. In the following examples, for ease of notation, we drop the prime symbol 0,
and use directly K, u, !, ' and z to express the various quantities on the cut. Moreover,
in the univariate case where after the maximal cut the integrals are characterized by a
single ISP, we use the notation Ia1,a2,...,aN

��
m-cut ⌘ Ia1,...,am;am+1 , where am+1 is the power

of the remaining irreducible scalar product.

3.1 Intersection Numbers of One-Forms

In this section we specialize to the case when ' are 1-forms. Consider,

⌫ = {the number of solutions of ! = 0} , (3.20)

and define P as the set of poles of ! ,

P ⌘ { z | z is a pole of ! } . (3.21)

Note that P can also include the pole at infinity if Resz=1(!) 6= 0.3

Given two (univariate) 1-forms 'L and 'R, we define the intersection number as [74, 75]

h'L|'Ri! =
X

p2P
Resz=p

⇣
 p 'R

⌘
, (3.22)

where,  p is a function (0-form), solution to the differential equation r! = 'L, around p,
i.e.,

r!p p = 'L,p , (3.23)

where r! was defined in eq. (2.5) (the notation fp indicates the Laurent expansion of f
around z = p). The above equation can be also solved globally, however only a handful of
terms in the Laurent expansion around z = p are needed to evaluate the residue in (3.22).
In particular, after defining ⌧ ⌘ z � p, and the ansatz,

 p =
maxX

j=min

 
(j)
p ⌧

j +O
�
⌧
max+1

�
, (3.24)

min = ordp('L) + 1 , max = �ordp('R)� 1 , (3.25)

the differential equation in eq. (3.23) freezes all unknown coefficients  (j)
p . In other words,

the Laurent expansion of  p around each p, is determined by the Laurent expansion of 'L,R

and of !. A given point p contributes only if the condition min  max is satisfied, and the
above expansion exists only if Resz=p(!) is not a non-positive integer.

3 The number ⌫ of master integrals is equal, up to a sign, to the Euler characteristic � = �⌫ of the space
CP1

\ P, on which the forms are defined, where the number of poles in P is exactly ⌫+2, provided that
all Resz=p(!) are not non-negeative integers. See also [56, 59] for discussion of Euler characteristic in the
context of Feynman integrals. Earlier considerations on possible relations between the number of MIs and
geometric properties of differential manifolds can be found in [84, 85]
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3 Feynman Integral Decomposition

Consider scalar Feynman integrals with L loops, E+1 external momenta, and N = LE +
1
2L(L+1) (generalised) denominators2 in a generic dimension d:

Ia1,a2,...,aN ⌘
Z LY

i=1

d
d
ki

⇡d/2

NY

j=1

1

D
aj

j

. (3.1)

where Dj stands for either a genuine denominator or an irreducible scalar product (ISP).
In Baikov representation, one changes the integration variables, from the loop momenta

ki to the denominators Dj , at the cost of introducing a Jacobian, see, e.g., [12, 83] or
Appendix A of [1]. Here we summarize the final forms of the standard and Loop-by-
Loop Baikov representations.

1. Standard Baikov Representation. In this case, after the change of variables, the
Feynman integral may be written as,

Ia1,a2,...,aN ⌘ K

Z

C
u' (3.2)

where
u = B

�
, � ⌘ (d�E�L�1)/2 (3.3)

and

' ⌘ '̂ d
Nz , '̂ ⌘ 1

z
a1
1 z

a2
2 · · · zaN

N

, d
Nz ⌘ dz1 ^ dz2 ^ · · · ^ dzN , (3.4)

and where B is the Baikov polynomial computed as a determinant of the Gram matrix of
scalar products, depending on loop momenta, and K is a constant pre-factor (independent
of the integration variables), which may depend on the external kinematic invariants
and on the dimensional regulator d. The integration contour C is defined such that B

vanishes on its boundaries.

We can re-express it, in the language of intersection theory, as a bilinear pairing,

Ia1,a2,...,aN ⌘ K h'|C]! , (3.5)

with
! ⌘ d log(u) = �d log(B). (3.6)

2. Loop-by-Loop (LBL) Baikov Representation. In this case, after the change of
variables, the the number of integration variables M can be smaller than the N (because
M �N ISPs have been integrated out). For this case, the integral have the form

Ia1,a2,...,aM ,aM+1,...,aN ⌘ K

Z

C
u' = K h'|C]! (3.7)

2N amounts to the total number of scalar products which can be built with the loop momenta ki and
the independent external momenta pj , and corresponds to the sum of the so called reducible and irreducible
scalar products. The former can be expressed in terms of the denominators of graph propagators, while the
latter are independent of them. Nevertheless, they also can be interpreted as auxiliary denominators, not
related to any internal line of the graph.
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Calculus and Differential Forms

1 Introduction

Feynman integrals constitute the basic mathematical entities in computational Field Theory.
Feynman diagrams were introduced in the context of quantum interacting field theory, as
they offer a graphical representation of the solution of systems of first order differential
equations expressed in Dyson series, which can be used to describe the evolution of physical
systems controlled by Volterra-type model in several contexts, within quantum as well as
classical physics. Therefore the predictive power of a theoretical model, aiming at describing
the interactions among the elementary objects that compose the system under study (being
them as small as elementary particles or as big as black-holes) strongly depends on the
developments of mathematical methods for evaluating the Feynman integrals that occur in
the evaluation of scattering amplitudes. "Perturbation theory means Feynman diagram"
[? ]. "perturbation theory is a very useful device to discover very useful equations and
properties that may hold true even if the perturbation expansion fails" [? ].

Dimensional regularization played a crucial role in the formal mathematical developments
of gauge theories and of Feynman integrals. Exploiting the analytic continuation in the
space-time dimensions d of the interacting fields, it is possible to modify the number of
integration variables in order to stabilize otherwise ill-defined (mathematically non existing)
integrals emerging in the evaluation of quantities which ultimately have to be compared
with numbers coming from (physically existing) experiments.

Feynman integrals, within the dimensional regularization scheme, obey contiguity
relations known as integration-by-parts (IBP) identities [], which play a crucial role in the
evaluation of scattering amplitudes beyond the tree-level approximation. IBP identities
yield the identification of an elementary set of integrals, the so-called master integrals (MIs),
which can be used as a basis for the decomposition of multi-loop amplitudes. At the same
time, IBP relations can be used to derive differential equations [], finite difference equations
[], and dimensional recurrence relations [] obeyed by MIs. The solutions of those equations
are valuable methods for the evaluation of MIs, as alternatives to their direct integration.

In [? ], Feynman integrals have been classified as Aomoto-Gel’fand integrals, and it
has been proposed to study that their algebraic properties within the intersection theory
for twisted deRham co-homology, which is a branch of differential geometry and algebraic
topology focusing on hypergeometric integrals and their generalisation []. Later studies []
have enhanced and completed the basic ideas proposed earlier, demonstrating the existence
of a vector space structure for Feynman integrals controlled by intersection numbers.

2 Intersection Numbers for 1-forms

Consider the wedge product of two closed forms '1 ^ '2, and assume it can be written as
d⌦. Then, their intersection number can be computed via Stokes’ theorem.

Z

X
'1 ^ '2 =

Z

X
d⌦ =

Z

@X
⌦ . (2.1)

Indeed, if we introduce the potential  1, such that

d 1 = '1 (2.2)
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then, we can define

⌦ ⌘  1 '2 . (2.3)

In fact, d⌦ = d 1^'2+ 1 d'2 = '1^'2+0, as we need (the second term vanishes because
of the closure).
Finally, if the integration boundary @X contains poles, then the integration along the
boundary @X can be substituted by a sum of contour integrals around each pole, and the
intersection number can be evaluated by Cauchy’s residue theorem, yielding

Z

X
'1 ^ '2 =

X

p2Poles
Resz=p

⇣
⌦
⌘
. (2.4)

For Aomoto-Gel’Fand/Feynman integrals, we need to consider the twisted (and dual-
twisted) forms

'1 ⌘ u'L , '2 ⌘ u�1 'R . (2.5)

In this case, to look for the the potential that obeys eq. (2.2), we choose a solution written
as,

 1 ⌘ u L , (2.6)

(namely, explicitly factoring u), so that the differential equation d 1 = '1 becomes,

d(u L) = u'L (2.7)
(du) L + u d L = u'L (2.8)

ur! L = u'L (2.9)
r! L = 'L . (2.10)

where we introduced the covariant derivative

r! ⌘ d+ !^ , with ! ⌘ d log u . (2.11)

Equation (2.10) is the differential equation proposed by Matsumoto. Therefore one has,

⌦ =  1 '2 = u L u�1 'R =  L 'R (2.12)

and
Z

X
(u'L) ^ (u�1'R) =

Z

X
'L ^ 'R =

X

p2Poles
Resz=p

⇣
 L 'R

⌘
. (2.13)
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Fibrations: decompositions’ tower



(n-1)-form Vector Space: known!

3

space, and a one-dimensional subspace with zn, dubbed
outer space. The aim is to express the original intersection
number nh'

(n)
L |'

(n)
R i in terms of one-dimensional residues

on the outer space and intersection numbers n�1h. . . | . . .i

on the inner space, which are assumed to be known at
this stage. The choice of the variables (and their ordering)
parametrizing the inner and outer spaces is arbitrary: in
the following, we use the generic notation m ⌘ (12 . . .m)
to denote the variables taking part in a specific computa-
tion.

Thus, the original n-forms can be decomposed accord-
ing to

h'
(n)
L | =

⌫n�1X

i=1

he
(n�1)
i | ^ h'

(n)
L,i | , (12)

|'
(n)
R i =

⌫n�1X

i=1

|h
(n�1)
i i ^ |'

(n)
R,ii , (13)

where ⌫n�1 is the number of master integrals on the
inner space with arbitrary bases he

(n�1)
i |, |h(n�1)

j i and
the metric matrix

�
C(n�1)

�
ij
⌘ n�1he

(n�1)
i |h

(n�1)
j i . (14)

In the above expressions h'
(n)
L,i | and |'

(n)
R,ji are dzn-forms

treated as coefficients of the basis expansion. They can be
obtained by a projection similar to eq. (8), for example:

|'
(n)
R,ii =

�
C�1

(n�1)

�
ij n�1he

(n�1)
j |'

(n)
R i , (15)

where from now on we use the implicit sum notation for re-
peated indices. The recursive formula for the intersection
number reads

nh'
(n)
L |'

(n)
R i=�

X

p2Pn

Res
zn=p

⇣
n�1h'

(n)
L |h

(n�1)
i i 

(n)
i

⌘
, (16)

where functions  (n)
i are solutions of the system of differ-

ential equations

@zn 
(n)
i � ⌦̂(n)

ij  
(n)
j = '̂

(n)
R,i , (17)

where h'
(n)
R,i| = '̂

(n)
R,idzn from eq. (15). The ⌫n�1⇥⌫n�1

matrix ⌦̂(n) given by

⌦̂(n)
ij = �

�
C�1

(n�1)

�
ik n�1he

(n�1)
k |(@zn�!̂n)h

(n�1)
j i, (18)

and finally Pn is the set of poles of ⌦̂(n) given by the
union of the poles of its entries (including possible poles
at infinity).

We observe that the solution of eq. (17) around zn=p

can be formally written in terms of a path-ordered matrix
exponential

~ 
(n)=

✓Z zn

p
~'
(n)
R (y)Pe

�
R y
p ⌦(n)(w)

◆⇣
Pe

R zn
p ⌦(n)(w)

⌘
(19)

for a vector ~ (n) with entries  (n)
i . Nevertheless for its

use in eq. (16), it is sufficient to know only a few leading
orders of ~ 

(n) around each p 2 Pn. Therefore, it is
easier to find the solution of the system eq. (17) by a
holomorphic Laurent series expansion, using an ansatz for
each component  (n)

i , see [8, 10]. Such a solution exists if
the matrix Reszn=p ⌦(n) does not have any non-negative
integer eigenvalues, which we assume from now on.

The recursion terminates when n=1, in which case the
inner space is trivial: ⌫0 = he

(0)
1 | = |h

(0)
1 i = 1, and we

impose the initial conditions

⌦̂(1)
11 = !̂1 , 0h'

(1)
L |h

(0)
1 i = '

(n)
L , '

(1)
R,1 = '

(n)
R . (20)

In this case eqs. (16,17) reduce to a computation of uni-
variate intersection numbers [9, 12] previously studied
in [8, 10]. Plugging everything together, eq. (16) can be
expressed as

nh'
(n)
L |'

(n)
R i =(�1)n

X

pn2Pn

· · ·

X
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Res
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· · · Res
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· · · 
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, (21)

where the ranges of summations are im = 1, . . . , ⌫m and
each  (m)

im�1im
for m = 1, . . . ,n�1 is the solution of

@zm 
(m)
im�1im

� ⌦̂(m)
im�1jm�1
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jm�1im
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(m)
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, (22)

for all im with |h
(m)
im�1im

i = ĥ
(m)
im�1im

dzm coming from the
projection:

|h
(m)
im

i = |h
(m�1)
im�1

i ^ |h
(m)
im�1im

i , (23)

which is known a priori, because the bases of all inner
spaces are arbitrarily chosen. The matrices ⌦̂(m) needed
in eq. (22) are computed analogously to eq. (18). Notice
that all  (m) entering eq. (21) need to be computed only
once for a given family of integrals.

The multivariate intersection number given in eqs. (16,
21) is the key formula used in this letter. Paired with the
master decomposition formula eq. (8), the above recursion
for intersection numbers yields an expansion of multi-fold
integrals of the form in eqs. (1,4) in terms of MIs.

HYPERGEOMETRIC FUNCTION 3F2

In order to illustrate application of the above algorithm
we start with a more familiar case of contiguity relation for
the hypergeometric function 3F2. Consider the function
H, defined as,

H
�a1a2a3

b1b2 ;x
�
⌘ �(a1, b1�a1)�(a2, b2�a2)3F2

�a1a2a3
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�

=

Z

C
u d

2z = h1(12)|C] , (24)
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for a vector ~ (n) with entries  (n)
i . Nevertheless for its

use in eq. (16), it is sufficient to know only a few leading
orders of ~ 

(n) around each p 2 Pn. Therefore, it is
easier to find the solution of the system eq. (17) by a
holomorphic Laurent series expansion, using an ansatz for
each component  (n)

i , see [8, 10]. Such a solution exists if
the matrix Reszn=p ⌦(n) does not have any non-negative
integer eigenvalues, which we assume from now on.
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inner space is trivial: ⌫0 = he
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In this case eqs. (16,17) reduce to a computation of uni-
variate intersection numbers [9, 12] previously studied
in [8, 10]. Plugging everything together, eq. (16) can be
expressed as
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(m)
im�1im

dzm coming from the
projection:

|h
(m)
im

i = |h
(m�1)
im�1

i ^ |h
(m)
im�1im

i , (23)

which is known a priori, because the bases of all inner
spaces are arbitrarily chosen. The matrices ⌦̂(m) needed
in eq. (22) are computed analogously to eq. (18). Notice
that all  (m) entering eq. (21) need to be computed only
once for a given family of integrals.

The multivariate intersection number given in eqs. (16,
21) is the key formula used in this letter. Paired with the
master decomposition formula eq. (8), the above recursion
for intersection numbers yields an expansion of multi-fold
integrals of the form in eqs. (1,4) in terms of MIs.

HYPERGEOMETRIC FUNCTION 3F2

In order to illustrate application of the above algorithm
we start with a more familiar case of contiguity relation for
the hypergeometric function 3F2. Consider the function
H, defined as,
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holomorphic Laurent series expansion, using an ansatz for
each component  (n)
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which is known a priori, because the bases of all inner
spaces are arbitrarily chosen. The matrices ⌦̂(m) needed
in eq. (22) are computed analogously to eq. (18). Notice
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for a vector ~ (n) with entries  (n)
i . Nevertheless for its

use in eq. (16), it is sufficient to know only a few leading
orders of ~ 

(n) around each p 2 Pn. Therefore, it is
easier to find the solution of the system eq. (17) by a
holomorphic Laurent series expansion, using an ansatz for
each component  (n)

i , see [8, 10]. Such a solution exists if
the matrix Reszn=p ⌦(n) does not have any non-negative
integer eigenvalues, which we assume from now on.
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In this case eqs. (16,17) reduce to a computation of uni-
variate intersection numbers [9, 12] previously studied
in [8, 10]. Plugging everything together, eq. (16) can be
expressed as
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which is known a priori, because the bases of all inner
spaces are arbitrarily chosen. The matrices ⌦̂(m) needed
in eq. (22) are computed analogously to eq. (18). Notice
that all  (m) entering eq. (21) need to be computed only
once for a given family of integrals.

The multivariate intersection number given in eqs. (16,
21) is the key formula used in this letter. Paired with the
master decomposition formula eq. (8), the above recursion
for intersection numbers yields an expansion of multi-fold
integrals of the form in eqs. (1,4) in terms of MIs.
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where h'
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and finally Pn is the set of poles of ⌦̂(n) given by the
union of the poles of its entries (including possible poles
at infinity).

We observe that the solution of eq. (17) around zn=p

can be formally written in terms of a path-ordered matrix
exponential
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for a vector ~ (n) with entries  (n)
i . Nevertheless for its

use in eq. (16), it is sufficient to know only a few leading
orders of ~ 

(n) around each p 2 Pn. Therefore, it is
easier to find the solution of the system eq. (17) by a
holomorphic Laurent series expansion, using an ansatz for
each component  (n)

i , see [8, 10]. Such a solution exists if
the matrix Reszn=p ⌦(n) does not have any non-negative
integer eigenvalues, which we assume from now on.

The recursion terminates when n=1, in which case the
inner space is trivial: ⌫0 = he

(0)
1 | = |h
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1 i = 1, and we

impose the initial conditions
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In this case eqs. (16,17) reduce to a computation of uni-
variate intersection numbers [9, 12] previously studied
in [8, 10]. Plugging everything together, eq. (16) can be
expressed as
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where the ranges of summations are im = 1, . . . , ⌫m and
each  (m)
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for all im with |h
(m)
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dzm coming from the
projection:

|h
(m)
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(m�1)
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(m)
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i , (23)

which is known a priori, because the bases of all inner
spaces are arbitrarily chosen. The matrices ⌦̂(m) needed
in eq. (22) are computed analogously to eq. (18). Notice
that all  (m) entering eq. (21) need to be computed only
once for a given family of integrals.

The multivariate intersection number given in eqs. (16,
21) is the key formula used in this letter. Paired with the
master decomposition formula eq. (8), the above recursion
for intersection numbers yields an expansion of multi-fold
integrals of the form in eqs. (1,4) in terms of MIs.

HYPERGEOMETRIC FUNCTION 3F2

In order to illustrate application of the above algorithm
we start with a more familiar case of contiguity relation for
the hypergeometric function 3F2. Consider the function
H, defined as,

H
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Intersection Numbers for n-forms :: Recursive Formula
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following, we use the generic notation m ⌘ (12 . . .m) to denote the variables taking part in
a specific computation.

Thus, the original n-forms can be decomposed according to
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where ⌫n�1 is the number of master integrals on the inner space with arbitrary bases he(n�1)
i |,

|h(n�1)
j i. In the above expressions h'(n)

L,i | and |'(n)
R,ji are one-forms in the variables zn, and

they treated as coefficients of the basis expansion.
They can be obtained by a projection similar to eq. (2.17), namely (sum over repeated is
understood)
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We stress again that, the (n�1)-variable intersection numbers are assumed to be known at
this stage. The recursive formula for the intersection number reads
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where the set of functions  (n)
i is the solution of the system of differential equations
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and '̂L,i are obtained through eq. (3.34).
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(n) is a ⌫n�1 ⇥ ⌫n�1 matrix, whose entries are given by
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and finally Pn is the set of poles of ⌦̂(n) defined as the union of the poles of its entries
(including a possible pole at infinity).

We observe that the solution of eq. (3.38) around zn=p can be formally written in terms
of a path-ordered matrix exponential
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[...]

di↵erential N-form

If h'L| and h'R| are dLog n-forms (hence contain only simple poles)
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space, and a one-dimensional subspace with zn, dubbed
outer space. The aim is to express the original intersection
number nh'

(n)
L |'

(n)
R i in terms of one-dimensional residues

on the outer space and intersection numbers n�1h. . . | . . .i

on the inner space, which are assumed to be known at
this stage. The choice of the variables (and their ordering)
parametrizing the inner and outer spaces is arbitrary: in
the following, we use the generic notation m ⌘ (12 . . .m)
to denote the variables taking part in a specific computa-
tion.

Thus, the original n-forms can be decomposed accord-
ing to
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In the above expressions h'
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L,i | and |'
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treated as coefficients of the basis expansion. They can be
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where from now on we use the implicit sum notation for re-
peated indices. The recursive formula for the intersection
number reads
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and finally Pn is the set of poles of ⌦̂(n) given by the
union of the poles of its entries (including possible poles
at infinity).
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use in eq. (16), it is sufficient to know only a few leading
orders of ~ 
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holomorphic Laurent series expansion, using an ansatz for
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In this case eqs. (16,17) reduce to a computation of uni-
variate intersection numbers [9, 12] previously studied
in [8, 10]. Plugging everything together, eq. (16) can be
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where the ranges of summations are im = 1, . . . , ⌫m and
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which is known a priori, because the bases of all inner
spaces are arbitrarily chosen. The matrices ⌦̂(m) needed
in eq. (22) are computed analogously to eq. (18). Notice
that all  (m) entering eq. (21) need to be computed only
once for a given family of integrals.

The multivariate intersection number given in eqs. (16,
21) is the key formula used in this letter. Paired with the
master decomposition formula eq. (8), the above recursion
for intersection numbers yields an expansion of multi-fold
integrals of the form in eqs. (1,4) in terms of MIs.

HYPERGEOMETRIC FUNCTION 3F2

In order to illustrate application of the above algorithm
we start with a more familiar case of contiguity relation for
the hypergeometric function 3F2. Consider the function
H, defined as,
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3.3 Intersection numbers for m-log forms

Intersection numbers for multivariate logarithmic forms were considered in [6]. Alternative
formulas for a more direct calculations were later presented in [21]. In particular

h'L,'Ri =
X

(z⇤1 ,...,z
⇤
n)

det�1

2

64

@!1
@z1

. . . @!1
@zn... . . . ...

@!n
@z1

. . . @!n
@zn

3

75 b'L b'R

�����
(z1,...,zn)=(z⇤1 ,...z

⇤
n)

(3.67)

where the sum is extend over the critical points, namely the solutions of the system of
equations:

!i = 0, i = 1, . . . n. (3.68)

The intersection number h'L|'Ri introduced above obeys an important property, which is
relevant for the decomposition of Feynman integrals, namely the invariance under differential
forms redefinition within the same equivalence classes,

h'L|'Ri = h'0
L|'

0
Ri , (3.69)

where

'0
L = 'L +r!⇠L , (3.70)

'0
R = 'R +r�!⇠R . (3.71)

As observed in ref. [16], one can properly choose ⇠L and ⇠R, to build differential forms
'0
L and '0

R that contain only simple poles, hence simplifying the evaluation of the recursive
algorithm for the computation of multivariate intesection number, which can benefit of the
evaluation of intersection numbers for dlog forms at each step of the iteration.

We will use the invariance of the intersection number under redefinition of differential
forms within the same equivalence classes to propose a novel strategy for the decomposion
of Feynman integrals.

4 Feynman Integral Decomposition

As proposed in refs. [1–3, 15, 16], the use of multivariate intersection numbers yields a direct
decomposition of a given Feynman integral I in terms of an a priori chosen set of MIs Ji,
with i = 1, . . . , ⌫.
The decomposition given by eq. (2.13) is on the form

I =
⌫X

i=1

ciJi (4.1)

with the determination of the coefficients ci being the goal of this section. We identify three

possible strategies which can be adopted in order to achieve this task. They all employ
the master projection formula eq. (2.17), which is applied to differential forms constucted
differently in the the three cases. We name them the straight decomposition, the bottom-up
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[...]

di↵erential N-form

If h'L| and h'R| are dLog n-forms (hence contain only simple poles)
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and if ⌦̂(n) is reduced to Fuchsian form
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Multi-pole ansatz Fontana Peraro (2023)

Frellesvig, Gasparotto, Mandal, Mattiazzi, Mizera & P.M. (2019) 

Ohara (1998) Mizera (2019)

Solving                            , bypassing the pole factorisation, and using FF reconstruction methods. 
(avoiding irrational functions which would disappear in the intersection numbers) 

Special dual basis choice CaronHuot Pokraka (2019-2021)

Relative Dirac-delta basis elements trivialise the evaluation of  the intersection numbers
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Given two (univariate) 1-forms ϕL and ϕR, we define the intersection number as [77, 78]

⟨ϕL|ϕR⟩ω =
∑

p∈P
Resz=p

(
ψp ϕR

)
, (3.22)

where, ψp is a function (0-form), solution to the differential equation ∇ωψ = ϕL, around

p, i.e.,

∇ωpψp = ϕL,p , (3.23)

where ∇ω was defined in eq. (2.5) (the notation fp indicates the Laurent expansion of f

around z = p). The above equation can be also solved globally, however only a handful of

terms in the Laurent expansion around z = p are needed to evaluate the residue in (3.22).

In particular, after defining τ ≡ z − p, and the ansatz,

ψp =
max∑

j=min

ψ(j)
p τ j +O

(
τmax+1

)
, (3.24)

min = ordp(ϕL) + 1 , max = −ordp(ϕR)− 1 , (3.25)

the differential equation in eq. (3.23) freezes all unknown coefficients ψ(j)
p . In other words,

the Laurent expansion of ψp around each p, is determined by the Laurent expansion of

ϕL,R and of ω. A given point p contributes only if the condition min ≤ max is satisfied,

and the above expansion exists only if Resz=p(ω) is not a non-positive integer.

Symmetry properties. Intersection numbers of one-forms have the following symmetry

property under the exchange of ϕL and ϕR,

⟨ϕL|ϕR⟩ω = −⟨ϕR|ϕL⟩−ω , (3.26)

Notice that on the r.h.s. the intersection number is evaluated with respect to the form −ω
(instead of ω).

Logarithmic forms. When both ϕL and ϕR are logarithmic, meaning that ordp(ϕL/R) ≥
−1 for all points p ∈ P , then the formula (3.22) simplifies to

⟨ϕL|ϕR⟩ω =
∑

p∈P

Resz=p(ϕL) Resz=p(ϕR)

Resz=p(ω)
. (3.27)

Note that in this case the intersection number becomes symmetric in ϕL and ϕR, i.e.,

⟨ϕL|ϕR⟩ω = ⟨ϕR|ϕL⟩ω , (3.28)

while (3.26) still holds.

Vector space metric, integral decomposition and master integrals. Following the

discussion in section 2, consider an ν-dimensional vector space, and its dual space, whose

basis are respectively represented as, ⟨ei| and |hi⟩ with i = 1, 2, . . . , ν. We use intersection

numbers to define a metric on this space

Cij ≡ ⟨ei|hj⟩ , (3.29)

– 13 –

Intersection Numbers for n-forms (I)
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Let us, as an example, derive the reduction of the function corresponding to φ4 = z3 dz.

This results in the reduction

F1(a+3, b1, b2, c+3;x, y) =
(c+ 2)

(a+ 1)(a+ 2)xy(c+ 2− b1 − b2)
×

×
(
(1+a)

(
(1−b2+c)y + x(1+c+ (2+a−b2)y − b1(1+y))

)
F1(a+2, b1, b2, c+2;x, y)

− (c+ 1)
(
c+ (1 + a− b1)x+ (1 + a− b2)y

)
F1(a+1, b1, b2, c+1;x, y)

+ c(c+ 1)F1(a, b1, b2, c;x, y)

)
, (4.75)

an example of a contiguity relations for Appell F1. The relation has been checked numeri-

cally using Mathematica.

4.4 Lauricella FD function

Finally, let us comment on the Lauricella FD function [95–97], which in general depends
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which admit a 1-form integral representation on the maximal cut. In particular, we show

how to build integral relations analogous to the integration-by-parts identities, directly

generated by projections, using the master decomposition formula in eq. (3.30). For some
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for the master integrals.
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available literature.
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Intersection Numbers for 1-forms (II)

and by identifying � = B(z). The rational function f(z) is equivalent to the product of two polynomials
n(z) and d̃(z):

bf(z)cB =

�
n(z)

d(z)

⌫

B
= bn(z) d̃(z)cB . (3.7)

Here, d̃(z) is the multiplicative inverse of the denominator d(z) modulo B, defined as

d̃(z) d(z) = 1 mod B , (3.8)

which can be determined3 either by ansatz, or, equivalently, by using the Extended Euclidean Algorithm
(see Appendix A for details).

Global residue

Let us consider again the function f(z) as in eq. (3.4). To compute the global residue of f(z) over
some polynomial B(z), which is the sum of the local residues evaluated at the zeroes of B(z), we may
expand the function f(z) around B as in eq. (3.6), and then use the global residue theorem (see [71]
for review) to obtain:

X

p2PB

Resz=p(f(z)) =: ReshBi(f(z)) =
f�1,�1

`c
, (3.9)

where PB , `c , and  are the set of zeroes, the leading coe�cient, and the degree of B(z) respectively.

3.2 Intersection numbers for 1-forms and polynomial division

The polynomial decomposition technique introduced in the previous section can be applied to the
computation of intersection numbers. We consider first the univariate case. To compute the global
residue we choose the degree  polynomial ideal generator

B(z) := LCM
�
P!,fin

�
(3.10)

constructed via the least common multiple LCM of the finite poles of ! introduced in eq. (2.13). The
sum over the contributions to the intersection number (2.16) stemming from the finite poles can be
obtained as the global residue over the zeroes of B, namely

h'L|'Ri = �ReshBi
�
g
�
� Resz=1

�
g
�
, (3.11)

where  R satisfies (2.14), and g is defined as:

g =  R 'L . (3.12)

The global residue can be computed via the polynomial division in the following way:

1. Compute the series expansions of 'L , 'R , and ! around B(z) = 0, given by b'LcB , b'RcB ,
and b!cB respectively, each having the form shown in eq. (3.6).

2. Build the ansatz

 R =
maxX

i=min

�1X

j=0

 R,ij z
j �i , (3.13)

with unknown coe�cients  R,ij , and compute bgcB to extract g�1,�1 which depends on  R,ij .

3The �-shift in definition (3.2) ensures that eq. (3.8) always has a solution in C[z]/hBi.
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B
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X X

) upon identifying � = B(z). R =
maxX

i=min
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 R,ij z
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Fontana Peraro (2023)Polynomial Division

 Simultaneous Residue at all zeros of B, hence avoiding algebraic extension and explicit polynomial factorisation 

X X

where  and `c are the degree and the leading coe�cient of B(

Series expansion by polynomial division modulo

In the following we will represent the di�erential equation system (2.21, 2.40) as a linear
operator TÒ acting on the space (3.5)

TÒ�‚ · Â
(m) ≠ ‚Ï‚(m) = 0 . (3.6)

This formulation allows the solution to be obtained with linear algebra methods.

3.1.1 Polynomial companion matrices

For the ideal generated by a monic7 degree Ÿ polynomial

ÈBÍ © ÈB(z) ≠ —Í = Èb0 ≠ — + z b1 + . . . + z
Ÿ≠1

bŸ≠1 + z
ŸÍ , (3.7)

we choose as a basis of the quotient ring the list of monomials shown in eq. (3.3). The
companion matrix representation for the basic monomial multiplication and di�erentiation
operators read

Qz :=

0 ≠b0 + —

1 0 ≠b1
1 0 ≠b2

1 0 ≠bŸ≠2
1 ≠bŸ≠1

S

WWWWWWWWWWWWU

T

XXXXXXXXXXXXV

Ÿ

Ÿ

Qˆz :=

0 1
0 2

0 3

Ÿ ≠ 1
0

S

WWWWWWWWWWWWU

T

XXXXXXXXXXXXV

Ÿ

Ÿ

(3.8)

where we explicitly showed the 0 entries on the main diagonal for the reader’s convenience.

3.1.2 Series companion matrices

To operate on Laurent series expansions in the — variable, we employ the infinite matrix
representation of the Weyl algebra composed of the two operators

L— :=

S

WWWWWWWWWWWWWWWWU

≠1æ 1 0
0æ 1 0
1æ 1 0
2æ 1 0

T

XXXXXXXXXXXXXXXXV

Lˆ—
:=

S

WWWWWWWWWWWWWWWWU

≠1æ 0 0
0æ 0 1
1æ 0 2
2æ 0 3

T

XXXXXXXXXXXXXXXXV

(3.9)

In practice, however, only a finite number of the ansätze coe�cients (2.23, 2.42) con-
tribute to a given intersection number, suggesting that the infinite matrix representation (3.9)
should be somehow restricted so that the matrices become finite.

7
Here we normalized the BŸ coe�cient to 1 to avoid clutter in the subsequent formulae.
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Delta-bases Caron-Huot and Pokraka (2021)

4 Relative Twisted Cohomology

In this section, we extend our framework to relative twisted cohomology [50]. We recall the definition
of delta-forms introduced in [48, 49] and show how, at least in the case of 1-forms, they emerge
naturally when considering the series expansion of intersection numbers in limit of evanescent regulator
parameter.

4.1 Relative twisted cohomology and univariate delta-forms

We might consider what happens if we relax the criterion of eq. (2.1), requiring that all poles of 'L and
'R are regulated by u. In such a case, if the point z = p is non regulated, a local holomorphic solution
 p,L of the di↵erential equation (2.14) may not exist, therefore invalidating the algorithm of Sections
2 and 3 for computing the intersection numbers. Relative twisted cohomology [50] o↵ers the proper
mathematical framework to address such cases, where the contribution of the non-regulated poles to
the intersection numbers is e�ciently evaluated through the use of n-forms built with Dirac delta
functions [48–50]. These forms play an essential role when used in the evaluation of the decomposition
coe�cients eq. (2.8) where they are chosen as elements of the dual bases. We will refer to them as
delta-forms in the rest of this work.

Let us first discuss the univariate case. If z is unregulated at point z = 0 (which we pick without loss
of generality), the corresponding delta-form is defined as

�z :=
u(z)

u(0)
d✓z,0 , (4.1)

where ✓z,0 is defined in eq. (2.13). That this is a valid right-form can be shown by the fact that it is
closed:

r�!�z =
du

u(0)
d✓z,0 +

u

u(0)
d2✓z,0 �

du

u

u

u(0)
d✓z,0 = 0 . (4.2)

For delta-forms, the ◆-regulation of eq. (2.11) is not needed and the intersection pairing can be defined
directly. In the univariate, case we may derive

h'L | �zi :=
�1

2⇡i

Z

X
'L ^ �z = Resz=0

✓
u(z)

u(0)
'L

◆
, (4.3)

in agreement with [48–50]. We will discuss the multivariate analogue in Section 4.3.

4.2 From cohomology to relative cohomology

By focusing our analysis to the case of 1-forms, we show that the formula of the intersection number in
ordinary twisted cohomology, when expressed as Laurent series for a vanishing regulator, contains the
intersection numbers for relative twisted cohomology. This relation allow us to establish, an explicit,
direct link between the results of [15, 16] and [48–50], on the one hand, and [51], on the other one.

 in the vanishing regulator limit

Let us consider the intersection number between two forms h'L | 'Ri with a twist u, where u does
not have a branch point at z = 0. If there exists the possibility that 'L or 'R have a pole at z = 0
then, following [15, 16], a generic analytic regulator ⇢ must be introduced, modifying the twist to
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u(z)

u(0)
d✓z,0 , h'L | �zi :=

�1

2⇡i

Z

X
'L ^ �z = Resz=0

✓
u(z)

u(0)
'L

◆

Ordinary Cohomology vs Relative Cohomology

In the above formula, h'L | 'Ri|⇢=0 is equivalent to the intersection number h'L |'Ri evaluated using
u as twist, instead of u⇢.

Equivalence to delta-forms
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to solve the di↵erential equation (2.14) around the pole z = 0; moreover, the idea of substituting
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From Diagrammar to Diagrammalgebra

The identity resolutions I2 and I⌘ can be derived purely algebraically, as in [27, 31]; also,
in the context of di�erential topology, the bilinear Riemann relations for periods of holomorphic
di�erentials, see f.i. [44], can be suitably expressed in order to identify I⌘ (for non twisted-forms),
as shown later.

Linear and bilinear relations for Aomoto-Gel’fand-Feynman integrals, as well as the di�erential
equations and the finite di�erence equation they obey are a consequence of the purely algebraic
application of the identity operators defined above [27].

In the context of Feynman integrals calculus, the decomposition of scattering amplitudes in
terms of MIs, as well as the equations obeyd by the latter, are derived by means of IBPs [69] and of
the Laporta method [70]. In the following, we show how these relations emerge by employing the
algebraic properties of twisted cycles and co-cycles.

2.1.1 Linear Relations

• Decomposition of di�erential forms. Generic twisted cocycles and dual twisted cocycles
can be projected onto the bases in the correspsonding vector spaces as,

hi! | = hi! |I2 =
a’
8=1

28 h48 | , with 28 =
a’
9=1

hi! |⌘ 9i
⇣
C
�1
⌘
98

; (17)

|i'i = I2 |i'i =
a’
8=1

2̃8 |⌘8i , with 2̃8 =
a’
9=1

⇣
C
�1
⌘
8 9

h4 9 |i'i . (18)

The latter two formulas, dubbed master decomposition formulas for (dual) twisted cocycles
[27, 31], imply that the decomposition of any (dual) Aomoto-Gel’fand-Feynman integral can
be expressed as linear combination of (dual) master integrals is an algebraic operation, similar
to the decomposition/projection of any vector within a vector space, which can be carried out
by computing intersection numbers of twisted de Rham di�erential forms.

• Integral decomposition (1). By using the master decomposition formulas of forms and dual
forms, integrals and dual integrals can be straightforwardly written as,

� = hi! |C'] =
a’
8=1

28 �8 , and �̃ = [C! |i'i =
a’
8=1

2̃8 �̃8 , (19)

respectively in terms the MIs �8 = h48 |C'], and of the dual MIs �̃8 = [C! |⌘8i, for 8 = 1, . . . , a.

• Decomposition of integration contours. Equivalently, using the resolution of the identity in
the homology space. twisted cycles and dual twisted cycles can be projected onto the bases
in the corresponding vector spaces as,

|C'] = I⌘ |C'] =
’
8

08 |W8] , with 08 =
a’
9=1

⇣
H

�1
⌘
8 9
[[ 9 |C'] , (20)

[C! | = [C! | I⌘ =
’
8

0̃8 [[8 | , with 0̃8 =
a’
8=1

[C! |W 9]
⇣
H

�1
⌘
98

(21)

The latter two formulas are dubbed master decomposition formulas for (dual) twisted cycles,
and may lead to alternative decomposition of integrals and dual integrals.
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Master Decomposition Formula
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can be determined by counting the number of critical points of B, namely a = dim(Zl) [24], or
equivalently from the Euler characterisics j(Pl) of the projective variety generated by the poles of
l, as a = (�1)= (= + 1 � j(Pl)) [33], see also [74], or by the Shape Lemma [35].

The corresponding elements, generically denoted as hi! | 2 �=
l , |i'i 2 �=

�l , [C! | 2 �=
l ,

|C'] 2 �=
�l , can be used to define four types of natural twisted Poincarè pairings:

• Integrals:

� = hi! |C'] ⌘
π
C'

D i! ; (9)

• Dual Integrals:

�̃ = [C! |i'i ⌘
π
C!

D�1 i' ; (10)

• Intersection numbers for twisted cycles (or topological intersection numbers):

[C! |C'] ; (11)

• Intersection numbers for twisted cocycles

hi! |i'i ⌘
π
"
(D i!) ^ (D�1 i') =

π
"

i! ^ i' . (12)

where i!,' are understood to have compact support on " .

2.1 Linear and Bilinear Relations

Consider the following bases generating the four spaces introduced above: {h48 |}8=1,...,a 2 �=
l

and {|⌘8i}8=1,...,a 2 �=
�l , respectively for the cohomology and for the dual cohomoloygy spaces;

as well as, {[W8 |}8=1,...,a 2 �l
= , and {|[8]}8=1,...,a 2 ��l

= , respectively for the homology and for the
dual homoloygy spaces. The bases of cocycles {h48 |}8=1,...,a 2 �=

l and {|⌘8i}8=1,...,a 2 �=
�l , can

be used to express the identity operator in the cohomology space as [27, 31],

I2 =
a’

8, 9=1

|⌘8i
⇣
C
�1
⌘
8 9
h4 9 | (13)

where we defined the metric matrix
C8 9 ⌘ h48 |⌘ 9i , (14)

whose elements are intersection numbers of the twisted basic forms. Similarly, by using the bases of
cycles {[W8 |}8=1,...,a 2 �l

= and {|[8]}8=1,...,a 2 ��l
= , the resolution of the identity in the homology

space reads as,

I⌘ =
a’

8, 9=1

|W8]
⇣
H

�1
⌘
8 9
[[ 9 | , (15)

where
H8 9 ⌘ [[8 |W 9] , (16)

is the metric matrix, in terms of intersection numbers of the basic twisted cycles.
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Due to the form of G({xi}), the Baikov polynomial b(z) is always quadratic in all z variables.
Thus, all one-loop Feynman integrals will be associated to quadratic twists. This property
allows for the results presented in sections 3 and 4 to be immediately applied to one-loop
Feynman integrals.

3 Diagonal basis prescription

Our new prescription to generate diagonal C-matrices for many one-loop Feynman Integrals
is a simple extension to the algorithm presented in [49, section 4.4]. To this end we review
this algorithm first, before building upon it in section 3.2. In section 3.3 we showcase the
algorithm on three distinct examples in detail. Beyond these, many more examples can
be found in section 5.

3.1 Standard basis generation prescription

Our starting point is a twist, obtained from the Baikov polynomials bi(z) of a Feynman
integral family, and a set of n propagators z = {z1 · · · zn}. Our goal is to find a valid basis of
MIs for this integral family. In the language of relative cohomology intersection numbers,
this condition translates to finding a basis such that the C-matrix is invertible.

To this end, consider a (sub)-sector S of our integral family, which we represent as a
set containing the propagators present in the sector

S ⊆ {z1 · · · zn} . (3.1)

To count how many master integrals are inside S, we construct the “regulated” twist and
its respective ω form

u(z) = b(z)γ , uρ(z) =
⎛

⎝
∏

zi∈S
zρi
i

⎞

⎠u(z) , ωρ(z) = d log(uρ(z)) . (3.2)

The number of solutions to the equation ωρ(z) = 0, denoted as νS , is the number of master
integrals present in the sector S [19, 21, 49]. One repeats this procedure for all sectors and
subsectors to obtain a full basis with the correct number of master integrals in each sector.
The end of this procedure is a basis ẽ. We construct its dual basis counterpart by replacing
inverse powers of the variables {z1 · · · zn} with delta forms, namely

h̃ = ẽ|(zizj ··· )−1→ δzizj ···
. (3.3)

For an example of this algorithm in practice, see [49, appendix B]. It is worth noting that these
choices of ẽ and h̃ already produce a block triangular C-matrix. This is due to the multivariate
residue operation vanishing in eq. (2.28) if there are more residues of variables than poles.

3.2 Diagonal basis generation prescription

We now turn to the new part of this work, namely a prescription for taking ẽ and h̃ and
turning them into a new basis e and h which produces a diagonal C-matrix. The process is a
very simple extension of the algorithm presented above, and is valid for b(z) quadratic.
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Figure 9. One-loop Massive Hexagon with external momenta p1, p2, p3, p4, p5, p6 and propagators
z1, z2, z3, z4, z5, z6.

5.7.2 Cut {z4, z6}

On this cut, the diagonal basis is given by

e =
{
1, 1

bz2
,

1
z1z2

,
1

z1z3
,

1
z1z5

,
1

z2z3
,

1
z2z5

,
1

z3z5
,

1
z1z2z3

,
1

z1z2z5
,

1
z1z3z5

,
1

z2z3z5
,

1
z1z2z3z5

}
,

h =
{ 1
b3
,
δ2
b3
,
δ12
b2

,
δ13
b2

,
δ15
b2

,
δ23
b2

,
δ25
b2

,
δ35
b2

,
δ123
b

,
δ125
b

,
δ135
b

,
δ235
b

, δ1235

}
.

(5.25)

5.7.3 Cut {z3, z6}

On this cut, the diagonal basis is given by

e =
{
1, 1

z1z2
,

1
z1z4

,
1

z1z5
,

1
z2z4

,
1

z2z5
,

1
z4z5

,
1

z1z2z4
,

1
z1z2z5

,
1

z1z4z5
,

1
z2z4z5

,
1

z1z2z4z5

}
,

h =
{ 1
b3
,
δ12
b2

,
δ14
b2

,
δ15
b2

,
δ24
b2

,
δ25
b2

,
δ45
b2

,
δ124
b

,
δ125
b

,
δ145
b

,
δ245
b

, δ1245

}
.

(5.26)

5.8 Massive hexagon

The massive hexagon is shown in figure 9
The propagators are

z1= ℓ2−m2
2 , z2=(ℓ−p1)2−m2

2 , z3=(ℓ−p1−p2)2−m2
2 ,

z4=(ℓ−p1−p2−p3)2−m2
2 , z5=(ℓ−p1−p2−p3−p4)2−m2

2 ,

z6=(ℓ−p1−p2−p3−p4−p5)2−m2
2 .

(5.27)

The kinematics are

p2i = m2
1 , sij = (pi + pj)2 ,

∑

0<i<j<6
sij = 15m2

1 . (5.28)

The spanning set of cuts up to symmetry relations is

{z6} . (5.29)
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Figure 10. Two-loop Massive Sunrise with external momenta p1, p2 and propagators z1, z2, z3.

5.8.1 Cut {z6}

On this cut, the diagonal basis is given by

e =
{
1, 1

z1
,
1
z2

,
1
z3

,
1
z4

,
1
z5

,
1

z1z2
,

1
z1z3

,
1

z1z4
,

1
z1z5

,
1

z2z3
,

1
z2z4

,
1

z2z5
,

1
z3z4

,
1

z3z5
,

1
z4z5

,

1
z1z2z3

,
1

z1z2z4
,

1
z1z2z5

,
1

z1z3z4
,

1
z1z3z5

,
1

z1z4z5
,

1
z2z3z4

,
1

z2z3z5
,

1
z2z4z5

,
1

z3z4z5
,

1
z1z2z3z4

,
1

z1z2z3z5
,

1
z1z2z4z5

,
1

z1z3z4z5
,

1
z2z3z4z5

,
1

z1z2z3z4z5

}
.

h =
{ 1
b5
,
δ1
b4
,
δ2
b4
,
δ3
b4
,
δ4
b4
,
δ5
b4
,
δ12
b3

,
δ13
b3

,
δ14
b3

,
δ15
b3

,
δ23
b3

,
δ24
b3

,
δ25
b3

,
δ34
b3

,
δ35
b3

,
δ45
b3

,

δ123
b2

,
δ124
b2

,
δ125
b2

,
δ134
b2

,
δ135
b2

,
δ145
b2

,
δ234
b2

,
δ235
b2

,
δ245
b2

,
δ345
b2

,

δ1234
b

,
δ1235
b

,
δ1245
b

,
δ1345
b

,
δ2345
b

, δ12345

}
.

(5.30)

5.9 Two-loop example: elliptic sunrise
The elliptic sunrise is shown in figure 10

The propagators are

z1 = ℓ22 − m2
2, z2 = (ℓ1 − ℓ2)2 − m2

2, z3 = (ℓ1 + p1)2 − m2
2, z4 = ℓ21, z5 = (ℓ2 + p1)2 .

(5.31)
The kinematics are p2i = m2

1. Our basis choice is

e =
{ 1
z1z2

,
1

z1z3
,

1
z2z3

,
1

z1z22z3
,

1
z1z2z23

,
1

z1z2z3

}

h =
{
δ12
b2

,
δ13
b2

,
δ23
b2

,
∂z2δ123

b
,
∂z3δ123

b
,
δ123
b

}
.

(5.32)

where we use the “derivative” of the delta form as defined in eq. (2.26). The C-matrix is
block diagonal and is given by

C =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

64
(d−2)3 0 0 0 0 0
0 64

(d−2)3 0 0 0 0
0 0 64

(d−2)3 0 0 0
0 0 0 − 2

m2 0 8
3d−10

0 0 0 0 − 4
m2

8
3d−10

0 0 0 − 8
3d−8 − 8

3d−8
16(3m2+s)

(3d−10)(3d−8)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.33)
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z3

,
1
z4

,
1
z5

,
1

z1z2
,

1
z1z3

,
1

z1z4
,
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,
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z2z5
,

1
z3z4
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,
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z4z5
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1
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,
1

z1z2z4
,

1
z1z2z5

,
1

z1z3z4
,

1
z1z3z5

,
1

z1z4z5
,

1
z2z3z4

,
1

z2z3z5
,

1
z2z4z5

,
1

z3z4z5
,

1
z1z2z3z4

,
1

z1z2z3z5
,

1
z1z2z4z5

,
1

z1z3z4z5
,

1
z2z3z4z5

,
1

z1z2z3z4z5

}
.

h =
{ 1
b5
,
δ1
b4
,
δ2
b4
,
δ3
b4
,
δ4
b4
,
δ5
b4
,
δ12
b3

,
δ13
b3

,
δ14
b3

,
δ15
b3

,
δ23
b3

,
δ24
b3

,
δ25
b3

,
δ34
b3

,
δ35
b3

,
δ45
b3

,

δ123
b2

,
δ124
b2

,
δ125
b2

,
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,
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,
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,
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,
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The elliptic sunrise is shown in figure 10

The propagators are
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2, z2 = (ℓ1 − ℓ2)2 − m2

2, z3 = (ℓ1 + p1)2 − m2
2, z4 = ℓ21, z5 = (ℓ2 + p1)2 .

(5.31)
The kinematics are p2i = m2

1. Our basis choice is

e =
{ 1
z1z2

,
1

z1z3
,

1
z2z3

,
1

z1z22z3
,

1
z1z2z23

,
1

z1z2z3

}

h =
{
δ12
b2

,
δ13
b2

,
δ23
b2

,
∂z2δ123

b
,
∂z3δ123

b
,
δ123
b

}
.

(5.32)

where we use the “derivative” of the delta form as defined in eq. (2.26). The C-matrix is
block diagonal and is given by

C =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

64
(d−2)3 0 0 0 0 0
0 64

(d−2)3 0 0 0 0
0 0 64

(d−2)3 0 0 0
0 0 0 − 2

m2 0 8
3d−10

0 0 0 0 − 4
m2

8
3d−10

0 0 0 − 8
3d−8 − 8

3d−8
16(3m2+s)

(3d−10)(3d−8)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.33)
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On this cut, the diagonal basis is given by
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,

1
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,
1

z2z3
,

1
z2z4
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1

z2z5
,

1
z3z4

,
1

z3z5
,

1
z4z5

,

1
z1z2z3

,
1

z1z2z4
,

1
z1z2z5

,
1

z1z3z4
,

1
z1z3z5

,
1

z1z4z5
,

1
z2z3z4

,
1

z2z3z5
,

1
z2z4z5

,
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,
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,
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,
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b3

,
δ13
b3

,
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b3

,
δ15
b3

,
δ23
b3
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,
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5.9 Two-loop example: elliptic sunrise
The elliptic sunrise is shown in figure 10

The propagators are

z1 = ℓ22 − m2
2, z2 = (ℓ1 − ℓ2)2 − m2
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The kinematics are p2i = m2

1. Our basis choice is

e =
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where we use the “derivative” of the delta form as defined in eq. (2.26). The C-matrix is
block diagonal and is given by
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8
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⎞
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5.9 Two-loop example: elliptic sunrise
The elliptic sunrise is shown in figure 10

The propagators are

z1 = ℓ22 − m2
2, z2 = (ℓ1 − ℓ2)2 − m2

2, z3 = (ℓ1 + p1)2 − m2
2, z4 = ℓ21, z5 = (ℓ2 + p1)2 .

(5.31)
The kinematics are p2i = m2

1. Our basis choice is
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where we use the “derivative” of the delta form as defined in eq. (2.26). The C-matrix is
block diagonal and is given by

C =
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Figure 10. Two-loop Massive Sunrise with external momenta p1, p2 and propagators z1, z2, z3.
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5.9 Two-loop example: elliptic sunrise
The elliptic sunrise is shown in figure 10

The propagators are
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where we use the “derivative” of the delta form as defined in eq. (2.26). The C-matrix is
block diagonal and is given by
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5.9 Two-loop example: elliptic sunrise
The elliptic sunrise is shown in figure 10

The propagators are
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where we use the “derivative” of the delta form as defined in eq. (2.26). The C-matrix is
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5.9 Two-loop example: elliptic sunrise
The elliptic sunrise is shown in figure 10

The propagators are
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where we use the “derivative” of the delta form as defined in eq. (2.26). The C-matrix is
block diagonal and is given by
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Figure 5: The 12 master integrals for the planar double box integral family, before imposing symmetry
relations. The index i, next to the propagators, indicates the corresponding zi variable; Num stands
for the numerator factor; s, t, and u channels are indicated, to distinguish among graphs with identical
shape, but corresponding to di↵erent integrals.

5.2 Planar double-box

The integral family of the planar double-box is given in terms of

z1 = k21 , z2 = (k1�p1)
2, z3 = (k1�p1�p2)

2, z4 = (k2�p1�p2)
2, z5 = (k2+p4)

2,

z6 = k22 , z7 = (k1�k2)
2, z8 = (k1+p4)

2, z9 = (k2�p1)
2, (5.24)

where z8 and z9 are irreducible scalar products, hence they may only appear in the numerator. The
kinematics is such that:

p2i = 0 , s = (p1+p2)
2 , t = (p1+p4)

2 , s+ t+ u = 0 . (5.25)

This integral family has (before application of the symmetry relations) 12 master integrals, which we
may pick as depicted in Figure 5. We are interested in decomposing the target integral:

I =

Z
dz u(z)

z28
z1z2z3z4z5z6z7

(5.26)

in terms of master integrals via a complete set of spanning cuts, as:

I =
12X

i=1

ci Ji . (5.27)

The explicit expressions for the twist u(z) as well as the master integrals Ji can be found in the
ancillary file Dbox massless.m.

The set of spanning cuts is given by the maximal cuts of the first six master integrals {J1, . . . , J6},
and we will now go through them one by one.

Cut 147, maximal cut of J1

Setting z1 = z4 = z7 = 0, and choosing as order of variables, from outer to inner:

{z3, z8, z2, z6, z5, z9} (5.28)
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we get as dimensions for the various layers:

⌫(9) = 1 , ⌫(59) = 2 , ⌫(659) = 2 , ⌫(2659) = 4 , ⌫(82659) = 5 , ⌫(382659) = 4 . (5.29)

We pick as bases:

e(9) = {1} , e(59) =
n
1, 1

z5

o
, e(659) =

n
1, 1

z5z6

o
,

e(2659) =
n
1, 1

z2
, 1
z5z6

, 1
z2z5z6

o
, e(82659) =

n
1, 1

z5
, 1
z2z5

, 1
z2z5z6

, z8
z2z5z6

,
o

.

e = e(382659) =
n
1, 1

z2z5
, 1
z2z3z5z6

, z8
z2z3z5z6

o
. (5.30)

and as corresponding dual ones:

h(9) = {1} , h(59) = {1, �5} , h(659) = {1, �56} ,

h(2659) = {1, �2, �56, �256} , h(82659) = {1, �5, �25, �256, z8�256} ,

h = h(382659) = {1, �25, �2356, z8�2356} . (5.31)

We can then decompose the target left form: ' = z2
8

z2z3z5z6
in terms of the outer basis, where we omit

the superscripts for simplicity, obtaining:

h'|C] = c1he1|C] + c7he2|C] + c11he3|C] + c12he4|C] . (5.32)

Cut 367, maximal cut of J2

Setting z3 = z6 = z7 = 0, and choosing as order of variables, from outer to inner:

{z1, z8, z2, z5, z4, z9} (5.33)

we get as dimensions for the various layers:

⌫(9) = 1 , ⌫(49) = 2 , ⌫(549) = 2 , ⌫(2549) = 4 , ⌫(82549) = 5 , ⌫(182549) = 4 . (5.34)

We pick as bases:

e(9) = {1} , e(49) =
n
1, 1

z4

o
, e(549) =

n
1, 1

z4z5

o
,

e(2549) =
n
1, 1

z2
, 1
z4z5

, 1
z2z4z5

o
, e(82549) =

n
1, 1

z5
, 1
z2z5

, 1
z2z4z5

, z8
z2z4z5

o
,

e = e(182549) =
n
1, 1

z2z5
, 1
z1z2z4z5

, z8
z1z2z4z5

o
. (5.35)

and as corresponding dual ones:

h(9) = {1} , h(49) = {1, �4} , h(549) = {1, �45} ,

h(2549) = {1, �2, �45, �245} , h(82549) = {1, �5, �25, �245, z8�245} ,

h = h(182549) = {1, �25, �1245, z8�1245} . (5.36)

We can then decompose the target left form: ' = z2
8

z1z2z4z5
in terms of the outer basis, where we omit

the superscripts for simplicity, obtaining:

h'|C] = c2he1|C] + c8he2|C] + c11he3|C] + c12he4|C] . (5.37)
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Figure 5: The 12 master integrals for the planar double box integral family, before imposing symmetry
relations. The index i, next to the propagators, indicates the corresponding zi variable; Num stands
for the numerator factor; s, t, and u channels are indicated, to distinguish among graphs with identical
shape, but corresponding to di↵erent integrals.

5.2 Planar double-box

The integral family of the planar double-box is given in terms of

z1 = k21 , z2 = (k1�p1)
2, z3 = (k1�p1�p2)

2, z4 = (k2�p1�p2)
2, z5 = (k2+p4)

2,

z6 = k22 , z7 = (k1�k2)
2, z8 = (k1+p4)

2, z9 = (k2�p1)
2, (5.24)

where z8 and z9 are irreducible scalar products, hence they may only appear in the numerator. The
kinematics is such that:

p2i = 0 , s = (p1+p2)
2 , t = (p1+p4)

2 , s+ t+ u = 0 . (5.25)

This integral family has (before application of the symmetry relations) 12 master integrals, which we
may pick as depicted in Figure 5. We are interested in decomposing the target integral:

I =

Z
dz u(z)

z28
z1z2z3z4z5z6z7

(5.26)

in terms of master integrals via a complete set of spanning cuts, as:

I =
12X

i=1

ci Ji . (5.27)

The explicit expressions for the twist u(z) as well as the master integrals Ji can be found in the
ancillary file Dbox massless.m.

The set of spanning cuts is given by the maximal cuts of the first six master integrals {J1, . . . , J6},
and we will now go through them one by one.

Cut 147, maximal cut of J1

Setting z1 = z4 = z7 = 0, and choosing as order of variables, from outer to inner:

{z3, z8, z2, z6, z5, z9} (5.28)
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=

intersection numbers of (up to) 6-forms (instead of 9-forms)

Brunello, Chestnov, Crisanti, Frellesvig, Gasparotto, Mandal & P.M. 
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=

intersection numbers of (up to) 6-forms (instead of 9-forms)

we get as dimensions for the various layers:

⌫(9) = 1 , ⌫(59) = 2 , ⌫(659) = 2 , ⌫(2659) = 4 , ⌫(82659) = 5 , ⌫(382659) = 4 . (5.29)

We pick as bases:

e(9) = {1} , e(59) =
n
1, 1

z5

o
, e(659) =

n
1, 1

z5z6

o
,

e(2659) =
n
1, 1

z2
, 1
z5z6

, 1
z2z5z6

o
, e(82659) =

n
1, 1

z5
, 1
z2z5

, 1
z2z5z6

, z8
z2z5z6

,
o

.

e = e(382659) =
n
1, 1

z2z5
, 1
z2z3z5z6

, z8
z2z3z5z6

o
. (5.30)

and as corresponding dual ones:

h(9) = {1} , h(59) = {1, �5} , h(659) = {1, �56} ,

h(2659) = {1, �2, �56, �256} , h(82659) = {1, �5, �25, �256, z8�256} ,

h = h(382659) = {1, �25, �2356, z8�2356} . (5.31)

We can then decompose the target left form: ' = z2
8

z2z3z5z6
in terms of the outer basis, where we omit

the superscripts for simplicity, obtaining:

h'|C] = c1he1|C] + c7he2|C] + c11he3|C] + c12he4|C] . (5.32)

Cut 367, maximal cut of J2

Setting z3 = z6 = z7 = 0, and choosing as order of variables, from outer to inner:

{z1, z8, z2, z5, z4, z9} (5.33)

we get as dimensions for the various layers:

⌫(9) = 1 , ⌫(49) = 2 , ⌫(549) = 2 , ⌫(2549) = 4 , ⌫(82549) = 5 , ⌫(182549) = 4 . (5.34)

We pick as bases:

e(9) = {1} , e(49) =
n
1, 1

z4

o
, e(549) =

n
1, 1

z4z5

o
,

e(2549) =
n
1, 1

z2
, 1
z4z5

, 1
z2z4z5

o
, e(82549) =

n
1, 1

z5
, 1
z2z5

, 1
z2z4z5

, z8
z2z4z5

o
,

e = e(182549) =
n
1, 1

z2z5
, 1
z1z2z4z5

, z8
z1z2z4z5

o
. (5.35)

and as corresponding dual ones:

h(9) = {1} , h(49) = {1, �4} , h(549) = {1, �45} ,

h(2549) = {1, �2, �45, �245} , h(82549) = {1, �5, �25, �245, z8�245} ,

h = h(182549) = {1, �25, �1245, z8�1245} . (5.36)

We can then decompose the target left form: ' = z2
8

z1z2z4z5
in terms of the outer basis, where we omit

the superscripts for simplicity, obtaining:

h'|C] = c2he1|C] + c8he2|C] + c11he3|C] + c12he4|C] . (5.37)
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…

and as corresponding dual ones:

h(9) = {1} , h(79) = {1, �7} , h(579) = {1, �57} ,

h(2579) = {1, �2, �57, �257} ,

h =h(82579) = {1, �257, z8�257} .
(5.46)

We can then decompose the target left form: ' = z2
8

z2z5z7
in terms of the outer basis, where we omit

the superscripts for simplicity, obtaining:

h'|C] = c4he1|C] + c11he2|C] + c12he3|C] . (5.47)

Cut 1357, maximal cut of J5

Setting z1 = z3 = z5 = z7 = 0, and choosing as order of variables, from outer to inner:

{z8, z2, z4, z6, z9} (5.48)

we get as dimensions for the various layers:

⌫(9) = 1 , ⌫(69) = 2 , ⌫(469) = 2 , ⌫(2469) = 4 , ⌫(82469) = 4 . (5.49)

We pick as bases:

e(9) = {1} , e(69) =
n
1, 1

z6

o
, e(469) =

n
1, 1

z4z6

o
,

e(2469) =
n
1, 1

z2
, 1
z4z6

, 1
z2z4z6

o
,

e =e(82469) =
n
1, 1

z2
, 1
z2z4z6

, z8
z2z5z6

o
,

(5.50)

and as corresponding dual ones:

h(9) = {1} , h(69) = {1, �6} , h(469) = {1, �46} ,

h(2469) = {1, �2, �46, �246} ,

h =h(82469) = {1, �2, �246, z8�246} .
(5.51)

We can then decompose the target left form: ' = z2
8

z2z4z6
in terms of the outer basis, where we omit

the superscripts for simplicity, obtaining:

h'|C] = c5he1|C] + c9he2|C] + c11he3|C] + c12he4|C] . (5.52)

Cut 2467, maximal cut of J6

Setting z2 = z4 = z6 = z7 = 0, and choosing as order of variables, from outer to inner:

{z9, z1, z3, z5, z8} (5.53)

we get as dimensions for the various layers:

⌫(8) = 1 , ⌫(58) = 2 , ⌫(358) = 4 , ⌫(1358) = 4 , ⌫(91358) = 4 . (5.54)
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We pick as bases bases:

e(8) = {1} , e(58) =
n
1, 1

z5

o
, e(358) =

n
1, 1

z3
, 1
z5
, 1
z3z5

o
,

e(1358) =
n
1, 1

z5
, 1
z1z3

, 1
z1z3z5

o
,

e =e(91358) =
n
1, 1

z5
, 1
z1z3z5

, z8
z1z3z5

o
,

(5.55)

and as corresponding dual ones:

h(8) = {1} , h(58) = {1, �5} , h(358) = {1, �3, �5, �35} ,

h(1358) = {1, �5, �13, �135} ,

h =h(91358) = {1, �5, �135, z8�135} .
(5.56)

We can then decompose the target left form: ' = z2
8

z1z3z5
in terms of the outer basis, where we omit

the superscripts for simplicity, obtaining:

h'|C] = c6he1|C] + c10he2|C] + c11he3|C] + c12he4|C] . (5.57)

Cut merging and symmetries

From the analysis on the complete spanning cuts, one is able to get the coe�cients of the decomposition,
obtaining:

c1 = c2 =
(3d� 10)(3d� 8)(s+ 2t)

(d� 4)2(d� 3)s3
, c3 =

9(3d� 10)(3d� 8)

(d� 4)2st
,

c4 =
2(2ds+ 2dt� 7s� 8t)

(d� 4)s2
, c5 =

9(3d� 10)

2(d� 4)s
, c6 =

(3d� 10)(2s� t)

(d� 4)s2
, (5.58)

c7 = c8 = �
(d� 4)(7s+ 9t)

2(d� 3)s
, c9 = c10 = 4 , c11 =

(d� 4)st

2(d� 3)
, c12 = �

3ds� 12s� 2t

2(d� 3)
.

Symmetries of the problem induce the following additional symmetry relations between the master
integrals:

J1 = J2 , J5 = J6 , J7 = J8 , J9 = J10 . (5.59)

This reduce to 8 the number of genuinely independent master integrals, meaning that the final de-
composition may be written as

I = c̃1J1 + c3J3 + c4J4 + c̃5J5 + c̃7J7 + c̃9J9 + c11J11 + c12J12 , (5.60)

where

c̃1 = c1 + c2 , c̃5 = c5 + c6 , c̃7 = c7 + c8 , c̃9 = c9 + c10 . (5.61)
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and as corresponding dual ones:
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We can then decompose the target left form: ' = z2
8

z1z3z5
in terms of the outer basis, where we omit

the superscripts for simplicity, obtaining:
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Companion Tensor Algebra

Q = C[z]/I b = monomial basis of Q [quotient space]

Q → Q Ti : f → xi fmultiplication map 

I := ⟨xy − z, yz − x, zx− y⟩ ⊂Example

Huang, Feng, He (2015) (1998)

b; B = {1, y, yz, z, z2}

x . b y . b z . bB = {yz, z, z2, y, yz} , y. B = {y, z2, z, yz, y} , z. B = {z, yz, y, z2, z} ,

Tx =

⎛

⎝
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0

⎞

⎠ , Ty =

⎛

⎝
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0

⎞

⎠ , Tz =

⎛

⎝
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0

⎞

⎠

f(z1, z2, …) = n(z1, z2, …)
d(z1, z2, …) → f(z1, z2, …) modI → f(T1, T2, …) = n(T1, T2, …) . d(T1, T2, …))−1

[Rational function] [Matrix]
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Polynomial ideal

Intersection Numbers for 1-forms (III)
3.2 Companion tensors for intersection numbers

Restoring the notation of Section 2 and using the replacements (3.22), the companion
tensor representation of the univariate system (2.20, 2.21), required in the evaluation of the
intersection numbers for di�erential 1-forms, reads

ÈÏ | Ï
‚Í + R · TÏ · Â = 0 , (3.27)
T‚Ò≠Ê

· Â ≠ ‚Ï‚ = 0 , (3.28)

where

T‚Ò≠Ê
© TˆzB · Tˆ—

≠ T‚Ê + Tˆz . (3.29)

A simple application of generation and solution of such a system can be found in Ap-
pendix B.

Similarly, the companion tensor representation of the multivariate system (2.39, 2.40),
required in the evaluation of the intersection numbers for di�erential m-forms, becomes

ÈÏ(m) | Ï
‚(m)Í + R · TÈÏ(m)|h(m≠1)Í · Â

(m) = 0 , (3.30)

T‚Ò�‚
· Â

(m) ≠ ‚Ï‚(m) = 0 , (3.31)

where

T‚Ò�‚
© TˆzB · Tˆ—

+ T‚�‚ + Tˆz . (3.32)

The overall structure of the system (3.30, 3.31) can be consolidated into the following
inhomogeneous matrix system

S

WWWWWU

1
0

0

R · TÈÏ(m)|h(m≠1)Í

T‚Ò�‚

T

XXXXXV
·

S

WWWWU

ÈÏ(m) | Ï
‚(m)Í

Â
(m)

T

XXXXV
=

S

WWWWU

0

‚Ï‚(m)

T

XXXXV
(3.33)

for the augmented column of unknowns that unites the intersection number and the ansatz
together. This system has to be solved only for the first unknown – the intersection
number [85, 86]. In practice this formulation proves to be highly robust, enabling solutions
even in cases when the system is ill-defined, such as when the connection matrix has a
resonant spectrum (i.e., eigenvalues that di�er by integers).

Next we will show a non-trivial application example of this system in Section 4, and
outline details its e�cient generation and solution in Appendix C.

The tensor systems of equations presented in this section constitute the first major result
of this communication. They o�er a novel and e�cient method for evaluating intersection
numbers of di�erential n-forms, applicable in both physics and mathematical research. The
key advantages of the proposed algorithm include its purely algebraic nature, reliance on
matrix and tensor operations for system construction, and an improved solution strategy
that avoids unnecessary regularization of degenerate systems. These qualities make it an
ideal candidate for implementation with the finite field technology.

– 17 –

where B(z) is a univariate polynomial vanishing on the polar set (see Appendix C for more
details on its choice)

PÊ ™ V (B) . (2.18)

The vector of local solutions (2.15) can be viewed4 as an element of the quotient ring [25]
Q := K[z]/ÈBÍ, where K[z] is the space of polynomials in the variable z with coe�cients in
the field K, ÈBÍ is the ideal generated by the polynomial B(z) ≠ — deformed by the symbolic
parameter —.

In our applications, D = ? and only simple poles in D
‚ will appear, hence the last

term on the RHS of eq. (2.16) will not contribute to the intersection number. Moreover, we
will distinguish the case in which Ï

‚ is a boundary-supported form on D
‚ or not.

Regulated case If Ï
‚ is not a boundary-supported form, only the first term on the RHS

of eq. (2.16) will contribute to the intersection number, so it becomes:

ÈÏ | Ï
‚Í = ≠ResÈBÍ

1
Ï Â

2
, (2.19)

where from now on we omit the ‚ sign from the solution. Therefore, working in Q, the
intersection number can be evaluated by solving the system of equations:

ÈÏ | Ï
‚Í + ResÈBÍ

1
Ï Â

2
= 0 , (2.20)

Í
‚Ò≠Ê Â ≠ ‚Ï‚

Î

ÈBÍ
= 0 , (2.21)

with

‚Ò≠Ê ©
!
ˆzB

"
ˆ— ≠ ‚Ê + ˆz . (2.22)

The solution can be obtained by the following ansatz [24]:

Â(—, z) =
Ÿ≠1ÿ

a=0

ÿ

nœZ

z
a

—
n

Âan , with Ÿ := deg(B) , (2.23)

where the Laurent series expansion coe�cients Âan vanish for small enough n. The global
residue can then be evaluated as:

ÈÏ | Ï
‚Í = ≠ 1

¸c

Í
ÏÂ

Î

ÈBÍ

-----
zŸ≠1—≠1

, (2.24)

that is the coe�cient of the term z
Ÿ≠1

—
≠1 divided by the leading coe�cient ¸c of the B

polynomial.
4
See Appendix A for details of this transformation.
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these computations, o�ering deeper insight into the mathematical properties and patterns
of intersection numbers while significantly boosting computational e�ciency.

In computational algebraic geometry, companion matrices [82, 83] 6 allow for the rein-
terpretation of polynomial division as matrix multiplication. In this section, we investigate
how companion matrices can be used to develop a novel scheme for computing intersection
numbers, ultimately determining them through matrix operations.

3.1 The three vector spaces

Let us fix the fibration layer m and denote by z the corresponding Baikov variable. In the
following we will omit the layer index whenever it does not cause confusion. Recall, that
the ansatz (2.42) is parameterized by 3 indices

Â
(m)
i =

ÿ

a n

z
a

—
n

Âian , (3.1)

which motivates us to distinguish the following 3 vector spaces:

1. Vector space of ‹-dimensional vectors labeled by the first index i = 1, . . . , ‹ in eq. (3.1),
namely

K‹
, (3.2)

closely related to the linear space of vector-valued 1-forms introduced in eqs. (2.33).

2. The second index a = 0, . . . , Ÿ ≠ 1 parameterizes the set of irreducible monomials of
the ideal ÈB(z) ≠ —Í, that is a basis of the quotient ring Q viewed as a vector space

Q = SpanK
!
1, . . . , z

Ÿ≠1"
, Ÿ := deg

!
B(z)

"
. (3.3)

It is then natural to interpret the B(z) ≠ — = 0 equation as a many-to-one coordinate
change z ‘æ —, and think of Q as a vector bundle of rank Ÿ with — parameterizing the
base and irreducible monomials forming the basis in fibres (see Appendix A for more
details).

3. Finally, the last index n œ Z runs over the powers of the variable — that appear in
the Laurent series expansion

L = SpanK
!
. . . , —

≠1
, —

0
, —

1
, . . .

"
. (3.4)

The z ‘æ — coordinate change introduced above e�ectively glues all the roots of the
B(z) polynomial in the z-plane to the origin of the —-plane. The space (3.4) captures
the local behavior of functions at this point.

The solution Â to the di�erential equation system (3.1) belongs to the tensor product of
these three spaces:

Â
(m) œ K‹ ¢ Q ¢ L . (3.5)

6
See also [84] for a nice review.
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In the following we will represent the di�erential equation system (2.21, 2.40) as a linear
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Ÿ
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where we explicitly showed the 0 entries on the main diagonal for the reader’s convenience.

3.1.2 Series companion matrices

To operate on Laurent series expansions in the — variable, we employ the infinite matrix
representation of the Weyl algebra composed of the two operators

L— :=

S

WWWWWWWWWWWWWWWWU
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(3.9)

In practice, however, only a finite number of the ansätze coe�cients (2.23, 2.42) con-
tribute to a given intersection number, suggesting that the infinite matrix representation (3.9)
should be somehow restricted so that the matrices become finite.

7
Here we normalized the BŸ coe�cient to 1 to avoid clutter in the subsequent formulae.
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3.2 Companion tensors for intersection numbers

Restoring the notation of Section 2 and using the replacements (3.22), the companion
tensor representation of the univariate system (2.20, 2.21), required in the evaluation of the
intersection numbers for di�erential 1-forms, reads

ÈÏ | Ï
‚Í + R · TÏ · Â = 0 , (3.27)
T‚Ò≠Ê

· Â ≠ ‚Ï‚ = 0 , (3.28)

where

T‚Ò≠Ê
© TˆzB · Tˆ—

≠ T‚Ê + Tˆz . (3.29)

A simple application of generation and solution of such a system can be found in Ap-
pendix B.

Similarly, the companion tensor representation of the multivariate system (2.39, 2.40),
required in the evaluation of the intersection numbers for di�erential m-forms, becomes

ÈÏ(m) | Ï
‚(m)Í + R · TÈÏ(m)|h(m≠1)Í · Â

(m) = 0 , (3.30)

T‚Ò�‚
· Â

(m) ≠ ‚Ï‚(m) = 0 , (3.31)

where

T‚Ò�‚
© TˆzB · Tˆ—

+ T‚�‚ + Tˆz . (3.32)

The overall structure of the system (3.30, 3.31) can be consolidated into the following
inhomogeneous matrix system

S

WWWWWU

1
0

0

R · TÈÏ(m)|h(m≠1)Í

T‚Ò�‚

T

XXXXXV
·

S

WWWWU

ÈÏ(m) | Ï
‚(m)Í

Â
(m)

T

XXXXV
=

S

WWWWU

0

‚Ï‚(m)

T

XXXXV
(3.33)

for the augmented column of unknowns that unites the intersection number and the ansatz
together. This system has to be solved only for the first unknown – the intersection
number [85, 86]. In practice this formulation proves to be highly robust, enabling solutions
even in cases when the system is ill-defined, such as when the connection matrix has a
resonant spectrum (i.e., eigenvalues that di�er by integers).

Next we will show a non-trivial application example of this system in Section 4, and
outline details its e�cient generation and solution in Appendix C.

The tensor systems of equations presented in this section constitute the first major result
of this communication. They o�er a novel and e�cient method for evaluating intersection
numbers of di�erential n-forms, applicable in both physics and mathematical research. The
key advantages of the proposed algorithm include its purely algebraic nature, reliance on
matrix and tensor operations for system construction, and an improved solution strategy
that avoids unnecessary regularization of degenerate systems. These qualities make it an
ideal candidate for implementation with the finite field technology.
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these computations, o�ering deeper insight into the mathematical properties and patterns
of intersection numbers while significantly boosting computational e�ciency.

In computational algebraic geometry, companion matrices [82, 83] 6 allow for the rein-
terpretation of polynomial division as matrix multiplication. In this section, we investigate
how companion matrices can be used to develop a novel scheme for computing intersection
numbers, ultimately determining them through matrix operations.

3.1 The three vector spaces

Let us fix the fibration layer m and denote by z the corresponding Baikov variable. In the
following we will omit the layer index whenever it does not cause confusion. Recall, that
the ansatz (2.42) is parameterized by 3 indices

Â
(m)
i =

ÿ

a n

z
a

—
n

Âian , (3.1)

which motivates us to distinguish the following 3 vector spaces:

1. Vector space of ‹-dimensional vectors labeled by the first index i = 1, . . . , ‹ in eq. (3.1),
namely

K‹
, (3.2)

closely related to the linear space of vector-valued 1-forms introduced in eqs. (2.33).

2. The second index a = 0, . . . , Ÿ ≠ 1 parameterizes the set of irreducible monomials of
the ideal ÈB(z) ≠ —Í, that is a basis of the quotient ring Q viewed as a vector space

Q = SpanK
!
1, . . . , z

Ÿ≠1"
, Ÿ := deg

!
B(z)

"
. (3.3)

It is then natural to interpret the B(z) ≠ — = 0 equation as a many-to-one coordinate
change z ‘æ —, and think of Q as a vector bundle of rank Ÿ with — parameterizing the
base and irreducible monomials forming the basis in fibres (see Appendix A for more
details).

3. Finally, the last index n œ Z runs over the powers of the variable — that appear in
the Laurent series expansion

L = SpanK
!
. . . , —

≠1
, —

0
, —

1
, . . .

"
. (3.4)

The z ‘æ — coordinate change introduced above e�ectively glues all the roots of the
B(z) polynomial in the z-plane to the origin of the —-plane. The space (3.4) captures
the local behavior of functions at this point.

The solution Â to the di�erential equation system (3.1) belongs to the tensor product of
these three spaces:

Â
(m) œ K‹ ¢ Q ¢ L . (3.5)

6
See also [84] for a nice review.
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Three vector spaces

Companion Tensor Algebra



Brunello, Chestnov, & P.M. (2024)  

Companion Tensor Algebra

Intersection Numbers for 1-forms (III)

Simplifying Intersection Numbers for n-forms 

In the following we will represent the di�erential equation system (2.21, 2.40) as a linear
operator TÒ acting on the space (3.5)

TÒ�‚ · Â
(m) ≠ ‚Ï‚(m) = 0 . (3.6)

This formulation allows the solution to be obtained with linear algebra methods.

3.1.1 Polynomial companion matrices

For the ideal generated by a monic7 degree Ÿ polynomial

ÈBÍ © ÈB(z) ≠ —Í = Èb0 ≠ — + z b1 + . . . + z
Ÿ≠1

bŸ≠1 + z
ŸÍ , (3.7)

we choose as a basis of the quotient ring the list of monomials shown in eq. (3.3). The
companion matrix representation for the basic monomial multiplication and di�erentiation
operators read

Qz :=

0 ≠b0 + —

1 0 ≠b1
1 0 ≠b2

1 0 ≠bŸ≠2
1 ≠bŸ≠1

S

WWWWWWWWWWWWU

T

XXXXXXXXXXXXV

Ÿ

Ÿ

Qˆz :=

0 1
0 2

0 3

Ÿ ≠ 1
0

S

WWWWWWWWWWWWU

T

XXXXXXXXXXXXV

Ÿ

Ÿ

(3.8)

where we explicitly showed the 0 entries on the main diagonal for the reader’s convenience.

3.1.2 Series companion matrices

To operate on Laurent series expansions in the — variable, we employ the infinite matrix
representation of the Weyl algebra composed of the two operators

L— :=

S

WWWWWWWWWWWWWWWWU

≠1æ 1 0
0æ 1 0
1æ 1 0
2æ 1 0

T

XXXXXXXXXXXXXXXXV

Lˆ—
:=

S

WWWWWWWWWWWWWWWWU

≠1æ 0 0
0æ 0 1
1æ 0 2
2æ 0 3

T

XXXXXXXXXXXXXXXXV

(3.9)

In practice, however, only a finite number of the ansätze coe�cients (2.23, 2.42) con-
tribute to a given intersection number, suggesting that the infinite matrix representation (3.9)
should be somehow restricted so that the matrices become finite.

7
Here we normalized the BŸ coe�cient to 1 to avoid clutter in the subsequent formulae.
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Let us denote the leading exponents of the Laurent series expansions in — of the building
blocks of the main linear system (2.21, 2.40) as

min—
!‚�‚(m)" = ≠1 , min—

!
ÈÏ(m)|h(m≠1)Í

"
= µ , min—

!
‚Ï‚(m)" = µ

‚
, (3.10)

where we would like to emphasize the simple pole condition for the connection matrix,
which we always can satisfy with an appropriate choice of the B(z) polynomial (3.7)
(see Appendix C for more details). Now we may introduce the restricted analog8 of the
infinite representation (3.9) reading

L— :=

S

WWWWWWWWWWWWWWWWU

µ+1æ 0
1 0

≠1æ 1 0
0æ 1 0
1æ 1 0

0
≠µ‚æ 1 0

T

XXXXXXXXXXXXXXXXV

≠
µ

‚
≠

µ
+

1

≠µ‚ ≠ µ + 1

Lˆ—
:=

S

WWWWWWWWWWWWWWWWU

µ+1æ 0 µ

0

≠1æ 0 0
0æ 0 1
1æ 0 2

0 ≠µ
‚

≠µ‚æ 0

T

XXXXXXXXXXXXXXXXV

≠
µ

‚
≠

µ
+

1

≠µ‚ ≠ µ + 1

(3.11)

Here for each matrix we show the row labels on the left (which may start with negative
integers when µ < 0), and overall number of rows and columns on the right and at the
bottom respectively. We also highlight with grey the row corresponding to the —

≠1 term of
the Laurent expansion as it plays an important role for the global residue used in following.

3.1.3 Companion tensor representation

We are now in position to combine the two matrix representations introduced above into a
single tensor representation that is going to be used for intersection number computation
later. For simplicity, we will focus on the univariate case (2.23), as the generalization to
multivariate (2.42) is straightforward.

Step 1: Polynomial reduction The key idea is to rewrite the ansatz (2.23) for an
element of the quotient ring (3.3) in a vector form

Â =
Ÿ≠1ÿ

a=0
z

a
Âa(—) ©

Ë
1 z z

Ÿ≠1
È

·

S

WWWWU

Â0(—)
Â1(—)

ÂŸ≠1(—)

T

XXXXV
, (3.12)

8
Strictly speaking, finite matrices do not form a representation of a Weyl algebra. For example, the

finite matrix L— shown in eq. (3.11) does not have a well-defined inverse: the possible candidate L1/— does

not give a pure identity matrix in the products L— · L1/— = diag(0, 1, . . . , 1) or L1/— · L— = diag(1, . . . , 1, 0).

Nevertheless, in practice we may use the rules (3.11) after a (symbolic) series expansion in the — æ 0 limit.
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Strictly speaking, finite matrices do not form a representation of a Weyl algebra. For example, the

finite matrix L— shown in eq. (3.11) does not have a well-defined inverse: the possible candidate L1/— does

not give a pure identity matrix in the products L— · L1/— = diag(0, 1, . . . , 1) or L1/— · L— = diag(1, . . . , 1, 0).

Nevertheless, in practice we may use the rules (3.11) after a (symbolic) series expansion in the — æ 0 limit.
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3.2 Companion tensors for intersection numbers

Restoring the notation of Section 2 and using the replacements (3.22), the companion
tensor representation of the univariate system (2.20, 2.21), required in the evaluation of the
intersection numbers for di�erential 1-forms, reads

ÈÏ | Ï
‚Í + R · TÏ · Â = 0 , (3.27)
T‚Ò≠Ê

· Â ≠ ‚Ï‚ = 0 , (3.28)

where

T‚Ò≠Ê
© TˆzB · Tˆ—

≠ T‚Ê + Tˆz . (3.29)

A simple application of generation and solution of such a system can be found in Ap-
pendix B.

Similarly, the companion tensor representation of the multivariate system (2.39, 2.40),
required in the evaluation of the intersection numbers for di�erential m-forms, becomes

ÈÏ(m) | Ï
‚(m)Í + R · TÈÏ(m)|h(m≠1)Í · Â

(m) = 0 , (3.30)

T‚Ò�‚
· Â

(m) ≠ ‚Ï‚(m) = 0 , (3.31)

where

T‚Ò�‚
© TˆzB · Tˆ—

+ T‚�‚ + Tˆz . (3.32)

The overall structure of the system (3.30, 3.31) can be consolidated into the following
inhomogeneous matrix system

S

WWWWWU

1
0

0

R · TÈÏ(m)|h(m≠1)Í

T‚Ò�‚

T

XXXXXV
·

S

WWWWU

ÈÏ(m) | Ï
‚(m)Í

Â
(m)

T

XXXXV
=

S

WWWWU

0

‚Ï‚(m)

T

XXXXV
(3.33)

for the augmented column of unknowns that unites the intersection number and the ansatz
together. This system has to be solved only for the first unknown – the intersection
number [85, 86]. In practice this formulation proves to be highly robust, enabling solutions
even in cases when the system is ill-defined, such as when the connection matrix has a
resonant spectrum (i.e., eigenvalues that di�er by integers).

Next we will show a non-trivial application example of this system in Section 4, and
outline details its e�cient generation and solution in Appendix C.

The tensor systems of equations presented in this section constitute the first major result
of this communication. They o�er a novel and e�cient method for evaluating intersection
numbers of di�erential n-forms, applicable in both physics and mathematical research. The
key advantages of the proposed algorithm include its purely algebraic nature, reliance on
matrix and tensor operations for system construction, and an improved solution strategy
that avoids unnecessary regularization of degenerate systems. These qualities make it an
ideal candidate for implementation with the finite field technology.
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Â
(m)
i =

ÿ

a n

z
a

—
n

Âian , (3.1)

which motivates us to distinguish the following 3 vector spaces:

1. Vector space of ‹-dimensional vectors labeled by the first index i = 1, . . . , ‹ in eq. (3.1),
namely

K‹
, (3.2)

closely related to the linear space of vector-valued 1-forms introduced in eqs. (2.33).

2. The second index a = 0, . . . , Ÿ ≠ 1 parameterizes the set of irreducible monomials of
the ideal ÈB(z) ≠ —Í, that is a basis of the quotient ring Q viewed as a vector space

Q = SpanK
!
1, . . . , z

Ÿ≠1"
, Ÿ := deg

!
B(z)

"
. (3.3)

It is then natural to interpret the B(z) ≠ — = 0 equation as a many-to-one coordinate
change z ‘æ —, and think of Q as a vector bundle of rank Ÿ with — parameterizing the
base and irreducible monomials forming the basis in fibres (see Appendix A for more
details).

3. Finally, the last index n œ Z runs over the powers of the variable — that appear in
the Laurent series expansion

L = SpanK
!
. . . , —

≠1
, —

0
, —

1
, . . .

"
. (3.4)

The z ‘æ — coordinate change introduced above e�ectively glues all the roots of the
B(z) polynomial in the z-plane to the origin of the —-plane. The space (3.4) captures
the local behavior of functions at this point.

The solution Â to the di�erential equation system (3.1) belongs to the tensor product of
these three spaces:

Â
(m) œ K‹ ¢ Q ¢ L . (3.5)

6
See also [84] for a nice review.
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Almost all the basic operators get represented in terms of factorized tensors. The exception
is the z-monomial multiplication operator: to derive its representation we first expand the
matrix Qz shown in eq. (3.8) as a linear polynomial in — with matrix coe�cients Qz,0 and
Qz,1, namely

z Qz = Qz,0 + Qz,1 — , (3.21)

and only then substitute — with the corresponding matrix L— from eq. (3.9) or (3.11).

Step 3: Global residue and Tensor algebra The global residue (2.39) acts as a
covector on the space of Âan , and in the basis of (3.20), it simply extracts the coe�cient of
the ÂŸ≠1, ≠1 component. This extraction can be carried out by multiplying with the row
vector R © EŸ≠1 ¢ E≠1, where Ej is a row vector with a single 1 in the j

th position. The
intersection numbers can then be evaluated by applying the following list of substitution
rules:

z Tz = 1 ¢ Qz,0 + L— ¢ Qz,1 ,

ˆz Tˆz = 1 ¢ Qˆz ,

— T— = L— ¢ 1 , (3.22)
ˆ— Tˆ—

= Lˆ—
¢ 1 ,

ResÈBÍ R = EŸ≠1 ¢ E≠1 ,

where, in the case of restricted representation (3.11), the covector R is just the unit row
vector with the element 1 in the |µ| Ÿ position (and all the other elements are vanishing)

R :=
Ë

0 0 1 0 0
ø

|µ| Ÿ

È
, (3.23)

which e�ectively encodes the outcome of the global residue in eqs. (2.20, 2.39). Multiplication
by the series expansion of function (3.14)

f(z, —)
---
—æ0

=
ÿ

a n

z
a

—
n

fan Tf =
ÿ

a n

(Tz)a · (T—)n
fan (3.24)

is then repackaged into a rank-4 companion tensor Tf as

Í
f Â

Î

ÈBÍ

-----
—æ0

=
Ÿ≠1ÿ

a1, a2=0

ÿ

n1, n2

z
a1 —

n1
!
Tf

"
n1n2 a1a2

Âa2n2(—) , (3.25)

where the Tf tensor is defined as,

Tf =
ÿ

a n

1 ¢
!
Qz,0 + L— ¢ Qz,1

"a ·
!
L— ¢ 1

"n
fan . (3.26)

The substitution rules collected in this subsection complete the dictionary of rules
required for the tensor representation of the systems of di�erential equations (3.6), which
lie at the core of the evaluation of intersection numbers by tensor algebra method discussed
next.
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Companion Tensor Representation
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Complete decomposition @ 1- & 2-Loop

2-loop 5-point Brunello, Chestnov, Crisanti, Frellesvig, Gasparotto, Mandal & P.M. (2023) 

Brunello, Chestnov, & P.M.  (2024)

4 Decomposition of two-loop five-point massless planar integrals
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Figure 1. The 47 sectors of the 62 master integrals defined in eq. (4.5), corresponding to the
massless two-loop five-points integral family (symmetry relations have not been applied).

The goal of this section, is to apply the algorithm described in Section 3 for the decomposition
of massless two-loop five-point functions in terms of master integrals. The integral family is
defined in terms of 11 generalised denominators:

z1 = k
2
1 , z2 = (k1+p1)2

, z3 = (k1+p1+p2)2
, z4 = (k2+p1+p2)2

,

z5 = (k2+p1+p2+p3)2
, z6 = (k2≠p5)2

, z7 = k
2
2, z8 = (k1≠k2)2

,

z9 = (k2+p1)2
, z10 = (k1+p1+p2+p3)2

, z11 = (k1≠p5)2
, (4.1)

– 18 –

4 Decomposition of two-loop five-point massless planar integrals

2

8

5

3

8

6

1

44

8 8

1

5

8

6

2

8

33

7

71

3 4 43

1 6 1

3

7

5
2 8

4

7 1

3
8 6 1 8 6

4

1
2

8 6

5

2
3

8

6

7 1

2

8
5

4

2

3
8 6

5
1 8

6

4

5 3 8

5

7

6

2 8

5

6

7 1

2

3

8 6

1

2

3

8 5 2 8
4
5

6

2 8

4

6

7

6 2 8

4

5

7

1
3

7

4 5

6
1

3
8

4

5

6

1

3
8

7

5

6

1

3

8

5

6 1

2
8

4

6
2

3

8 7

5

1

2

3

8
4

6
1

2

3

8
7

5

1

2

3

8
5

6 1

2
8

4

5

6
2

3
8

5

6

7
2
8

4
5

67

1

2

3

8

4

6

7 1

2

3

8

4

5

7 1

2

3

8

5

6

7 1

2

3

8

4

5

6 1

2

3
4
5

6
7

8

1
3

1
8 5

5

7
2 8 2 8

6

4

1

3
8
6

4

1

3
8
7

5
3 8

5

7

Figure 1. The 47 sectors of the 62 master integrals defined in eq. (4.5), corresponding to the
massless two-loop five-points integral family (symmetry relations have not been applied).

The goal of this section, is to apply the algorithm described in Section 3 for the decomposition
of massless two-loop five-point functions in terms of master integrals. The integral family is
defined in terms of 11 generalised denominators:

z1 = k
2
1 , z2 = (k1+p1)2

, z3 = (k1+p1+p2)2
, z4 = (k2+p1+p2)2

,

z5 = (k2+p1+p2+p3)2
, z6 = (k2≠p5)2

, z7 = k
2
2, z8 = (k1≠k2)2

,

z9 = (k2+p1)2
, z10 = (k1+p1+p2+p3)2

, z11 = (k1≠p5)2
, (4.1)
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62 MIs and 47 sectors

as:
Ia1a2a3a4a5a6a7a8a9a10a11 =

⁄
d11

z u(z) z
≠a9
9 z

≠a10
10 z

≠a11
11

z
a1
1 z

a2
2 z

a3
3 z

a4
4 z

a5
5 z

a6
6 z

a7
7 z

a8
8

(4.2)

z9, z10, z11 are irreducible scalar products, and hence the set of relative boundaries is given
by:

D
‚ = V (

8Ÿ

i=1
zi) . (4.3)

The kinematics is such that:

p
2
i = 0 , s12 = (p1+p2)2

, s23 = (p2+p3)2
,

s34 = (p3+p4)2
, s45 = (p4+p5)2

, s51 = (p5+p1)2
. (4.4)

This integral family has (before application of the symmetry relations) ‹ = 62 master
integrals, which we may pick as depicted in Figure 1, as:

J1 = I10010001000, J2 = I00100011000, J3 = I01001001000, J4 = I00100101000,

J5 = I10001001000, J6 = I01000101000, J7 = I10110010000, J8 = I10110100000,

J9 = I10101010000, J10 = I01010011000, J11 = I10100101000, J12 = I10010101000,

J13 = I10101001000, J14 = I00101011000, J15 = I01001011000, J16 = I01010101000,

J17 = I10110101000, J18 = I10101011000, J19 = I11001101000, J20 = I01100111000,

J21 = I11011001000, J22 = I01101101000, J23 = I10011101000, J24 = I00101111000,

J25 = I01001111000, J26 = I11100101000, J27 = I11101001000, J28 = I01011101000,

J29 = I01010111000, J30 = I01011011000, J31 = I10101101000, J32 = I101011≠11000,

J33 = I11010101000, J34 = I110101≠11000, J35 = I01101011000, J36 = I01101011≠100,

J37 = I10111110000, J38 = I10111101000, J39 = I10101111000, J40 = I11110101000,

J41 = I11101011000, J42 = I11101101000, J43 = I111011≠11000, J44 = I11011101000,

J45 = I11011101≠100, J46 = I01101111000, J47 = I01101111≠100, J48 = I01011111000,

J49 = I01011111≠100, J50 = I11110111000, J51 = I11110111≠100, J52 = I11111011000,

J53 = I11111011≠100, J54 = I11101111000, J55 = I111≠11111000, J56 = I11101111≠100,

J57 = I11111101000, J58 = I111111≠11000, J59 = I11111101≠100, J60 = I11111111000,

J61 = I11111111≠100, J62 = I111111110≠10 . (4.5)

We are interested in decomposing the target integral:

I =
⁄

d11
z u(z) z

2
9

z1z2z3z4z5z6z7z8
= I11111111≠200 (4.6)

in terms of master integrals of eq. (4.5) via a complete set of spanning cuts, as:

I =
62ÿ

i=1
ci Ji . (4.7)
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Let us remark, that the metric matrix (2.16), in general, di↵ers from the identity matrix. The
Gram-Schmidt algorithm can be employed to build orthonormal bases from generic sets of independent
elements, using the intersection numbers as scalar products. But more generally the coe�cients
appearing in the formulas (2.17, 2.18) are independent of the respective dual elements. Therefore,
exploiting this freedom in choosing the corresponding dual bases may yield striking simplifications
[15, 22, 23]. The decomposition formulas hold also in the case of the relative twisted de Rham
cohomology, which allows for a relaxation of the non-integer condition for the exponents �i that
appear in eq. (2.8), see [22, 23, 44].

2.3 Partial Di↵erential Equation

By elaborating on the method proposed in [2], we hereby propose to evaluate the intersection number
for n-forms, using the multivariate Stokes’ theorem, yielding (see also Appendix A):

h'
(n)
L | '

(n)
R i = (2⇡i)�n

Z

X
(u'(n)

L,c) ^ (u�1
'
(n)
R ) =

X

p2P!

Resz=p( '
(n)
R ) , (2.19)

where:

•  is a function (0-form), that obeys the following n-th order partial di↵erential equation (nPDE),

@
n

@z1 @z2 . . . @zn
(u ) = u '̂

(n)
L . (2.20)

• p = (p1, p2, . . . , pn) 2 P! is a pole of !, i.e. an intersection point of singular hypersurface Si

defined in eq. (2.1), at finite location or at infinity.

• The residue symbol stands for

Resz=p(f) = Reszn=pn . . .Resz1=p1(f) = (2⇡i)�n

Z

 1^...^ n

f dz1 ^ . . . ^ dzn , (2.21)

where the integral goes over a product of small circles  i , each encircling the corresponding
pole zi = pi in the zi-plane, see for example [55].

Representation (2.19) can be derived by rewriting the intersection number integral as a flux of a
certain local form ⌘:

Z

X
(u'(n)

L,c) ^ (u�1
'
(n)
R ) =

X

p2P!

Z

Dp

dz1 . . . dzn⌘ . (2.22)

Working term-by-term in the sum on the RHS, let us temporarily denote by (z1, . . . , zm) the local
coordinates centered at the intersection point p. We then may take as the integration domain the
polydisc Dp =

�
(z1, . . . , zn)

�� |z1|, . . . , |zn|  ✏
 
, and define

⌘ := h̄1 . . . h̄n

�
u 

� �
u
�1
'
(n)
R

�
, (2.23)

where h̄i := 1� hi and hi is the Heaviside step-function:

hi ⌘ h(zi) :=

(
1 for |zi| < ✏ ,

0 otherwise,
(2.24)
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so that the derivative dhi is localized on the circle |zi| = ✏ . The action of the partial derivatives in
eq. (2.22) gives:

dz1 . . . dzn⌘ =
⇣
h̄1 . . . h̄n

�
ur!1 . . .r!n 

�
+ . . .+ (�1)n

�
u 

�
dh1 ^ . . . ^ dhn

⌘
^
�
u
�1
'
(n)
R

�
. (2.25)

By choosing the auxilary 0-form  as the solution of the following nPDE:

ur!1 . . .r!n = u'L , (2.26)

for the integrand in eq. (2.22) we obtain:

dz1 . . . dzn⌘ = (u'L,c) ^ (u�1
'R) , (2.27)

where the compactly supported n-form 'L,c is defined as: (Seva: TODO: check the RHS here)

'L,c := h̄1 . . . h̄n 'L + . . .+ (�1)n  dh1 ^ . . . ^ dhn ⌘ r!1 . . .r!n

�
h̄1 . . . h̄n 

�
. (2.28)

The middle expression here is equivalent to the 'L,c introduced by Matsumoto in [2] and, therefore,
the same integration algorithm via iterated residues can be applied. Indeed, since 'R is a holomorphic
n-form, in eq. (2.25) only the last term gives a non vanishing contribution:

Z

X

�
u'

(n)
L,c

�
^
�
u
�1
'
(n)
R

�
= (�1)n

X

p2P!

Z

Dp

�
u 

�
dh1 ^ . . . ^ dhn ^

�
u
�1
'
(n)
R

�

=
X

p2P!

Z

 1^...^ n

 '
(n)
R

= (2⇡i)n
X

p2P!

Resz=p( '
(n)
R ) , (2.29)

where the product of small circles  1 ^ . . .^  n (i.e. an n-dimensional torus) is the distinguished
boundary of the polydisc Dp . The last equation above2 reproduces the result shown in eq. (2.19).
For more details we refer the interested reader to the discussion in Appendix A.

Finally, let us once again highlight the crucial eq. (2.26) and write it as:

r!1r!2 . . .r!n = '
(n)
L . (2.30)

This nPDE, equivalent to eq. (2.20), is the natural extension of the equation r!1 = '
(1)
L presented in

[41] for the single variable case. Equation (2.30) constitutes the first main result of this communication,
as it o↵ers a new algorithm for the direct determination of the scalar function  , hence a simpler
strategy for the evaluation of the intersection numbers between twisted n-forms.

2.4 Solution

The solution of eqs. (2.20, 2.30) can be formally written as3:

 = u
�1

Z z

z0

u'
(n)
L . (2.31)

2In the derivation we used
R
D dh̄ ^ f(z) dz =

R
 f(z) dz to localize the integral on the boundary.

3In ref. [44], the solution  for the twisted case with regulated pole is written by considering a modified integration
contour, accounting for the contribution of monodromy. It can be shown that, around each (regulated) singular point,
it is equivalent to the one considered here.
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nPDE

Z

X
(u'(n)

L,c) ^ (u�1
'
(n)
R ) =

X

p2P!

Z

Dp

dz1 . . . dzn⌘ .

 

⌘ := h̄1 . . . h̄n

�
u 

� �
u
�1
'
(n)
R

�
where h̄i := 1� hi

hi ⌘ h(zi) :=

(
1 for |zi| < ✏ ,

0 otherwise,

dz1 . . . dzn⌘ = (u'L,c) ^ (u�1
'R) ,

'L,c := h̄1 . . . h̄n 'L + . . .+ (�1)n  dh1 ^ . . . ^ dhn ⌘ r!1 . . .r!n

�
h̄1 . . . h̄n 

�

�
= (�1)n

X

p2P!

Z

Dp

�
u 

�
dh1 ^ . . . ^ dhn ^

�
u
�1
'
(n)
R

�

X Z

� X

2

� �

=
X

p2P!

Z

 1^...^ n

 '
(n)
R

X

X

2P

Z

^ ^

= (2⇡i)n
X

p2P!

Resz=p( '
(n)
R )

Proof.

Intersection Numbers for n-forms (IV)

It avoids fibrations

It requires the knowledge of the poles’ position: ok for hyperplane arrangement

It requires blow-ups
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GKZ Hypergeometric Systems

,
dx

x
:=

dx1

x1
^ · · · ^

dxn

xn

g(z;x) =
NX

i=1

zi x
↵i x

↵i := x
↵i,1

1 · · ·x
↵i,n
n

�

Let us construct the (n+ 1)⇥N matrixA =
�
a1 . . . aN

�
as ai := (1,↵i), with the assumption that

. Moreover, we introduce the (left) kernel of A, defined as,

Ker(A) =
�
u = (u1, . . . , uN ) 2 Z

N
��

NX

j=1

uj aj = 0
 

whose columns ai are built from the monomial exponents ↵i as ai := (1,↵i), with the assumption that
Span{a1, . . . , aN} = Z

n+1. Moreover, we introduce the (left) kernel of A, defined as,

Ker(A) =
�
u = (u1, . . . , uN ) 2 Z

N
��

NX

j=1

uj aj = 0
 
. (2.5)

Then, by using A and � as input, we build the following set of di↵erential operators:

Ej =
NX

i=1

aj,i zi
@

@zi
� �j , j = 1, . . . , n+ 1 (2.6)

⇤u =
Y

ui>0

✓
@

@zi

◆ui

�

Y

ui<0

✓
@

@zi

◆�ui

, 8u 2 Ker(A) . (2.7)

The function f�(z), defined in (2.1), satisfies the system of partial di↵erential equations (PDE)

Ej f�(z) = 0 , (2.8)

⇤u f�(z) = 0 , (2.9)

therefore it is dubbed an A-hypergeometric function [60].

2.2 GKZ D-modules and de Rham cohomology

The operators in (2.6)-(2.7) can be regarded as elements of a Weyl algebra

DN = C[z1, . . . , zN ]h@1, . . . , @N i , [@i, @j ] = 0 , [@i, zj ] = �ij . (2.10)

In multivariate exponent notation, the elements of DN take the form
P

k2K hk(z)@k for some finite
collection of sets K = {Ki 2 N

N
0 }i, where the hk(z) are polynomials in z with complex coe�cients.

The symbol @i is an alias of @
@zi

.
We introduce the GKZ system as the left DN -module DN/HA(�), where HA(�) is the left ideal

generated by Ej and ⇤u,

HA(�) =
n+1X

j=1

DN · Ej +
X

u2Ker(A)

DN ·⇤u . (2.11)

Further details on D-modules theory can be found in the Appendix B.
Let us list a few important properties of GKZ systems and their relations to de Rham cohomology

groups, which are expressed through the following theorems and propositions.

⇤ First, we recall a theorem on the number of solutions to GKZ systems. Let �A denote the convex
polytope spanned by the columns of A. We say � is non-resonant when it does not belong to any set
of the form spanC{ai | ai 2 F}+ Z

n+1 where F is a facet of �A.

For example, if we take a 2⇥ 2 matrix

A =

✓
1 1
0 1

◆
,

the polytope �A is a segment, and there are exactly two facets, respectively
indicated by the thick segment and the the black dots in the nearby picture.
Each facet defines a linear subspace on which � is resonant. �

�
�

�
�

�
�
��

(0,0)
s
(1,0)

s
(1,1)

c
c
c
c
c

c
c
c
c
c

c
c
c
c
c

c
c
c
c
c

c
c
c
c
c
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whose columns ai are built from the monomial exponents ↵i as ai := (1,↵i), with the assumption that
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n+1. Moreover, we introduce the (left) kernel of A, defined as,
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��
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@

@zi
� �j , j = 1, . . . , n+ 1 (2.6)
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Y

ui>0

✓
@

@zi
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�

Y

ui<0

✓
@

@zi

◆�ui

, 8u 2 Ker(A) . (2.7)

The function f�(z), defined in (2.1), satisfies the system of partial di↵erential equations (PDE)

Ej f�(z) = 0 , (2.8)

⇤u f�(z) = 0 , (2.9)

therefore it is dubbed an A-hypergeometric function [60].

2.2 GKZ D-modules and de Rham cohomology

The operators in (2.6)-(2.7) can be regarded as elements of a Weyl algebra

DN = C[z1, . . . , zN ]h@1, . . . , @N i , [@i, @j ] = 0 , [@i, zj ] = �ij . (2.10)

In multivariate exponent notation, the elements of DN take the form
P

k2K hk(z)@k for some finite
collection of sets K = {Ki 2 N

N
0 }i, where the hk(z) are polynomials in z with complex coe�cients.

The symbol @i is an alias of @
@zi

.
We introduce the GKZ system as the left DN -module DN/HA(�), where HA(�) is the left ideal

generated by Ej and ⇤u,

HA(�) =
n+1X

j=1

DN · Ej +
X

u2Ker(A)

DN ·⇤u . (2.11)

Further details on D-modules theory can be found in the Appendix B.
Let us list a few important properties of GKZ systems and their relations to de Rham cohomology

groups, which are expressed through the following theorems and propositions.

⇤ First, we recall a theorem on the number of solutions to GKZ systems. Let �A denote the convex
polytope spanned by the columns of A. We say � is non-resonant when it does not belong to any set
of the form spanC{ai | ai 2 F}+ Z

n+1 where F is a facet of �A.

For example, if we take a 2⇥ 2 matrix

A =

✓
1 1
0 1

◆
,

the polytope �A is a segment, and there are exactly two facets, respectively
indicated by the thick segment and the the black dots in the nearby picture.
Each facet defines a linear subspace on which � is resonant. �
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Bernstein, Saito, Sturmfels, Takayama, Matsubara-Heo,  
Agostini, Fevola, Sattelberger, Tellen,  

De La Crux,…
Euler-Mellin Integral / A-Hypergeometric function

Gelfand-Kapranov-Zelevinsky (GKZ) system of PDEs

Generators

u(x) = g(z, x)�0 x
��1
1 · · · x

��n
n

Our presentation is organized as follows. In Section 2, we review basic notions of the GKZ hyper-
geometric systems and their Euler integral representation. In Section 3, we discuss Pfa�an systems
of di↵erential equations, which are intimately related to GKZ systems. We present the Macaulay
matrix algorithm, based only on linear algebra, to compute Pfa�an matrices in Section 4. We show
its application to examples of di↵erential equations for Feynman integrals in Section 5. In Section 6,
we show how Pfa�ans can be used to derive linear relations for GKZ systems, similar to IBP identities
for Feynman integrals. Finally, in Section 7, we present the integral decomposition via intersection
numbers, using Pfa�ans to compute the required intersection matrices.

All algorithms in this paper are implemented in the computer algebra system Risa/Asir [86],
Maple [87] and Mathematica [88] with FiniteFlow [89], while the calculations involving Feynman
integrals are checked with LiteRed [90, 91]. Programs used in this paper and machine readable data
can be obtainable from [92].

2 GKZ hypergeometric systems

In this section, we briefly review some basic properties of the GKZ-hypergeometric systems to fix
our notation. Section 2.1 introduces a particular integral representation related to the GKZ systems
we work with, and Section 2.2 covers its relation to the algebraic de Rham cohomology groups. In
Section 2.3, we describe how to represent a cohomology class by an element of Weyl algebra. Finally,
in Section 2.4, we discuss the homogeneity property of GKZ systems, which allows us to reduce the
number of independent variables.

2.1 Integral representation of GKZ-hypergeometric system

In this work, we consider Euler integrals of the form

f�(z) =

Z

�
g(z;x)�0 x

��1
1 · · ·x

��n
n

dx

x
,

dx

x
:=

dx1

x1
^ · · · ^

dxn

xn
. (2.1)

Here � is a twisted cycle2, � = (�0, . . . ,�n) 2 C
n+1 are complex parameters, and g(z;x) is a Laurent

polynomial in x

g(z;x) =
NX

i=1

zi x
↵i . (2.2)

The monomials above are written in multivariate exponent notation: given an integer vector ↵i 2 Z
n

we set

x
↵i := x

↵i,1

1 · · ·x
↵i,n
n , (2.3)

where ↵i,j stands for the j-th component of the vector ↵i. Crucially, in (2.2) we regard each coe�cient
zi as an independent variable of f�(z).

Let us construct the (n+ 1)⇥N matrix

A =
�
a1 . . . aN

�
, (2.4)

2A twisted cycle is an integration contour with no boundary, along which the branch of the integrand is specified.
For details, see [27, Chapter 3]
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The function f�(z), defined in (2.1), satisfies the system of partial di↵erential equations (PDE)
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therefore it is dubbed an A-hypergeometric function [60].
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We introduce the GKZ system as the left DN -module DN/HA(�), where HA(�) is the left ideal

generated by Ej and ⇤u,

HA(�) =
n+1X

j=1

DN · Ej +
X

u2Ker(A)

DN ·⇤u . (2.11)

Further details on D-modules theory can be found in the Appendix B.
Let us list a few important properties of GKZ systems and their relations to de Rham cohomology

groups, which are expressed through the following theorems and propositions.

⇤ First, we recall a theorem on the number of solutions to GKZ systems. Let �A denote the convex
polytope spanned by the columns of A. We say � is non-resonant when it does not belong to any set
of the form spanC{ai | ai 2 F}+ Z

n+1 where F is a facet of �A.
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n+1. Moreover, we introduce the (left) kernel of A, defined as,
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NX
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. (2.5)

Then, by using A and � as input, we build the following set of di↵erential operators:

Ej =
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Theorem 2.1 ([93]).

1. HA(�) is a holonomic ideal 3

2. When � is non-resonant, the holonomic rank r of HA(�) is given by the volume4

r = n! · vol(�A) . (2.12)

The holonomic rank equals the number of independent solutions to the system of PDEs (2.6)-(2.7) at
a generic point z 2 C

N . The first statement ensures that the rank is finite, while the second statement
gives an exact formula for computing it in terms of combinatorial data.

⇤ Next, letting Gm (resp. A) stand for the complex torus (resp. complex A�ne line) equipped with
the Zariski topology5 and

X :=
�
(z, x) 2 A

N
⇥ (Gm)n

�� g(z;x) 6= 0
 

, Y := A
N
, (2.13)

we denote by ⇡ : X ! Y the natural projection from the space of GKZ and integration variables to
the space of GKZ variables only.

Setting O(X) := C[z1, . . . , zN , x
±1
1 , . . . , x

±1
n ,

1
g ], we define an action of DN on f = f(z, x) 2 O(X)

by

@

@zi
• f =

@f

@zi
+ �0

✓
1

g(z;x)

@g(z;x)

@zi

◆
f , (2.14)

@

@xi
• f =

@f

@xi
+ �0

✓
1

g(z;x)

@g(z;x)

@xi

◆
f � �i

f

xi
. (2.15)

The symbol O(X) g�0x
��1
1 . . . x

��n
n denotes the left DN -module O(X) endowed with this action. For-

mally, we have the identities

@

@zi

⇣
g
�0 x

��1
1 . . . x

��n
n f

⌘
= g

�0 x
��1
1 . . . x

��n
n

✓
@

@zi
• f

◆
, (2.16)

@

@xi

⇣
g
�0 x

��1
1 . . . x

��n
n f

⌘
= g

�0 x
��1
1 . . . x

��n
n

✓
@

@xi
• f

◆
. (2.17)

The direct image D-module
R
⇡ O(X) g�0 x

��1
1 . . . x

��n
n is defined canonically as in Appendix B.

Theorem 2.2 ([61]). Suppose that � is non-resonant. Then there is a canonical isomorphism of left
DN -modules

DN/HA(�) '

Z

⇡
O(X) g�0 x

��1
1 . . . x

��n
n . (2.18)

Let us make this isomorphism explicit [96]. We let

⌦k
X/Y =

M

J⇢{1,...,n}, |J|=k

O(X) dxJ (2.19)

3For the definition of a holonomic ideal, see Appendix B or p. 31 of [94].
4vol stands for the Lebesgue measure and can be calculated with software such as Polymake [95]. The holonomic

rank is the number of standard monomials of RHA(�) (see Appendix B).
5As a set, the torus Gm (resp. the complex A�ne line A) is equivalent to C

⇤ := C \ {0} (resp. C).
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Standard Monomials found by Groebner basis Hibi, Nishiyama, Takayama (2017)

J
H
E
P
0
9
(
2
0
2
2
)
1
8
7

be a solution to a GKZ Pfaffian system given some monomial basis si = ∂ki , ki ∈ NN
0 , for

which si∂j = ∂jsi. The following relations hold true:

∂jF (β) = Pj(β)F (β) , (3.17)
∂jF (β) = F (β − aj) . (3.18)

Differentiating (3.17) w.r.t. zi, we get

∂i∂jF =
(
∂iPj

)
F + Pj

(
∂iF

)
(3.19)

=
(
∂iPj

)
F + PjPiF , (3.20)

where we omitted the argument β for clarity. On the other hand, differentiating (3.18)
we get

∂i∂jF (β) = ∂iF (β − aj) (3.21)
= F (β − aj − ai) (3.22)
= Pj(β − ai)Pi(β)F (β) , (3.23)

where we applied the identity Pk(β)F (β) = F (β−ak) twice in the last step. The proposition
follows upon equating (3.20) and (3.23) and isolating

(
∂iPj

)
(β).

Pfaffian systems introduced above are systems of linear partial differential equations
(SPDE), satisfied by the solutions of a given GKZ system. As we will see later on, these
equations are extremely useful in physical applications. Next we present an efficient way to
calculate the Pfaffian systems, essentially via linear algebra.

4 Constructing Pfaffian systems from Macaulay matrices

In this section we describe a method for building the Pfaffian systems defined in eq. (3.3).
The method amounts to first building an auxiliary matrix M called the Macaulay matrix,
and then solving a special system of linear equations. In section 4.1 we derive the Macaulay
matrix (4.5) and the linear system (4.12), (4.13) that it satisfies. In section 4.2 we then
present Algorithm 1 for calculation of Pfaffian systems. In section 4.3 we give several
remarks about the algorithm and its efficiency. We close this section with several examples
in section 4.4, showcasing the steps and runtime statistics of the algorithm in practice.

4.1 From Pfaffian to Macaulay matrix

We present how the Macaulay matrix arises from a Pfaffian system in the basis of standard
monomials. Since we will focus our discussion on the case of GKZ systems later on, based
on the comments at the end of section 3.1 we may safely assume that

a set of standard monomials Std := {∂k} is given,

and that its size equals the holonomic rank |Std| = r, defined in (2.12). We remind that ∂k

denotes a monomial in derivatives, while ∂i denotes a single derivative w.r.t. zi.
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We then obtain a chain complex

· · · ∇x−→ Ωk
X/Y

∇x−→ Ωk+1
X/Y

∇x−→ · · · . (2.21)

The k-th relative de Rham cohomology group is defined as follows:

Hk := Ker
(
∇x : Ωk

X/Y −→ Ωk+1
X/Y

) /
Im
(
∇x : Ωk−1

X/Y −→ Ωk
X/Y

)
. (2.22)

It can be shown that the direct image D-module
∫

π O(X) gβ0 x−β1
1 . . . x−βn

n is isomorphic
to the n-th relative de Rham cohomology group Hn, for which reason the latter is a left
DN -module by theorem 2.2. In fact, theorem 2.2 can be rephrased as

Proposition 2.3. Suppose that β is non-resonant. Then there is a unique isomorphism of
DN -modules

DN/HA(β) ≃ Hn (2.23)

such that [1] ∈ DN/HA(β) is sent to
[
dx
x

]
∈ Hn .

A consequence of Proposition 2.3, which will be essential for our application of DN -
module theory to Feynman integrals, is the following: given a cohomology class [ω(z)] ∈ Hn,
there exists a differential operator P ∈ DN , which is unique modulo HA(β), such that

P
[dx
x

]
= [ω(z)] . (2.24)

The partial differential operators ∂i in P act on a cohomology class [ω(z)] ∈ Hn via

∂i • [ω(z)] =
[
∂i ω(z) + β0

xαi

g(z;x)ω(z)
]
. (2.25)

The action (2.25) comes from differentiation under the integral sign:

∂

∂zi

∫

Γ
g(z;x)β0 x−β1

1 · · ·x−βn
n ω(z) =

∫

Γ
g(z;x)β0 x−β1

1 · · ·x−βn
n ∂i • ω(z) . (2.26)

Since a Feynman integral can be represented by a cohomology class [34], we may equally
well consider the operator P as representing that integral. An algorithm for computing P

was developed in [62] and will be outlined in the following section. Moreover, in the view of
the relation of GKZ-systems and Feynman integrals (to be elaborated on in section 5), we
observe that the finiteness of the rank, established by the first statement of Theorem 2.1,
can be related to the finiteness of the number of master integrals [59]. The formula for
its evaluation, given in the second statement of Theorem 2.1, offers an alternative way of
determining dim(Hn), which is ordinarily computed in terms of Betti numbers, by counting
the number of certain critical points, or by Euler characteristics — all of which are related
to the number of master integrals.
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So we obtain the generalized Feynman integral I 01 apart from constant prefactors c = c(d0, ⌫) defined
in (5.4). On the RHS,

f (� �A · ki) = f

⇣
� �

�
d
(i)
0 /2, ⌫(i)

�
�A · ↵

⌘
(6.33a)

= f

⇣
�
0
�

�
d
(i)
0 /2, ⌫(i)

�⌘
(6.33b)

= I
�
d
(i)
0 , ⌫

(i)
� �

c
(i)

. (6.33c)

In other words, we obtain Ii apart from �-prefactors c
(i) = c

(i)
�
d
(i)
0 , ⌫

(i)
�
. The coe�cients ui(�)

multiplied by �-prefactors give the matrix U . Thus, we conclude Statement 1. of Theorem 6.1.
Statement 2. can be proven by noting that @i induces the parameter shift and applying Statement

1.

7 Decomposition via cohomology intersection numbers

Relations between Feynman integrals, equivalent to IBP identities, and, more generally, identities
for Euler-Mellin integrals, equivalent to contiguity relations, can be derived by means of intersection
theory for twisted de Rham cohomologies [34, 35, 37, 38]. According to the mentioned algorithm, the
decomposition of any given integrals in terms of an independent basis of MIs can be obtained from
the projection of the twisted di↵erential form appearing in the integrand of the integral to decompose
into a basis of di↵erential forms that generate a de Rham twisted cohomology group, via intersection
numbers.
For the case of generalized Feynman integrals (5.7), the covariant derivative (2.20) reads

rx = dx + ✏
dxG

G
^+ ✏ �

nX

i=1

dxi

xi
^, (7.1)

and we denote the associated n-th de Rham cohomology group as H
n (see also (2.22)). We can

also introduce a dual covariant derivative r
_
x = rx

��
✏!�✏

and let H
n_ be the n-th (dual) de Rham

cohomology group associated to it. The cohomology intersection number

h•, •ich : Hn
⇥H

n_
! C(z), (7.2)

is a natural pairing between the elements of the two groups.

Let {ei}ri=1 be a basis for Hn and {hi}
r
i=1 a basis for Hn_; the decomposition of any twisted form

' 2 H
n in terms of {ei}ri=1 can be obtained via chomology intersection numbers according to the

master decomposition formula [34, 35, 37, 38],

' =
rX

i=1

ci ei , with ci :=
rX

j=1

h', hjich

�
I
�1
ch

�
ji
, and (Ich)ij := hei, hjich . (7.3)

This formula implies the decomposition of (generalized) Feynman integrals in terms of master inte-
grals, upon the identification in (5.7).

Looking at (7.3) we infer that two distinct sets of intersection numbers are required, namely {h', hiich}
r
i=1

and {(Ich)ij}
r
i,j=1. Therefore, in order to apply the decomposition formula (7.3), it is required the

determination of the matrix Ich and of the vector h', hiich.
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Thm : Isomorphism

Euler-Mellin Integrals Differential Operators 
(w.r.t. external variables)

Pfaffian Systems: for Master Integrals (alias Master forms)

3.2 System of Differential Equations

Let us give more details about deriving systems of differential equations using intersection
numbers.

Consider the system of differential equations in x for the basis hei|,

@xhei| = ⌦ij hej | , ⌦ = ⌦(d, x), (3.39)

in general depending on the space-time dimension d and external variables x. Let us consider
the l.h.s. of eq. (3.39), after taking the derivative in x,

@xhei| = h(@x + �^)ei| ⌘ h�i| , (3.40)

where � = @x log u. Here h�i| can be decomposed in terms of hei|, by means of intersection
numbers,

h�i| = h�i|hki
�
C�1

�
kj

hej | (3.41)

= Fik

�
C�1

�
kj
hej | (3.42)

= ⌦ijhej | , (3.43)

where summation over indices j, k is implied and we introduced the intersection matrix

Fik ⌘ h�i|hki (3.44)

as well as defined the matrix ⌦ as,

⌦ ⌘ FC�1 (3.45)

appearing in the r.h.s. of eq. (3.39).
In [1], it was observed that in the case of dlog-basis defined for integrals within the

standard Baikov representation (for which u = B
�), the matrix C�1 is �-factorized, and

so it is the ⌦ matrix. Therefore the system of differential equations for the dlog-basis is
canonical [9] by construction, around the critical dimension � = 0.

Master Integrals in d dimensions correspond to integrals of the form

Ji ⌘ K Ei , with Ei ⌘ hei|C], (3.46)

where K may depend on x as well. Therefore, if,

@xhei| = ⌦ij hej | , (3.47)

then the system of differential equations for Ji reads,

@xJi = Aij Jj , (3.48)
where A ⌘ ⌦+K , with K = @x log(K) I . (3.49)
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So we obtain the generalized Feynman integral I 01 apart from constant prefactors c = c(d0, ⌫) defined
in (5.4). On the RHS,

f (� �A · ki) = f

⇣
� �

�
d
(i)
0 /2, ⌫(i)

�
�A · ↵

⌘
(6.33a)

= f

⇣
�
0
�

�
d
(i)
0 /2, ⌫(i)

�⌘
(6.33b)

= I
�
d
(i)
0 , ⌫

(i)
� �

c
(i)

. (6.33c)

In other words, we obtain Ii apart from �-prefactors c
(i) = c

(i)
�
d
(i)
0 , ⌫

(i)
�
. The coe�cients ui(�)

multiplied by �-prefactors give the matrix U . Thus, we conclude Statement 1. of Theorem 6.1.
Statement 2. can be proven by noting that @i induces the parameter shift and applying Statement

1.

7 Decomposition via cohomology intersection numbers

Relations between Feynman integrals, equivalent to IBP identities, and, more generally, identities
for Euler-Mellin integrals, equivalent to contiguity relations, can be derived by means of intersection
theory for twisted de Rham cohomologies [34, 35, 37, 38]. According to the mentioned algorithm, the
decomposition of any given integrals in terms of an independent basis of MIs can be obtained from
the projection of the twisted di↵erential form appearing in the integrand of the integral to decompose
into a basis of di↵erential forms that generate a de Rham twisted cohomology group, via intersection
numbers.
For the case of generalized Feynman integrals (5.7), the covariant derivative (2.20) reads

rx = dx + ✏
dxG

G
^+ ✏ �

nX

i=1

dxi

xi
^, (7.1)

and we denote the associated n-th de Rham cohomology group as H
n (see also (2.22)). We can

also introduce a dual covariant derivative r
_
x = rx

��
✏!�✏

and let H
n_ be the n-th (dual) de Rham

cohomology group associated to it. The cohomology intersection number

h•, •ich : Hn
⇥H

n_
! C(z), (7.2)

is a natural pairing between the elements of the two groups.

Let {ei}ri=1 be a basis for Hn and {hi}
r
i=1 a basis for Hn_; the decomposition of any twisted form

' 2 H
n in terms of {ei}ri=1 can be obtained via chomology intersection numbers according to the

master decomposition formula [34, 35, 37, 38],

' =
rX

i=1

ci ei , with ci :=
rX

j=1

h', hjich

�
I
�1
ch

�
ji
, and (Ich)ij := hei, hjich . (7.3)

This formula implies the decomposition of (generalized) Feynman integrals in terms of master inte-
grals, upon the identification in (5.7).

Looking at (7.3) we infer that two distinct sets of intersection numbers are required, namely {h', hiich}
r
i=1

and {(Ich)ij}
r
i,j=1. Therefore, in order to apply the decomposition formula (7.3), it is required the

determination of the matrix Ich and of the vector h', hiich.
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Thm : Isomorphism

Euler-Mellin Integrals Differential Operators 
(w.r.t. external variables)

Pfaffian Systems: for Master Integrals (alias Master forms) & for D-operators (alias Std mon’s)

3.2 System of Differential Equations

Let us give more details about deriving systems of differential equations using intersection
numbers.

Consider the system of differential equations in x for the basis hei|,

@xhei| = ⌦ij hej | , ⌦ = ⌦(d, x), (3.39)

in general depending on the space-time dimension d and external variables x. Let us consider
the l.h.s. of eq. (3.39), after taking the derivative in x,

@xhei| = h(@x + �^)ei| ⌘ h�i| , (3.40)

where � = @x log u. Here h�i| can be decomposed in terms of hei|, by means of intersection
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where summation over indices j, k is implied and we introduced the intersection matrix
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as well as defined the matrix ⌦ as,

⌦ ⌘ FC�1 (3.45)

appearing in the r.h.s. of eq. (3.39).
In [1], it was observed that in the case of dlog-basis defined for integrals within the

standard Baikov representation (for which u = B
�), the matrix C�1 is �-factorized, and

so it is the ⌦ matrix. Therefore the system of differential equations for the dlog-basis is
canonical [9] by construction, around the critical dimension � = 0.

Master Integrals in d dimensions correspond to integrals of the form

Ji ⌘ K Ei , with Ei ⌘ hei|C], (3.46)

where K may depend on x as well. Therefore, if,

@xhei| = ⌦ij hej | , (3.47)
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Macaulay Matrix method

Chestnov, Gasparotto, Mandal, Munch, Matsubara-Heo, Takayama & P.M. (2022)

nth-Cohomology group   ~     GKZ D-module Gelf’and Kapranov Zelevinsky )1990)

Intersection Numbers for n-forms (V) from Pfaffian D-module systems

Chestnov,,, Munch, Matsubara-Heo, Takayama & P.M. (2023)



D-modules of Feynman Integrals
Chestnov, Flieger, Matsubara-Heo, Takayama & P.M. (in progress)

GKZ-Euler integrals obey systems of differential equations

Annihilators of GKZ Euler-integrals are known 

Annihilators can be used to derive the generators of the D-module via Macaulay matrix method

GKZ Theorem: de Rham isomorphism b/ween D-module and Euler integral space

Feynman integrals obey systems of differential equations

Griffiths’ theorem and Annihilators for Feynman integrals: generalising Lorentz invariance and homogeneity relations

Feynman integrals are restrictions of GKZ Euler-integrals

Conjecture: de Rham isomorphism b/ween (restricted) D-module and Feynman integral space



Intersections Numbers beyond Feynman Integrals



Intersections Numbers @ QM and QFT
Cacciatori & P.M. (2022) 



Orthogonal Polynomials and Matrix Elements in QM

1. Identify a univariate twisted period integral of the form (1),
Z

G
µ j , (6)

with twist µ , and differential 1-form j = ĵ dz. If µ is not multivalued, replace it with the regulated twist u = u(r), by
introducing a regulator r , so that, for a suitable value r0, u(r0) = µ , and determine the dimension n of the vector space
of differential forms.

2. After choosing the bases of forms ei ⌘ êi dz and dual forms hi ⌘ ĥi dz, with ĥi = êi, such that ê1 = ĥ1 = 1, decompose j
in terms of ei, by means of (4), i.e. j = c1 e1 + c2 e2 + . . .+ cn en , (eventually, taking the r ! r0 limit, to remove the
dependence on the regulator).

3. Translate the decomposition of j to the one of the corresponding integral,
Z

G
µ j = c1 E1 + c2 E2 + . . .+ cn En , with E1 ⌘

Z

G
µ dz , and E j =

Z

G
µ e j , ( j 6= 1) , (7)

and compare the result with the literature.
Let us observe that: i. if n = 1, the result comes just from the contribution of E1; ii. if n > 1 and ci = 0 for i > 1, the
result still comes just from the contribution of E1; iii. given its definition, E1 represents the total volume of the integration
domain. Moreover, the choice of the basis ei is arbitrary, and Âi ciEi does not depend on the choice of Ei. Here we
opt for e1 = dz, for illustration purposes. Alternative choices, e.g. e1 = d ln(z), are equivalent. Intersection numbers of
twisted dlog-forms can be directly computed by means of (global) Residue theorem19 - an aspect we will elaborate on, in
the context of Quantum Mechanics, elsewhere.

Orthogonal Polynomials and Matrix Elements. We tested our algorithm by re-deriving, in a novel fashion, polynomial
orthogonality relations, of the type,

Inm ⌘
Z

G
Pn(z)Pm(z) f (z)dz ,

in the case of Laguerre L(r)
n , Legendre Pn, Tchebyshev Tn, Gegenbauer C(r)

n , and Hermite Hn polynomials; as well as matrix
elements of quantum mechanical operators O , of the type,

Inm ⌘ hn|O|mi=
Z

G
y⇤

n (z)O(z)ym(z) f (z)dz ,

appearing in the quantum description of the univariate Harmonic Oscillator and of the Hydrogen Atom, where f (z)dz represents
the integration measure of the considered problem. In each case, Inm can be naturally interpreted as twisted period integrals of
type (6), upon properly redefining their integrands, in order to identify µ and j , In particular, for the considered seven cases,
the master formula (4) yields the decomposition j = c1 e1 , in terms of just one basic form, e1 = dz, finally implying,

Inm = c1 E1 ,

where c1 is computed in terms of intersection numbers. In the considered cases, given the adopted choice of the bases of forms,
it happens that only one master integrals contributes, i.e. E1, but, in general, the contributions of more master integrals has to be
expected.

Green’s Functions and Kontsevich-Witten t-Function. Partition functions play a key role in the description of dynamical
systems in Statistical Mechanics and Quantum Field Theory, as generators of correlation functions. We consider two
paradigmatic examples: the n-point Green’s functions in Field Theory, Gn, and the Kontsevich-Witten matrix integral ZKW for
t-function of integrable systems48, 49, respectively defined as,

Gn ⌘
R

Df f(x1) · · ·f(xn) exp[�SE ]R
Df exp[�SE ]

, and ZKW ⌘

R
dF exp

h
�Tr

⇣
� i

3! F3 + L
2 F2

⌘i

R
dF exp

h
�Tr

⇣
L
2 F2

⌘i ,

for generic fields f(x) and for any given action SE , and for generic positive Hermitian field-matrix F. Both definitions can be
read as a ratio of twisted periods integrals (6), as

c1 =

R
G µ jR
G µ e1

, equivalently rewritten as
Z

G
µ j = c1 E1 ,
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with twist µ , and differential 1-form j = ĵ dz. If µ is not multivalued, replace it with the regulated twist u = u(r), by
introducing a regulator r , so that, for a suitable value r0, u(r0) = µ , and determine the dimension n of the vector space
of differential forms.
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with twist µ , and differential 1-form j = ĵ dz. If µ is not multivalued, replace it with the regulated twist u = u(r), by
introducing a regulator r , so that, for a suitable value r0, u(r0) = µ , and determine the dimension n of the vector space
of differential forms.
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For the considered cases, we obtain:

Case i)

Case ii)

corresponding to: (one master integral)



i) Orthogonal Polynomials

4 Methods
Twisted de Rham cohomology
Twisted de Rham cohomology aims to tackle integrals of the form

Z

G
uj (8)

with j ⌘ ĵ dz1 ^ · · ·^ dzn, and G is a regulated integration contour such that u(∂G) = 0. In the cases of our interest ĵ is a
meromorphic function of the complex integration variables z1, . . . ,zn, and u ⌘ Q ’ j Pr j

j , where Pj and Q are meromorphic
with allowed singularities at infinity, and r j are generic exponents.

After introducing the connection w ⌘ d ln(u) = Ân
i=1 ŵi dzi, with ŵi ⌘ ∂i ln(u), we can define the covariant derivative

—w ⌘ d +w^= u�1 ·d ·u acting on differential forms. If Wn is the space of n-forms, then the twisted cohomology groups are
defined by

Hn
w :=

ker{—w : Wn ! Wn+1}
Im{—w : Wn�1 ! Wn} , (9)

which means that their elements are —w -closed n-forms up to additive —w -exact (n�1)-forms.
Similarly, one can define twisted homology. However, since our strategy is to work with cohomology, we defer to the

literature for a precise definition of Hw
n . We limit ourselves to saying that its elements are pairs (G,u) , called twisted cycles.

The only relevant issue is that Hn
w and Hw

n are isomorphic, hence they have the same dimensions, n = dimHw
n = dimHn

w that
generically corresponds to the number of critical points of the function ln(u), viewed as a Morse height function.

Orthogonal Polynomials
Univariate orthogonal polynomials Pn = Pn(z) over an integration interval say G, labelled by integer indices n are known to
obey orthogonality conditions generically expressed as

Z

G
µ PnPm dz = fn dnm =

Z

G
µ j = c1 E1 . (10)

which can be naturally cast in the form (6), by simply interpreting j ⌘ Pn Pm dz , as a differential 1-form. Therefore, we can
apply our evaluation algorithm to the set of orthogonal polynomials listed in Table 1, demonstrating that the orthogonality
relation (10) emerges from the decomposition formula, and amounts to c1 E1 .

We consider the following type of orthogonal polynomials: Laguerre L(r)
n , Legendre Pn, Tchebyshev Tn, Gegenbauer C(r)

n ,
Hermite Hn. For each type, in Tab. 1, we provide the relevant data needed for the decomposition via intersection numbers: the
regulated twist u, the functions êi characterizing the bases of forms; the C matrix, the value of r0; the expression of E1 and of
c1, yielding agreement with the results known in the literature. Let us observe that, in the case of Hermite polynomials, given
the expression of u, the vector space dimension is n = 2, yielding j = c1 e1 + c2 e2; nevertheless, due to the adopted basis
choice, c2 = 0, therefore, j = c1 e1 holds as in the other cases having n = 1. Moreover, in the case of the Laguerre and of the
Gegenbauer polynomials, the integration measure µ and the twist u coincide, therefore the coefficients c1 and E1 are exact in r ,
and no limit on r is required.

Matrix Elements in Quantum Mechanics
The computations we have just done can be easily extended to the computation of the matrix elements of powers of operators in
position space, for instance. We illustrate some examples involving powers of the position operator, i.e. h•|zk|•i, where k may
be a positive or negative integer, for two celebrated physics cases, the harmonic oscillator and the Hydrogen atom, in Quantum
Mechanics.

Harmonic Oscillator. The eigenfunctions of the unidimensional Harmonic Oscillator in position space (x ⌘ z), with principal
quantum number n, (for unitary mass and pulsation, m = 1 = w) are defined as

hz|ni= yn(z) = e�
z2
2 Wn(z) , with Wn(z)⌘ Nn Hn(z) , (11)

in terms of Hermite polynomials, where the normalization factors are, Nn ⌘ 1/
p
(2nn!

p
p) . The matrix elements hm|zk|ni can

be cast in the form (6) as,

hm|zk|ni=
Z •

�•
dzym(z)zk yn(z) =

Z

G
µ j = c1 E1 , with µ ⌘ e�z2

, and j ⌘Wm(z)zk Wn(z)dz. (12)
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Type u n êi C-matrix r0 E1 c1

L(r)
n zr exp(�z) 1 1 r – G(1+r) (r +1)(r +2) · · ·(r +n)/n!

Pn (z2 �1)r 1 1 2r/(4r2 �1) 0 2 1/(2n+1)
Tn (1� z2)r 1 1 2r/(4r2 �1) �1/2 p 1/2
C(r)

n (1� z2)r�1/2 1 1 (1�2r)/(4r(r �1)) –
p

pG(1/2+r)/G(1+r) r(2r(2r +1) · · ·(2r +n�1))/((n+r)n!)
Hn zr exp(�z2) 2 1,1/z diagonal(1/2,1/r) 0

p
p 2nn!

Wn zr exp(�z2) 2 1,1/z diagonal(1/2,1/r) 0
p

p see Methods
Wn,` zr exp(�z) 1 1 (n1n2/(n1 +n2))2(2+r) 0 2(n1n2/(n1 +n2))3 see Methods

G(0)
n zr exp(�g z2/2) 2 1,1/z diagonal(1/g,1/r) 0 not needed (n�1)!!/gn/2

Z(n)
KW zr exp(�z2 ) 2 1,1/z diagonal(1/2,1/r) 0 not needed (�2/9)n (L�3n/(2n)!) ’3n�1

j=0 ( j+1/2)

Table 1. Functions and parameters of the decompositions involving orthogonal polynomials (rows 1:5) quantum mechanical
wave functions (rows 6,7), partition functions (rows 8,9).

upon proper identification of µ and j , according to the considered case. Therefore, Gn and ZKW can be interpreted as the
coefficient c1 of the projection of j on the master form e1, i.e. j = c1 e1, and determined in terms of intersection numbers by
using (4). In this work, we consider simple theoretical models, admitting univariate integral representations of Gn and ZKW .
Within the theory of a real scalar field with quartic self-interaction, also considered in35, 36, we compute Gn perturbatively, in
terms of the Green’s function of the free theory, G(0)

n , as well as derive relations among n-point functions, that are exact in the
coupling constant, hence obtaining, in a novel fashion, results that are canonically obtained by applying Wick’s theorem. For
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n=0 Z(n)
KW ,

by evaluating the coefficients of the series in terms of intersection numbers, finally finding an alternative, yet equivalent result
to the one in the literature.

All results are displayed in Table 1, whereas the Methods Section contains the computational details.

Conclusion
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Our results are applicable to the study of generalised moments of probability distributions: the dimension of the cohomology
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1. Identify a univariate twisted period integral of the form (1),
Z

G
µ j , (6)

with twist µ , and differential 1-form j = ĵ dz. If µ is not multivalued, replace it with the regulated twist u = u(r), by
introducing a regulator r , so that, for a suitable value r0, u(r0) = µ , and determine the dimension n of the vector space
of differential forms.

2. After choosing the bases of forms ei ⌘ êi dz and dual forms hi ⌘ ĥi dz, with ĥi = êi, such that ê1 = ĥ1 = 1, decompose j
in terms of ei, by means of (4), i.e. j = c1 e1 + c2 e2 + . . .+ cn en , (eventually, taking the r ! r0 limit, to remove the
dependence on the regulator).

3. Translate the decomposition of j to the one of the corresponding integral,
Z

G
µ j = c1 E1 + c2 E2 + . . .+ cn En , with E1 ⌘

Z

G
µ dz , and E j =

Z

G
µ e j , ( j 6= 1) , (7)

and compare the result with the literature.
Let us observe that: i. if n = 1, the result comes just from the contribution of E1; ii. if n > 1 and ci = 0 for i > 1, the
result still comes just from the contribution of E1; iii. given its definition, E1 represents the total volume of the integration
domain. Moreover, the choice of the basis ei is arbitrary, and Âi ciEi does not depend on the choice of Ei. Here we
opt for e1 = dz, for illustration purposes. Alternative choices, e.g. e1 = d ln(z), are equivalent. Intersection numbers of
twisted dlog-forms can be directly computed by means of (global) Residue theorem19 - an aspect we will elaborate on, in
the context of Quantum Mechanics, elsewhere.

Orthogonal Polynomials and Matrix Elements. We tested our algorithm by re-deriving, in a novel fashion, polynomial
orthogonality relations, of the type,

Inm ⌘
Z

G
Pn(z)Pm(z) f (z)dz ,

in the case of Laguerre L(r)
n , Legendre Pn, Tchebyshev Tn, Gegenbauer C(r)

n , and Hermite Hn polynomials; as well as matrix
elements of quantum mechanical operators O , of the type,

Inm ⌘ hn|O|mi=
Z

G
y⇤

n (z)O(z)ym(z) f (z)dz ,

appearing in the quantum description of the univariate Harmonic Oscillator and of the Hydrogen Atom, where f (z)dz represents
the integration measure of the considered problem. In each case, Inm can be naturally interpreted as twisted period integrals of
type (6), upon properly redefining their integrands, in order to identify µ and j , In particular, for the considered seven cases,
the master formula (4) yields the decomposition j = c1 e1 , in terms of just one basic form, e1 = dz, finally implying,

Inm = c1 E1 ,

where c1 is computed in terms of intersection numbers. In the considered cases, given the adopted choice of the bases of forms,
it happens that only one master integrals contributes, i.e. E1, but, in general, the contributions of more master integrals has to be
expected.

Green’s Functions and Kontsevich-Witten t-Function. Partition functions play a key role in the description of dynamical
systems in Statistical Mechanics and Quantum Field Theory, as generators of correlation functions. We consider two
paradigmatic examples: the n-point Green’s functions in Field Theory, Gn, and the Kontsevich-Witten matrix integral ZKW for
t-function of integrable systems48, 49, respectively defined as,

Gn ⌘
R

Df f(x1) · · ·f(xn) exp[�SE ]R
Df exp[�SE ]

, and ZKW ⌘

R
dF exp

h
�Tr

⇣
� i

3! F3 + L
2 F2

⌘i

R
dF exp

h
�Tr

⇣
L
2 F2

⌘i ,

for generic fields f(x) and for any given action SE , and for generic positive Hermitian field-matrix F. Both definitions can be
read as a ratio of twisted periods integrals (6), as

c1 =

R
G µ jR
G µ e1

, equivalently rewritten as
Z

G
µ j = c1 E1 ,
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4 Methods
Twisted de Rham cohomology
Twisted de Rham cohomology aims to tackle integrals of the form

Z

G
uj (8)

with j ⌘ ĵ dz1 ^ · · ·^ dzn, and G is a regulated integration contour such that u(∂G) = 0. In the cases of our interest ĵ is a
meromorphic function of the complex integration variables z1, . . . ,zn, and u ⌘ Q ’ j Pr j

j , where Pj and Q are meromorphic
with allowed singularities at infinity, and r j are generic exponents.

After introducing the connection w ⌘ d ln(u) = Ân
i=1 ŵi dzi, with ŵi ⌘ ∂i ln(u), we can define the covariant derivative

—w ⌘ d +w^= u�1 ·d ·u acting on differential forms. If Wn is the space of n-forms, then the twisted cohomology groups are
defined by

Hn
w :=

ker{—w : Wn ! Wn+1}
Im{—w : Wn�1 ! Wn} , (9)

which means that their elements are —w -closed n-forms up to additive —w -exact (n�1)-forms.
Similarly, one can define twisted homology. However, since our strategy is to work with cohomology, we defer to the

literature for a precise definition of Hw
n . We limit ourselves to saying that its elements are pairs (G,u) , called twisted cycles.

The only relevant issue is that Hn
w and Hw

n are isomorphic, hence they have the same dimensions, n = dimHw
n = dimHn

w that
generically corresponds to the number of critical points of the function ln(u), viewed as a Morse height function.

Orthogonal Polynomials
Univariate orthogonal polynomials Pn = Pn(z) over an integration interval say G, labelled by integer indices n are known to
obey orthogonality conditions generically expressed as

Z

G
µ PnPm dz = fn dnm =

Z

G
µ j = c1 E1 . (10)

which can be naturally cast in the form (6), by simply interpreting j ⌘ Pn Pm dz , as a differential 1-form. Therefore, we can
apply our evaluation algorithm to the set of orthogonal polynomials listed in Table 1, demonstrating that the orthogonality
relation (10) emerges from the decomposition formula, and amounts to c1 E1 .

We consider the following type of orthogonal polynomials: Laguerre L(r)
n , Legendre Pn, Tchebyshev Tn, Gegenbauer C(r)

n ,
Hermite Hn. For each type, in Tab. 1, we provide the relevant data needed for the decomposition via intersection numbers: the
regulated twist u, the functions êi characterizing the bases of forms; the C matrix, the value of r0; the expression of E1 and of
c1, yielding agreement with the results known in the literature. Let us observe that, in the case of Hermite polynomials, given
the expression of u, the vector space dimension is n = 2, yielding j = c1 e1 + c2 e2; nevertheless, due to the adopted basis
choice, c2 = 0, therefore, j = c1 e1 holds as in the other cases having n = 1. Moreover, in the case of the Laguerre and of the
Gegenbauer polynomials, the integration measure µ and the twist u coincide, therefore the coefficients c1 and E1 are exact in r ,
and no limit on r is required.

Matrix Elements in Quantum Mechanics
The computations we have just done can be easily extended to the computation of the matrix elements of powers of operators in
position space, for instance. We illustrate some examples involving powers of the position operator, i.e. h•|zk|•i, where k may
be a positive or negative integer, for two celebrated physics cases, the harmonic oscillator and the Hydrogen atom, in Quantum
Mechanics.

Harmonic Oscillator. The eigenfunctions of the unidimensional Harmonic Oscillator in position space (x ⌘ z), with principal
quantum number n, (for unitary mass and pulsation, m = 1 = w) are defined as

hz|ni= yn(z) = e�
z2
2 Wn(z) , with Wn(z)⌘ Nn Hn(z) , (11)

in terms of Hermite polynomials, where the normalization factors are, Nn ⌘ 1/
p
(2nn!

p
p) . The matrix elements hm|zk|ni can

be cast in the form (6) as,

hm|zk|ni=
Z •

�•
dzym(z)zk yn(z) =

Z

G
µ j = c1 E1 , with µ ⌘ e�z2

, and j ⌘Wm(z)zk Wn(z)dz. (12)
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in terms of ei, by means of (4), i.e. j = c1 e1 + c2 e2 + . . .+ cn en , (eventually, taking the r ! r0 limit, to remove the
dependence on the regulator).

3. Translate the decomposition of j to the one of the corresponding integral,
Z

G
µ j = c1 E1 + c2 E2 + . . .+ cn En , with E1 ⌘

Z

G
µ dz , and E j =

Z

G
µ e j , ( j 6= 1) , (7)

and compare the result with the literature.
Let us observe that: i. if n = 1, the result comes just from the contribution of E1; ii. if n > 1 and ci = 0 for i > 1, the
result still comes just from the contribution of E1; iii. given its definition, E1 represents the total volume of the integration
domain. Moreover, the choice of the basis ei is arbitrary, and Âi ciEi does not depend on the choice of Ei. Here we
opt for e1 = dz, for illustration purposes. Alternative choices, e.g. e1 = d ln(z), are equivalent. Intersection numbers of
twisted dlog-forms can be directly computed by means of (global) Residue theorem19 - an aspect we will elaborate on, in
the context of Quantum Mechanics, elsewhere.

Orthogonal Polynomials and Matrix Elements. We tested our algorithm by re-deriving, in a novel fashion, polynomial
orthogonality relations, of the type,

Inm ⌘
Z

G
Pn(z)Pm(z) f (z)dz ,

in the case of Laguerre L(r)
n , Legendre Pn, Tchebyshev Tn, Gegenbauer C(r)

n , and Hermite Hn polynomials; as well as matrix
elements of quantum mechanical operators O , of the type,

Inm ⌘ hn|O|mi=
Z

G
y⇤

n (z)O(z)ym(z) f (z)dz ,

appearing in the quantum description of the univariate Harmonic Oscillator and of the Hydrogen Atom, where f (z)dz represents
the integration measure of the considered problem. In each case, Inm can be naturally interpreted as twisted period integrals of
type (6), upon properly redefining their integrands, in order to identify µ and j , In particular, for the considered seven cases,
the master formula (4) yields the decomposition j = c1 e1 , in terms of just one basic form, e1 = dz, finally implying,

Inm = c1 E1 ,

where c1 is computed in terms of intersection numbers. In the considered cases, given the adopted choice of the bases of forms,
it happens that only one master integrals contributes, i.e. E1, but, in general, the contributions of more master integrals has to be
expected.

Green’s Functions and Kontsevich-Witten t-Function. Partition functions play a key role in the description of dynamical
systems in Statistical Mechanics and Quantum Field Theory, as generators of correlation functions. We consider two
paradigmatic examples: the n-point Green’s functions in Field Theory, Gn, and the Kontsevich-Witten matrix integral ZKW for
t-function of integrable systems48, 49, respectively defined as,

Gn ⌘
R

Df f(x1) · · ·f(xn) exp[�SE ]R
Df exp[�SE ]

, and ZKW ⌘

R
dF exp

h
�Tr

⇣
� i

3! F3 + L
2 F2

⌘i

R
dF exp

h
�Tr

⇣
L
2 F2

⌘i ,

for generic fields f(x) and for any given action SE , and for generic positive Hermitian field-matrix F. Both definitions can be
read as a ratio of twisted periods integrals (6), as

c1 =

R
G µ jR
G µ e1

, equivalently rewritten as
Z

G
µ j = c1 E1 ,

4/11

4 Methods
Twisted de Rham cohomology
Twisted de Rham cohomology aims to tackle integrals of the form
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with j ⌘ ĵ dz1 ^ · · ·^ dzn, and G is a regulated integration contour such that u(∂G) = 0. In the cases of our interest ĵ is a
meromorphic function of the complex integration variables z1, . . . ,zn, and u ⌘ Q ’ j Pr j

j , where Pj and Q are meromorphic
with allowed singularities at infinity, and r j are generic exponents.

After introducing the connection w ⌘ d ln(u) = Ân
i=1 ŵi dzi, with ŵi ⌘ ∂i ln(u), we can define the covariant derivative

—w ⌘ d +w^= u�1 ·d ·u acting on differential forms. If Wn is the space of n-forms, then the twisted cohomology groups are
defined by

Hn
w :=

ker{—w : Wn ! Wn+1}
Im{—w : Wn�1 ! Wn} , (9)

which means that their elements are —w -closed n-forms up to additive —w -exact (n�1)-forms.
Similarly, one can define twisted homology. However, since our strategy is to work with cohomology, we defer to the

literature for a precise definition of Hw
n . We limit ourselves to saying that its elements are pairs (G,u) , called twisted cycles.

The only relevant issue is that Hn
w and Hw

n are isomorphic, hence they have the same dimensions, n = dimHw
n = dimHn

w that
generically corresponds to the number of critical points of the function ln(u), viewed as a Morse height function.

Orthogonal Polynomials
Univariate orthogonal polynomials Pn = Pn(z) over an integration interval say G, labelled by integer indices n are known to
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Hermite Hn. For each type, in Tab. 1, we provide the relevant data needed for the decomposition via intersection numbers: the
regulated twist u, the functions êi characterizing the bases of forms; the C matrix, the value of r0; the expression of E1 and of
c1, yielding agreement with the results known in the literature. Let us observe that, in the case of Hermite polynomials, given
the expression of u, the vector space dimension is n = 2, yielding j = c1 e1 + c2 e2; nevertheless, due to the adopted basis
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meromorphic function of the complex integration variables z1, . . . ,zn, and u ⌘ Q ’ j Pr j

j , where Pj and Q are meromorphic
with allowed singularities at infinity, and r j are generic exponents.

After introducing the connection w ⌘ d ln(u) = Ân
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with j ⌘ ĵ dz1 ^ · · ·^ dzn, and G is a regulated integration contour such that u(∂G) = 0. In the cases of our interest ĵ is a
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Type u n êi C-matrix r0 E1 c1

L(r)
n zr exp(�z) 1 1 r – G(1+r) (r +1)(r +2) · · ·(r +n)/n!

Pn (z2 �1)r 1 1 2r/(4r2 �1) 0 2 1/(2n+1)
Tn (1� z2)r 1 1 2r/(4r2 �1) �1/2 p 1/2
C(r)

n (1� z2)r�1/2 1 1 (1�2r)/(4r(r �1)) –
p

pG(1/2+r)/G(1+r) r(2r(2r +1) · · ·(2r +n�1))/((n+r)n!)
Hn zr exp(�z2) 2 1,1/z diagonal(1/2,1/r) 0

p
p 2nn!

Wn zr exp(�z2) 2 1,1/z diagonal(1/2,1/r) 0
p

p see Methods
Wn,` zr exp(�z) 1 1 (n1n2/(n1 +n2))2(2+r) 0 2(n1n2/(n1 +n2))3 see Methods

G(0)
n zr exp(�g z2/2) 2 1,1/z diagonal(1/g,1/r) 0 not needed (n�1)!!/gn/2

Z(n)
KW zr exp(�z2 ) 2 1,1/z diagonal(1/2,1/r) 0 not needed (�2/9)n (L�3n/(2n)!) ’3n�1

j=0 ( j+1/2)

Table 1. Functions and parameters of the decompositions involving orthogonal polynomials (rows 1:5) quantum mechanical
wave functions (rows 6,7), partition functions (rows 8,9).

upon proper identification of µ and j , according to the considered case. Therefore, Gn and ZKW can be interpreted as the
coefficient c1 of the projection of j on the master form e1, i.e. j = c1 e1, and determined in terms of intersection numbers by
using (4). In this work, we consider simple theoretical models, admitting univariate integral representations of Gn and ZKW .
Within the theory of a real scalar field with quartic self-interaction, also considered in35, 36, we compute Gn perturbatively, in
terms of the Green’s function of the free theory, G(0)

n , as well as derive relations among n-point functions, that are exact in the
coupling constant, hence obtaining, in a novel fashion, results that are canonically obtained by applying Wick’s theorem. For
ZKW , we consider the univariate model discussed by Itzykson and Zuber50, and determine it perturbatively, as ZKW = Â•

n=0 Z(n)
KW ,

by evaluating the coefficients of the series in terms of intersection numbers, finally finding an alternative, yet equivalent result
to the one in the literature.

All results are displayed in Table 1, whereas the Methods Section contains the computational details.

Conclusion
We exported to Quantum Mechanics and Quantum Field Theory a decomposition algorithm and computational tools recently
developed in the context of scattering amplitudes’ and Feynman integrals’ calculus. Orthogonality relations for polynomials,
matrix elements of quantum mechanical operators, Green functions within Wick’s theorem (hence moments of distributions
within Isserlis’ theorem), Witten-Kontsevich partition function of integrable systems, therefore, provided additional proof
of evidence on the role of the de Rham Intersection Theory in fundamental physics. When these analyses developed within
physics contexts are combined with the study of Aomoto-Gel’fand integrals, Euler-Mellin integrals, GKZ hypergeometric
systems, and other special functions, which have been the natural target of investigation within pure mathematical areas, like
differential and algebraic topology, combinatorics and number theory, they seem to point toward a uniform framework ruling
calculus which spans across various scientific disciplines.

Our results are applicable to the study of generalised moments of probability distributions: the dimension of the cohomology
groups corresponds to the number of independent moments - which we can call master moments; the intersection numbers allow
us to derive linear and quadratic relations among them. The latter can be used for decomposing all moments of a distribution in
terms of master moments, as well as to build functional equations, difference and differential equations to evaluate the master
moments. In this fashion, one can export the experience and tools developed in Feynman calculus in all problems that admit a
statistical interpretation.

In our vision, the moments of distribution admit a physical interpretation in terms of generalised fluxes and, therefore
represent conserved quantities, invariant under deformations of the differential forms: De Rham twisted theory = Stokes’s
theorem for fluxes of singular differential forms through hypersurfaces with holes. Our study shows that eigenfunctions in
Quantum Mechanics and fields in Quantum Field Theory, which represent elements of Hilbert and Fock’s spaces, respectively,
that can have infinite dimensions, generate matrix-elements that belong to de Rham’s cohomology groups, (or better to spaces
that are isomorphic to them) which have a finite number of dimensions. Therefore, the knowledge of the master moments and
the inner product within the cohomology group is sufficient to determine all moments of distributions.

Our analysis, carried out for univariate integral representations, points to the importance of developing efficient methods for
the computations of multivariate intersection numbers for differential forms or to better say, for twisted cocycles, which are
crucial for dealing with moments of generical multivariate distributions. The simple, paradigmatic applications discussed here
can be considered the first step toward a systematic analysis of Quantum Mechanics in light of Intersection Theory. On the
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Type u n êi C-matrix r0 E1 c1
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C(r)

n (1� z2)r�1/2 1 1 (1�2r)/(4r(r �1)) –
p

pG(1/2+r)/G(1+r) r(2r(2r +1) · · ·(2r +n�1))/((n+r)n!)
Hn zr exp(�z2) 2 1,1/z diagonal(1/2,1/r) 0

p
p 2nn!

Wn zr exp(�z2) 2 1,1/z diagonal(1/2,1/r) 0
p

p see Methods
Wn,` zr exp(�z) 1 1 (n1n2/(n1 +n2))2(2+r) 0 2(n1n2/(n1 +n2))3 see Methods

G(0)
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Z(n)
KW zr exp(�z2 ) 2 1,1/z diagonal(1/2,1/r) 0 not needed (�2/9)n (L�3n/(2n)!) ’3n�1

j=0 ( j+1/2)
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The matrix elements ⟨m|zk|n⟩ can be cast in the form
(13) as,

⟨m|zk|n⟩ =
∫ ∞

−∞

dz ψm(z) zk ψn(z) =

∫

Γ
µϕ , (23)

with

µ ≡ e−z2

, (24)

ϕ = Wm(z) zk Wn(z) dz . (25)

According to our evaluation algorithm, we decompose
ϕ using the master decomposition formula (10), by fol-
lowing the same pattern previously applied to Hermite’s
polynomials (see Tab. I), yielding,

∫

Γ
µϕ = c1 E1 . (26)

In Tab. II, we summarize the relevant ingredients of the
decomposition. They can be used to test our algorithm,
and reproduce the following known cases:

⟨n|m⟩ = δnm , (27)

⟨n|z2k+1|n⟩ = 0 , (28)

⟨n|z4|n⟩ =
3

4
(2n2 + 2n+ 1) , (29)

⟨n|z3|n− 3⟩ =
√

n(n− 1)(n− 2)/8 , (30)

⟨n|z3|n− 1⟩ =
√

9n3/8 . (31)

The mean values of the Hamiltonian operator
⟨n|H |n⟩, with H in coordinate space, defined as
H ≡ (1/2)(−∇2+ z2), yield twisted period integrals with
ϕ being a linear combination of even powers of z, i.e.
ϕ =

∑n
k=0 bk z

2k, for suitable coefficients bk. We verified
that their decomposition via intersection numbers give
the expected result ⟨n|H |n⟩ = (n+ 1/2).

b. Hydrogen Atom. The radial eigenfunctions of the
H-atom in position space (r = z), with principal quantum
number n, and orbital quantum number ℓ, (for unitary
Bohr radius a0 = 1) are defined as

⟨z|n, ℓ⟩ = Rn,ℓ(z) = e−
z
n Wn,ℓ(z) , (32)

Wn,ℓ(z) ≡ Nnℓ

(

2z

n

)ℓ

L2ℓ+1
(n−ℓ−1)

(

2z

n

)

, (33)

in terms of Laguerre polynomials, where the normaliza-
tion factors are,

Nnℓ =

(

2

n

)3/2
√

(n− ℓ− 1)!

2n (n+ ℓ)!
, (34)

For illustration purposes, let us consider matrix ele-
ments for arbitrary principal quantum number n, and
identical orbital quantum number ℓ, of the type,

⟨n1, ℓ|zk|n2, ℓ⟩ =
∫ ∞

0
dz z2 Rn1,ℓ(z) z

k Rn2,ℓ(z) , (35)

which can be cast in the form (13) as,

⟨n1, ℓ|zk|n2, ℓ⟩ =
∫

Γ
µϕ (36)

with

µ ≡ z2 e
−z

(

1

n1
+ 1

n2

)

, (37)

ϕ = Wn1,ℓ(z) z
k Wn2,ℓ(z) . (38)

According to our evaluation algorithm, we decompose
ϕ using the master decomposition formula (10), by fol-
lowing a pattern which is similar to the one applied to
the Laguerre polynomials, yielding,

∫

Γ
µϕ = c1 E1 . (39)

Tab. II contains the relevant ingredients of the decom-
position. They can be used to test our algorithm, and
reproduce the following known cases:

⟨n1, ℓ|n2, ℓ⟩ = δn1n2
, (40)

⟨n, ℓ|z|n, ℓ⟩ =
1

2
[3n2 − ℓ(ℓ+ 1)] , (41)

⟨n, ℓ|z−1|n, ℓ⟩ =
1

n2
, (42)

⟨n, ℓ|z−2|n, ℓ⟩ =
2

n3(2ℓ+ 1)
, (43)

⟨n, ℓ|z−3|n, ℓ⟩ =
2

n3ℓ(ℓ+ 1)(2ℓ+ 1)
. (44)
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Position operator

Hamiltonian operator



ii) Matrix Elements in QM

Position operator

According to our evaluation algorithm, we decompose j using the master decomposition formula (4), by following the same
pattern previously applied to Hermite’s polynomials. In Tab. 1, we summarize the relevant ingredients of the decomposition.
They can be used to test our algorithm, and reproduce, for instance, the following known cases51: hn|mi= dnm ; hn|z2k+1|ni= 0 ;
hn|z4|ni= (3/4)(2n2 +2n+1) ; hn|z3|n�3i=

p
n(n�1)(n�2)/8 ; hn|z3|n�1i=

p
9n3/8 .

The mean values of the Hamiltonian operator hn|H|ni, with H in coordinate space, defined as H ⌘ (1/2)(�—2 + z2), yield
twisted period integrals with j being a linear combination of even powers of z, i.e. j = Ân

k=0 bk z2k, for suitable coefficients bk.
We verified that their decomposition via intersection numbers gives the expected result hn|H|ni= (n+1/2).

Hydrogen Atom. The radial eigenfunctions of the H-atom in position space (r ⌘ z), with principal quantum number n, and
orbital quantum number `, (for unitary Bohr radius a0 = 1) are defined as

hz|n,`i= Rn,`(z) = e�
z
n Wn,`(z) , with Wn,`(z)⌘ Nn`

✓
2z
n

◆`

L2`+1
(n�`�1)

✓
2z
n

◆
, (13)

in terms of Laguerre polynomials, where the normalization factors are, Nn` = (2/n)3/2
p
(n� `�1)!/(2n(n+ `)!) .

For illustration purposes, let us consider matrix elements for arbitrary principal quantum number n, and identical orbital
quantum number `, of the type,

hn1,`|zk|n2,`i=
Z •

0
dzz2 Rn1,`(z)zk Rn2,`(z) =

Z

G
µ j = c1 E1 , with µ ⌘ z2 e�z

⇣
1

n1
+ 1

n2

⌘

, and j ⌘Wn1,`(z)zk Wn2,`(z) . (14)

Tab. 1 contains the relevant ingredients of the decomposition. They can be used to test our algorithm, and reproduce the
following known cases51: hn1,`|n2,`i= dn1n2 ; hn,`|z|n,`i= (1/2)(3n2 � `(`+1)) ; hn,`|z�1|n,`i= 1/n2 ; hn,`|z�2|n,`i=
2/(n3(2`+1)) ; hn,`|z�3|n,`i= 2/(n3`(`+1)(2`+1)) ; to list a few.

Green’s functions
The Euclidean n-point Green’s functions in Field Theory, Gn = Gn(x1, . . . ,xn) is a for generic fields f(x), and for any given
action SE , is defined as

Gn ⌘
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The matrix elements ⟨m|zk|n⟩ can be cast in the form
(13) as,

⟨m|zk|n⟩ =
∫ ∞

−∞

dz ψm(z) zk ψn(z) =

∫

Γ
µϕ , (23)

with

µ ≡ e−z2

, (24)

ϕ = Wm(z) zk Wn(z) dz . (25)

According to our evaluation algorithm, we decompose
ϕ using the master decomposition formula (10), by fol-
lowing the same pattern previously applied to Hermite’s
polynomials (see Tab. I), yielding,

∫

Γ
µϕ = c1 E1 . (26)

In Tab. II, we summarize the relevant ingredients of the
decomposition. They can be used to test our algorithm,
and reproduce the following known cases:

⟨n|m⟩ = δnm , (27)

⟨n|z2k+1|n⟩ = 0 , (28)

⟨n|z4|n⟩ =
3

4
(2n2 + 2n+ 1) , (29)

⟨n|z3|n− 3⟩ =
√

n(n− 1)(n− 2)/8 , (30)

⟨n|z3|n− 1⟩ =
√

9n3/8 . (31)

The mean values of the Hamiltonian operator
⟨n|H |n⟩, with H in coordinate space, defined as
H ≡ (1/2)(−∇2+ z2), yield twisted period integrals with
ϕ being a linear combination of even powers of z, i.e.
ϕ =

∑n
k=0 bk z

2k, for suitable coefficients bk. We verified
that their decomposition via intersection numbers give
the expected result ⟨n|H |n⟩ = (n+ 1/2).

b. Hydrogen Atom. The radial eigenfunctions of the
H-atom in position space (r = z), with principal quantum
number n, and orbital quantum number ℓ, (for unitary
Bohr radius a0 = 1) are defined as

⟨z|n, ℓ⟩ = Rn,ℓ(z) = e−
z
n Wn,ℓ(z) , (32)

Wn,ℓ(z) ≡ Nnℓ

(

2z

n

)ℓ

L2ℓ+1
(n−ℓ−1)

(

2z

n

)

, (33)

in terms of Laguerre polynomials, where the normaliza-
tion factors are,

Nnℓ =

(

2

n

)3/2
√

(n− ℓ− 1)!

2n (n+ ℓ)!
, (34)

For illustration purposes, let us consider matrix ele-
ments for arbitrary principal quantum number n, and
identical orbital quantum number ℓ, of the type,

⟨n1, ℓ|zk|n2, ℓ⟩ =
∫ ∞

0
dz z2 Rn1,ℓ(z) z

k Rn2,ℓ(z) , (35)

which can be cast in the form (13) as,

⟨n1, ℓ|zk|n2, ℓ⟩ =
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Γ
µϕ (36)
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µ ≡ z2 e
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(

1

n1
+ 1

n2

)

, (37)

ϕ = Wn1,ℓ(z) z
k Wn2,ℓ(z) . (38)

According to our evaluation algorithm, we decompose
ϕ using the master decomposition formula (10), by fol-
lowing a pattern which is similar to the one applied to
the Laguerre polynomials, yielding,

∫

Γ
µϕ = c1 E1 . (39)

Tab. II contains the relevant ingredients of the decom-
position. They can be used to test our algorithm, and
reproduce the following known cases:

⟨n1, ℓ|n2, ℓ⟩ = δn1n2
, (40)

⟨n, ℓ|z|n, ℓ⟩ =
1

2
[3n2 − ℓ(ℓ+ 1)] , (41)
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1

n2
, (42)

⟨n, ℓ|z−2|n, ℓ⟩ =
2

n3(2ℓ+ 1)
, (43)

⟨n, ℓ|z−3|n, ℓ⟩ =
2

n3ℓ(ℓ+ 1)(2ℓ+ 1)
. (44)
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lowing a pattern which is similar to the one applied to
the Laguerre polynomials, yielding,

∫

Γ
µϕ = c1 E1 . (39)

Tab. II contains the relevant ingredients of the decom-
position. They can be used to test our algorithm, and
reproduce the following known cases:

⟨n1, ℓ|n2, ℓ⟩ = δn1n2
, (40)

⟨n, ℓ|z|n, ℓ⟩ =
1

2
[3n2 − ℓ(ℓ+ 1)] , (41)
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, (42)
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, (43)
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Type u n êi C-matrix r0 E1 c1

L(r)
n zr exp(�z) 1 1 r – G(1+r) (r +1)(r +2) · · ·(r +n)/n!

Pn (z2 �1)r 1 1 2r/(4r2 �1) 0 2 1/(2n+1)
Tn (1� z2)r 1 1 2r/(4r2 �1) �1/2 p 1/2
C(r)

n (1� z2)r�1/2 1 1 (1�2r)/(4r(r �1)) –
p

pG(1/2+r)/G(1+r) r(2r(2r +1) · · ·(2r +n�1))/((n+r)n!)
Hn zr exp(�z2) 2 1,1/z diagonal(1/2,1/r) 0

p
p 2nn!

Wn zr exp(�z2) 2 1,1/z diagonal(1/2,1/r) 0
p

p see Methods
Wn,` zr+2 exp(�z(n1 +n2)/(n1n2)) 1 1 (n1n2/(n1 +n2))2(2+r) 0 2(n1n2/(n1 +n2))3 see Methods

G(0)
n zr exp(�g z2/2) 2 1,1/z diagonal(1/g,1/r) 0 not needed (n�1)!!/gn/2

Z(n)
KW zr exp(�z2 ) 2 1,1/z diagonal(1/2,1/r) 0 not needed (�2/9)n (L�3n/(2n)!) ’3n�1

j=0 ( j+1/2)

Table 1. Functions and parameters of the decompositions involving orthogonal polynomials (rows 1:5) quantum mechanical
wave functions (rows 6,7), partition functions (rows 8,9).

upon proper identification of µ and j , according to the considered case. Therefore, Gn and ZKW can be interpreted as the
coefficient c1 of the projection of j on the master form e1, i.e. j = c1 e1, and determined in terms of intersection numbers by
using (4). In this work, we consider simple theoretical models, admitting univariate integral representations of Gn and ZKW .
Within the theory of a real scalar field with quartic self-interaction, also considered in35, 36, we compute Gn perturbatively, in
terms of the Green’s function of the free theory, G(0)

n , as well as derive relations among n-point functions, that are exact in the
coupling constant, hence obtaining, in a novel fashion, results that are canonically obtained by applying Wick’s theorem. For
ZKW , we consider the univariate model discussed by Itzykson and Zuber50, and determine it perturbatively, as ZKW = Â•

n=0 Z(n)
KW ,

by evaluating the coefficients of the series in terms of intersection numbers, finally finding an alternative, yet equivalent result
to the one in the literature.

All results are displayed in Table 1, whereas the Methods Section contains the computational details.

Conclusion
We exported to Quantum Mechanics and Quantum Field Theory a decomposition algorithm and computational tools recently
developed in the context of scattering amplitudes’ and Feynman integrals’ calculus. Orthogonality relations for polynomials,
matrix elements of quantum mechanical operators, Green functions within Wick’s theorem (hence moments of distributions
within Isserlis’ theorem), Witten-Kontsevich partition function of integrable systems, therefore, provided additional proof
of evidence on the role of the de Rham Intersection Theory in fundamental physics. When these analyses developed within
physics contexts are combined with the study of Aomoto-Gel’fand integrals, Euler-Mellin integrals, GKZ hypergeometric
systems, and other special functions, which have been the natural target of investigation within pure mathematical areas, like
differential and algebraic topology, combinatorics and number theory, they seem to point toward a uniform framework ruling
calculus which spans across various scientific disciplines.

Our results are applicable to the study of generalised moments of probability distributions: the dimension of the cohomology
groups corresponds to the number of independent moments - which we can call master moments; the intersection numbers allow
us to derive linear and quadratic relations among them. The latter can be used for decomposing all moments of a distribution in
terms of master moments, as well as to build functional equations, difference and differential equations to evaluate the master
moments. In this fashion, one can export the experience and tools developed in Feynman calculus in all problems that admit a
statistical interpretation.

In our vision, the moments of distribution admit a physical interpretation in terms of generalised fluxes and, therefore
represent conserved quantities, invariant under deformations of the differential forms: De Rham twisted theory = Stokes’s
theorem for fluxes of singular differential forms through hypersurfaces with holes. Our study shows that eigenfunctions in
Quantum Mechanics and fields in Quantum Field Theory, which represent elements of Hilbert and Fock’s spaces, respectively,
that can have infinite dimensions, generate matrix-elements that belong to de Rham’s cohomology groups, (or better to spaces
that are isomorphic to them) which have a finite number of dimensions. Therefore, the knowledge of the master moments and
the inner product within the cohomology group is sufficient to determine all moments of distributions.

Our analysis, carried out for univariate integral representations, points to the importance of developing efficient methods for
the computations of multivariate intersection numbers for differential forms or to better say, for twisted cocycles, which are
crucial for dealing with moments of generical multivariate distributions. The simple, paradigmatic applications discussed here
can be considered the first step toward a systematic analysis of Quantum Mechanics in light of Intersection Theory. On the
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Type u n êi C-matrix r0 E1 c1

L(r)
n zr exp(�z) 1 1 r – G(1+r) (r +1)(r +2) · · ·(r +n)/n!

Pn (z2 �1)r 1 1 2r/(4r2 �1) 0 2 1/(2n+1)
Tn (1� z2)r 1 1 2r/(4r2 �1) �1/2 p 1/2
C(r)

n (1� z2)r�1/2 1 1 (1�2r)/(4r(r �1)) –
p

pG(1/2+r)/G(1+r) r(2r(2r +1) · · ·(2r +n�1))/((n+r)n!)
Hn zr exp(�z2) 2 1,1/z diagonal(1/2,1/r) 0

p
p 2nn!

Wn zr exp(�z2) 2 1,1/z diagonal(1/2,1/r) 0
p

p see Methods
Wn,` zr+2 exp(�z(n1 +n2)/(n1n2)) 1 1 (n1n2/(n1 +n2))2(2+r) 0 2(n1n2/(n1 +n2))3 see Methods

G(0)
n zr exp(�g z2/2) 2 1,1/z diagonal(1/g,1/r) 0 not needed (n�1)!!/gn/2

Z(n)
KW zr exp(�z2 ) 2 1,1/z diagonal(1/2,1/r) 0 not needed (�2/9)n (L�3n/(2n)!) ’3n�1

j=0 ( j+1/2)

Table 1. Functions and parameters of the decompositions involving orthogonal polynomials (rows 1:5) quantum mechanical
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upon proper identification of µ and j , according to the considered case. Therefore, Gn and ZKW can be interpreted as the
coefficient c1 of the projection of j on the master form e1, i.e. j = c1 e1, and determined in terms of intersection numbers by
using (4). In this work, we consider simple theoretical models, admitting univariate integral representations of Gn and ZKW .
Within the theory of a real scalar field with quartic self-interaction, also considered in35, 36, we compute Gn perturbatively, in
terms of the Green’s function of the free theory, G(0)

n , as well as derive relations among n-point functions, that are exact in the
coupling constant, hence obtaining, in a novel fashion, results that are canonically obtained by applying Wick’s theorem. For
ZKW , we consider the univariate model discussed by Itzykson and Zuber50, and determine it perturbatively, as ZKW = Â•

n=0 Z(n)
KW ,

by evaluating the coefficients of the series in terms of intersection numbers, finally finding an alternative, yet equivalent result
to the one in the literature.

All results are displayed in Table 1, whereas the Methods Section contains the computational details.

Conclusion
We exported to Quantum Mechanics and Quantum Field Theory a decomposition algorithm and computational tools recently
developed in the context of scattering amplitudes’ and Feynman integrals’ calculus. Orthogonality relations for polynomials,
matrix elements of quantum mechanical operators, Green functions within Wick’s theorem (hence moments of distributions
within Isserlis’ theorem), Witten-Kontsevich partition function of integrable systems, therefore, provided additional proof
of evidence on the role of the de Rham Intersection Theory in fundamental physics. When these analyses developed within
physics contexts are combined with the study of Aomoto-Gel’fand integrals, Euler-Mellin integrals, GKZ hypergeometric
systems, and other special functions, which have been the natural target of investigation within pure mathematical areas, like
differential and algebraic topology, combinatorics and number theory, they seem to point toward a uniform framework ruling
calculus which spans across various scientific disciplines.

Our results are applicable to the study of generalised moments of probability distributions: the dimension of the cohomology
groups corresponds to the number of independent moments - which we can call master moments; the intersection numbers allow
us to derive linear and quadratic relations among them. The latter can be used for decomposing all moments of a distribution in
terms of master moments, as well as to build functional equations, difference and differential equations to evaluate the master
moments. In this fashion, one can export the experience and tools developed in Feynman calculus in all problems that admit a
statistical interpretation.

In our vision, the moments of distribution admit a physical interpretation in terms of generalised fluxes and, therefore
represent conserved quantities, invariant under deformations of the differential forms: De Rham twisted theory = Stokes’s
theorem for fluxes of singular differential forms through hypersurfaces with holes. Our study shows that eigenfunctions in
Quantum Mechanics and fields in Quantum Field Theory, which represent elements of Hilbert and Fock’s spaces, respectively,
that can have infinite dimensions, generate matrix-elements that belong to de Rham’s cohomology groups, (or better to spaces
that are isomorphic to them) which have a finite number of dimensions. Therefore, the knowledge of the master moments and
the inner product within the cohomology group is sufficient to determine all moments of distributions.

Our analysis, carried out for univariate integral representations, points to the importance of developing efficient methods for
the computations of multivariate intersection numbers for differential forms or to better say, for twisted cocycles, which are
crucial for dealing with moments of generical multivariate distributions. The simple, paradigmatic applications discussed here
can be considered the first step toward a systematic analysis of Quantum Mechanics in light of Intersection Theory. On the
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Green’s Function and Kontsevich-Witten tau-function

Master Decomposition formula

Case iii)

Case iv)

1. Identify a univariate twisted period integral of the form (1),
Z

G
µ j , (6)

with twist µ , and differential 1-form j = ĵ dz. If µ is not multivalued, replace it with the regulated twist u = u(r), by
introducing a regulator r , so that, for a suitable value r0, u(r0) = µ , and determine the dimension n of the vector space
of differential forms.

2. After choosing the bases of forms ei ⌘ êi dz and dual forms hi ⌘ ĥi dz, with ĥi = êi, such that ê1 = ĥ1 = 1, decompose j
in terms of ei, by means of (4), i.e. j = c1 e1 + c2 e2 + . . .+ cn en , (eventually, taking the r ! r0 limit, to remove the
dependence on the regulator).

3. Translate the decomposition of j to the one of the corresponding integral,
Z

G
µ j = c1 E1 + c2 E2 + . . .+ cn En , with E1 ⌘

Z

G
µ dz , and E j =

Z

G
µ e j , ( j 6= 1) , (7)

and compare the result with the literature.
Let us observe that: i. if n = 1, the result comes just from the contribution of E1; ii. if n > 1 and ci = 0 for i > 1, the
result still comes just from the contribution of E1; iii. given its definition, E1 represents the total volume of the integration
domain. Moreover, the choice of the basis ei is arbitrary, and Âi ciEi does not depend on the choice of Ei. Here we
opt for e1 = dz, for illustration purposes. Alternative choices, e.g. e1 = d ln(z), are equivalent. Intersection numbers of
twisted dlog-forms can be directly computed by means of (global) Residue theorem19 - an aspect we will elaborate on, in
the context of Quantum Mechanics, elsewhere.

Orthogonal Polynomials and Matrix Elements. We tested our algorithm by re-deriving, in a novel fashion, polynomial
orthogonality relations, of the type,

Inm ⌘
Z

G
Pn(z)Pm(z) f (z)dz ,

in the case of Laguerre L(r)
n , Legendre Pn, Tchebyshev Tn, Gegenbauer C(r)

n , and Hermite Hn polynomials; as well as matrix
elements of quantum mechanical operators O , of the type,

Inm ⌘ hn|O|mi=
Z

G
y⇤

n (z)O(z)ym(z) f (z)dz ,

appearing in the quantum description of the univariate Harmonic Oscillator and of the Hydrogen Atom, where f (z)dz represents
the integration measure of the considered problem. In each case, Inm can be naturally interpreted as twisted period integrals of
type (6), upon properly redefining their integrands, in order to identify µ and j , In particular, for the considered seven cases,
the master formula (4) yields the decomposition j = c1 e1 , in terms of just one basic form, e1 = dz, finally implying,

Inm = c1 E1 ,

where c1 is computed in terms of intersection numbers. In the considered cases, given the adopted choice of the bases of forms,
it happens that only one master integrals contributes, i.e. E1, but, in general, the contributions of more master integrals has to be
expected.

Green’s Functions and Kontsevich-Witten t-Function. Partition functions play a key role in the description of dynamical
systems in Statistical Mechanics and Quantum Field Theory, as generators of correlation functions. We consider two
paradigmatic examples: the n-point Green’s functions in Field Theory, Gn, and the Kontsevich-Witten matrix integral ZKW for
t-function of integrable systems48, 49, respectively defined as,

Gn ⌘
R

Df f(x1) · · ·f(xn) exp[�SE ]R
Df exp[�SE ]

, and ZKW ⌘

R
dF exp

h
�Tr

⇣
� i

3! F3 + L
2 F2

⌘i

R
dF exp

h
�Tr

⇣
L
2 F2

⌘i ,

for generic fields f(x) and for any given action SE , and for generic positive Hermitian field-matrix F. Both definitions can be
read as a ratio of twisted periods integrals (6), as

c1 =

R
G µ jR
G µ e1

, equivalently rewritten as
Z

G
µ j = c1 E1 ,
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1. Identify a univariate twisted period integral of the form (1),
Z

G
µ j , (6)

with twist µ , and differential 1-form j = ĵ dz. If µ is not multivalued, replace it with the regulated twist u = u(r), by
introducing a regulator r , so that, for a suitable value r0, u(r0) = µ , and determine the dimension n of the vector space
of differential forms.

2. After choosing the bases of forms ei ⌘ êi dz and dual forms hi ⌘ ĥi dz, with ĥi = êi, such that ê1 = ĥ1 = 1, decompose j
in terms of ei, by means of (4), i.e. j = c1 e1 + c2 e2 + . . .+ cn en , (eventually, taking the r ! r0 limit, to remove the
dependence on the regulator).

3. Translate the decomposition of j to the one of the corresponding integral,
Z

G
µ j = c1 E1 + c2 E2 + . . .+ cn En , with E1 ⌘

Z

G
µ dz , and E j =

Z

G
µ e j , ( j 6= 1) , (7)

and compare the result with the literature.
Let us observe that: i. if n = 1, the result comes just from the contribution of E1; ii. if n > 1 and ci = 0 for i > 1, the
result still comes just from the contribution of E1; iii. given its definition, E1 represents the total volume of the integration
domain. Moreover, the choice of the basis ei is arbitrary, and Âi ciEi does not depend on the choice of Ei. Here we
opt for e1 = dz, for illustration purposes. Alternative choices, e.g. e1 = d ln(z), are equivalent. Intersection numbers of
twisted dlog-forms can be directly computed by means of (global) Residue theorem19 - an aspect we will elaborate on, in
the context of Quantum Mechanics, elsewhere.

Orthogonal Polynomials and Matrix Elements. We tested our algorithm by re-deriving, in a novel fashion, polynomial
orthogonality relations, of the type,

Inm ⌘
Z

G
Pn(z)Pm(z) f (z)dz ,

in the case of Laguerre L(r)
n , Legendre Pn, Tchebyshev Tn, Gegenbauer C(r)

n , and Hermite Hn polynomials; as well as matrix
elements of quantum mechanical operators O , of the type,

Inm ⌘ hn|O|mi=
Z

G
y⇤

n (z)O(z)ym(z) f (z)dz ,

appearing in the quantum description of the univariate Harmonic Oscillator and of the Hydrogen Atom, where f (z)dz represents
the integration measure of the considered problem. In each case, Inm can be naturally interpreted as twisted period integrals of
type (6), upon properly redefining their integrands, in order to identify µ and j , In particular, for the considered seven cases,
the master formula (4) yields the decomposition j = c1 e1 , in terms of just one basic form, e1 = dz, finally implying,

Inm = c1 E1 ,

where c1 is computed in terms of intersection numbers. In the considered cases, given the adopted choice of the bases of forms,
it happens that only one master integrals contributes, i.e. E1, but, in general, the contributions of more master integrals has to be
expected.

Green’s Functions and Kontsevich-Witten t-Function. Partition functions play a key role in the description of dynamical
systems in Statistical Mechanics and Quantum Field Theory, as generators of correlation functions. We consider two
paradigmatic examples: the n-point Green’s functions in Field Theory, Gn, and the Kontsevich-Witten matrix integral ZKW for
t-function of integrable systems48, 49, respectively defined as,
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dF exp
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for generic fields f(x) and for any given action SE , and for generic positive Hermitian field-matrix F. Both definitions can be
read as a ratio of twisted periods integrals (6), as

c1 =

R
G µ jR
G µ e1

, equivalently rewritten as
Z

G
µ j = c1 E1 ,
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1. Identify a univariate twisted period integral of the form (1),
Z

G
µ j , (6)

with twist µ , and differential 1-form j = ĵ dz. If µ is not multivalued, replace it with the regulated twist u = u(r), by
introducing a regulator r , so that, for a suitable value r0, u(r0) = µ , and determine the dimension n of the vector space
of differential forms.

2. After choosing the bases of forms ei ⌘ êi dz and dual forms hi ⌘ ĥi dz, with ĥi = êi, such that ê1 = ĥ1 = 1, decompose j
in terms of ei, by means of (4), i.e. j = c1 e1 + c2 e2 + . . .+ cn en , (eventually, taking the r ! r0 limit, to remove the
dependence on the regulator).

3. Translate the decomposition of j to the one of the corresponding integral,
Z

G
µ j = c1 E1 + c2 E2 + . . .+ cn En , with E1 ⌘

Z

G
µ dz , and E j =

Z

G
µ e j , ( j 6= 1) , (7)

and compare the result with the literature.
Let us observe that: i. if n = 1, the result comes just from the contribution of E1; ii. if n > 1 and ci = 0 for i > 1, the
result still comes just from the contribution of E1; iii. given its definition, E1 represents the total volume of the integration
domain. Moreover, the choice of the basis ei is arbitrary, and Âi ciEi does not depend on the choice of Ei. Here we
opt for e1 = dz, for illustration purposes. Alternative choices, e.g. e1 = d ln(z), are equivalent. Intersection numbers of
twisted dlog-forms can be directly computed by means of (global) Residue theorem19 - an aspect we will elaborate on, in
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orthogonality relations, of the type,
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n , Legendre Pn, Tchebyshev Tn, Gegenbauer C(r)

n , and Hermite Hn polynomials; as well as matrix
elements of quantum mechanical operators O , of the type,
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appearing in the quantum description of the univariate Harmonic Oscillator and of the Hydrogen Atom, where f (z)dz represents
the integration measure of the considered problem. In each case, Inm can be naturally interpreted as twisted period integrals of
type (6), upon properly redefining their integrands, in order to identify µ and j , In particular, for the considered seven cases,
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where c1 is computed in terms of intersection numbers. In the considered cases, given the adopted choice of the bases of forms,
it happens that only one master integrals contributes, i.e. E1, but, in general, the contributions of more master integrals has to be
expected.

Green’s Functions and Kontsevich-Witten t-Function. Partition functions play a key role in the description of dynamical
systems in Statistical Mechanics and Quantum Field Theory, as generators of correlation functions. We consider two
paradigmatic examples: the n-point Green’s functions in Field Theory, Gn, and the Kontsevich-Witten matrix integral ZKW for
t-function of integrable systems48, 49, respectively defined as,
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for generic fields f(x) and for any given action SE , and for generic positive Hermitian field-matrix F. Both definitions can be
read as a ratio of twisted periods integrals (6), as
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G µ jR
G µ e1

, equivalently rewritten as
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i) Green’s Function

According to our evaluation algorithm, we decompose j using the master decomposition formula (4), by following the same
pattern previously applied to Hermite’s polynomials. In Tab. 1, we summarize the relevant ingredients of the decomposition.
They can be used to test our algorithm, and reproduce, for instance, the following known cases51: hn|mi= dnm ; hn|z2k+1|ni= 0 ;
hn|z4|ni= (3/4)(2n2 +2n+1) ; hn|z3|n�3i=

p
n(n�1)(n�2)/8 ; hn|z3|n�1i=

p
9n3/8 .

The mean values of the Hamiltonian operator hn|H|ni, with H in coordinate space, defined as H ⌘ (1/2)(�—2 + z2), yield
twisted period integrals with j being a linear combination of even powers of z, i.e. j = Ân

k=0 bk z2k, for suitable coefficients bk.
We verified that their decomposition via intersection numbers gives the expected result hn|H|ni= (n+1/2).

Hydrogen Atom. The radial eigenfunctions of the H-atom in position space (r ⌘ z), with principal quantum number n, and
orbital quantum number `, (for unitary Bohr radius a0 = 1) are defined as

hz|n,`i= Rn,`(z) = e�
z
n Wn,`(z) , with Wn,`(z)⌘ Nn`

✓
2z
n

◆`

L2`+1
(n�`�1)

✓
2z
n

◆
, (13)

in terms of Laguerre polynomials, where the normalization factors are, Nn` = (2/n)3/2
p
(n� `�1)!/(2n(n+ `)!) .

For illustration purposes, let us consider matrix elements for arbitrary principal quantum number n, and identical orbital
quantum number `, of the type,

hn1,`|zk|n2,`i=
Z •

0
dzz2 Rn1,`(z)zk Rn2,`(z) =

Z

G
µ j = c1 E1 , with µ ⌘ z2 e�z

⇣
1

n1
+ 1

n2

⌘

, and j ⌘Wn1,`(z)zk Wn2,`(z) . (14)

Tab. 1 contains the relevant ingredients of the decomposition. They can be used to test our algorithm, and reproduce the
following known cases51: hn1,`|n2,`i= dn1n2 ; hn,`|z|n,`i= (1/2)(3n2 � `(`+1)) ; hn,`|z�1|n,`i= 1/n2 ; hn,`|z�2|n,`i=
2/(n3(2`+1)) ; hn,`|z�3|n,`i= 2/(n3`(`+1)(2`+1)) ; to list a few.

Green’s functions
The Euclidean n-point Green’s functions in Field Theory, Gn = Gn(x1, . . . ,xn) is a for generic fields f(x), and for any given
action SE , is defined as

Gn ⌘
R

Df f(x1) · · ·f(xn)e�SE
R

Df e�SE
, equivalently written as

Z
Df f(x1) · · ·f(xn)e�SE = Gn

Z
Df e�SE . (15)

The latter can be read as a relation between integral of type (6),
Z

G
µ j = Gn E1 , with µ ⌘ e�SE , j ⌘ f(x1) · · ·f(xn)Df , E1 ⌘

Z

G
µ e1 , and e1 ⌘ Df . (16)

Therefore, Gn can be interpreted as the coefficient of the projection of the cocycle j on the master form e1, i.e. j = c1 e1, with
c1 = Gn, and it can be determined within intersection theory, as observed in35, 36.

Single field, f 4-theory
Let us consider a toy theory for a real scalar field f(x), defined by the action SE ⌘ S0 + eS1 , with S0 = (g/2)f 2(x) , and
S1 = f 4(x) , where S0 represents the free kinetic term, and S1, a quartic self-interaction term, with coupling constant e . By
replacing f(x) with the coordinate z, i.e. f(x)⌘ z, the n-point Green’s function Gn for this theory can be defined through (16),
and can be determined by applying our computation algorithm to the decomposition of the forms j = zn dz .

Free theory. The n-point Green’s function G(0)
n in the free theory, is defined by considering just the kinetic term in the

definition of µ ⌘ e�S0 , and it can be computed by using the master decomposition formula (4). In fact, as for the case
of the Hermite polynomials, let us consider u defined as u ⌘ zr µ , such that limr!0 u = µ . For this type of Gaussian
integrals, the dimension of the cohomology group is n = 2, (see the case of Hermite polynomials in Tab.1, which can be
obtained by setting g = 2), and we take the following basis of cocycles and dual cocycles, {ê1, ê2} = {ĥ1, ĥ2} = {1,1/z},
yielding the intersection matrix, C = diagonal(1/g,1/r) . By applying the master decomposition formula (4), and taking
the r ! 0 limit, the decomposition of j in terms of the master forms e1 and e2, reads j = c1 e1 + c2 e2, with c2 = 0, where
c1 = G(0)

n = 1/gn/2(n�1)!! , for even n values. This result corresponds to the application of Wick’s theorem in Quantum Field
Theory, which in the free theory allows rewriting any n-point functions combinatorially, in terms of products of two-point
functions. From the general result of the n-point correlator, we can read the 2-point Green function for the free theory,
corresponding to the well-known propagator of the f field, G(0)

2 = 1/g .
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c1 = G(0)

n = 1/gn/2(n�1)!! , for even n values. This result corresponds to the application of Wick’s theorem in Quantum Field
Theory, which in the free theory allows rewriting any n-point functions combinatorially, in terms of products of two-point
functions. From the general result of the n-point correlator, we can read the 2-point Green function for the free theory,
corresponding to the well-known propagator of the f field, G(0)
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According to our evaluation algorithm, we decompose j using the master decomposition formula (4), by following the same
pattern previously applied to Hermite’s polynomials. In Tab. 1, we summarize the relevant ingredients of the decomposition.
They can be used to test our algorithm, and reproduce, for instance, the following known cases51: hn|mi= dnm ; hn|z2k+1|ni= 0 ;
hn|z4|ni= (3/4)(2n2 +2n+1) ; hn|z3|n�3i=
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n(n�1)(n�2)/8 ; hn|z3|n�1i=

p
9n3/8 .

The mean values of the Hamiltonian operator hn|H|ni, with H in coordinate space, defined as H ⌘ (1/2)(�—2 + z2), yield
twisted period integrals with j being a linear combination of even powers of z, i.e. j = Ân

k=0 bk z2k, for suitable coefficients bk.
We verified that their decomposition via intersection numbers gives the expected result hn|H|ni= (n+1/2).

Hydrogen Atom. The radial eigenfunctions of the H-atom in position space (r ⌘ z), with principal quantum number n, and
orbital quantum number `, (for unitary Bohr radius a0 = 1) are defined as
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✓
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(n�`�1)

✓
2z
n

◆
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in terms of Laguerre polynomials, where the normalization factors are, Nn` = (2/n)3/2
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(n� `�1)!/(2n(n+ `)!) .

For illustration purposes, let us consider matrix elements for arbitrary principal quantum number n, and identical orbital
quantum number `, of the type,

hn1,`|zk|n2,`i=
Z •

0
dzz2 Rn1,`(z)zk Rn2,`(z) =

Z

G
µ j = c1 E1 , with µ ⌘ z2 e�z

⇣
1

n1
+ 1

n2

⌘

, and j ⌘Wn1,`(z)zk Wn2,`(z) . (14)

Tab. 1 contains the relevant ingredients of the decomposition. They can be used to test our algorithm, and reproduce the
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Green’s functions
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Df e�SE
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Z
Df f(x1) · · ·f(xn)e�SE = Gn

Z
Df e�SE . (15)

The latter can be read as a relation between integral of type (6),
Z

G
µ j = Gn E1 , with µ ⌘ e�SE , j ⌘ f(x1) · · ·f(xn)Df , E1 ⌘

Z

G
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Therefore, Gn can be interpreted as the coefficient of the projection of the cocycle j on the master form e1, i.e. j = c1 e1, with
c1 = Gn, and it can be determined within intersection theory, as observed in35, 36.

Single field, f 4-theory
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S1 = f 4(x) , where S0 represents the free kinetic term, and S1, a quartic self-interaction term, with coupling constant e . By
replacing f(x) with the coordinate z, i.e. f(x)⌘ z, the n-point Green’s function Gn for this theory can be defined through (16),
and can be determined by applying our computation algorithm to the decomposition of the forms j = zn dz .

Free theory. The n-point Green’s function G(0)
n in the free theory, is defined by considering just the kinetic term in the

definition of µ ⌘ e�S0 , and it can be computed by using the master decomposition formula (4). In fact, as for the case
of the Hermite polynomials, let us consider u defined as u ⌘ zr µ , such that limr!0 u = µ . For this type of Gaussian
integrals, the dimension of the cohomology group is n = 2, (see the case of Hermite polynomials in Tab.1, which can be
obtained by setting g = 2), and we take the following basis of cocycles and dual cocycles, {ê1, ê2} = {ĥ1, ĥ2} = {1,1/z},
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n = 1/gn/2(n�1)!! , for even n values. This result corresponds to the application of Wick’s theorem in Quantum Field
Theory, which in the free theory allows rewriting any n-point functions combinatorially, in terms of products of two-point
functions. From the general result of the n-point correlator, we can read the 2-point Green function for the free theory,
corresponding to the well-known propagator of the f field, G(0)
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Type u n êi C-matrix r0 E1 c1

L(r)
n zr exp(�z) 1 1 r – G(1+r) (r +1)(r +2) · · ·(r +n)/n!

Pn (z2 �1)r 1 1 2r/(4r2 �1) 0 2 1/(2n+1)
Tn (1� z2)r 1 1 2r/(4r2 �1) �1/2 p 1/2
C(r)

n (1� z2)r�1/2 1 1 (1�2r)/(4r(r �1)) –
p

pG(1/2+r)/G(1+r) r(2r(2r +1) · · ·(2r +n�1))/((n+r)n!)
Hn zr exp(�z2) 2 1,1/z diagonal(1/2,1/r) 0

p
p 2nn!

Wn zr exp(�z2) 2 1,1/z diagonal(1/2,1/r) 0
p

p see Methods
Wn,` zr+2 exp(�z(n1 +n2)/(n1n2)) 1 1 (n1n2/(n1 +n2))2(2+r) 0 2(n1n2/(n1 +n2))3 see Methods

G(0)
n zr exp(�g z2/2) 2 1,1/z diagonal(1/g,1/r) 0 not needed (n�1)!!/gn/2

Z(n)
KW zr exp(�z2 ) 2 1,1/z diagonal(1/2,1/r) 0 not needed (�2/9)n (L�3n/(2n)!) ’3n�1

j=0 ( j+1/2)

Table 1. Functions and parameters of the decompositions involving orthogonal polynomials (rows 1:5) quantum mechanical
wave functions (rows 6,7), partition functions (rows 8,9).

upon proper identification of µ and j , according to the considered case. Therefore, Gn and ZKW can be interpreted as the
coefficient c1 of the projection of j on the master form e1, i.e. j = c1 e1, and determined in terms of intersection numbers by
using (4). In this work, we consider simple theoretical models, admitting univariate integral representations of Gn and ZKW .
Within the theory of a real scalar field with quartic self-interaction, also considered in35, 36, we compute Gn perturbatively, in
terms of the Green’s function of the free theory, G(0)

n , as well as derive relations among n-point functions, that are exact in the
coupling constant, hence obtaining, in a novel fashion, results that are canonically obtained by applying Wick’s theorem. For
ZKW , we consider the univariate model discussed by Itzykson and Zuber50, and determine it perturbatively, as ZKW = Â•

n=0 Z(n)
KW ,

by evaluating the coefficients of the series in terms of intersection numbers, finally finding an alternative, yet equivalent result
to the one in the literature.

All results are displayed in Table 1, whereas the Methods Section contains the computational details.

Conclusion
We exported to Quantum Mechanics and Quantum Field Theory a decomposition algorithm and computational tools recently
developed in the context of scattering amplitudes’ and Feynman integrals’ calculus. Orthogonality relations for polynomials,
matrix elements of quantum mechanical operators, Green functions within Wick’s theorem (hence moments of distributions
within Isserlis’ theorem), Witten-Kontsevich partition function of integrable systems, therefore, provided additional proof
of evidence on the role of the de Rham Intersection Theory in fundamental physics. When these analyses developed within
physics contexts are combined with the study of Aomoto-Gel’fand integrals, Euler-Mellin integrals, GKZ hypergeometric
systems, and other special functions, which have been the natural target of investigation within pure mathematical areas, like
differential and algebraic topology, combinatorics and number theory, they seem to point toward a uniform framework ruling
calculus which spans across various scientific disciplines.

Our results are applicable to the study of generalised moments of probability distributions: the dimension of the cohomology
groups corresponds to the number of independent moments - which we can call master moments; the intersection numbers allow
us to derive linear and quadratic relations among them. The latter can be used for decomposing all moments of a distribution in
terms of master moments, as well as to build functional equations, difference and differential equations to evaluate the master
moments. In this fashion, one can export the experience and tools developed in Feynman calculus in all problems that admit a
statistical interpretation.

In our vision, the moments of distribution admit a physical interpretation in terms of generalised fluxes and, therefore
represent conserved quantities, invariant under deformations of the differential forms: De Rham twisted theory = Stokes’s
theorem for fluxes of singular differential forms through hypersurfaces with holes. Our study shows that eigenfunctions in
Quantum Mechanics and fields in Quantum Field Theory, which represent elements of Hilbert and Fock’s spaces, respectively,
that can have infinite dimensions, generate matrix-elements that belong to de Rham’s cohomology groups, (or better to spaces
that are isomorphic to them) which have a finite number of dimensions. Therefore, the knowledge of the master moments and
the inner product within the cohomology group is sufficient to determine all moments of distributions.

Our analysis, carried out for univariate integral representations, points to the importance of developing efficient methods for
the computations of multivariate intersection numbers for differential forms or to better say, for twisted cocycles, which are
crucial for dealing with moments of generical multivariate distributions. The simple, paradigmatic applications discussed here
can be considered the first step toward a systematic analysis of Quantum Mechanics in light of Intersection Theory. On the
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Type u n êi C-matrix r0 E1 c1

L(r)
n zr exp(�z) 1 1 r – G(1+r) (r +1)(r +2) · · ·(r +n)/n!

Pn (z2 �1)r 1 1 2r/(4r2 �1) 0 2 1/(2n+1)
Tn (1� z2)r 1 1 2r/(4r2 �1) �1/2 p 1/2
C(r)

n (1� z2)r�1/2 1 1 (1�2r)/(4r(r �1)) –
p

pG(1/2+r)/G(1+r) r(2r(2r +1) · · ·(2r +n�1))/((n+r)n!)
Hn zr exp(�z2) 2 1,1/z diagonal(1/2,1/r) 0

p
p 2nn!

Wn zr exp(�z2) 2 1,1/z diagonal(1/2,1/r) 0
p

p see Methods
Wn,` zr+2 exp(�z(n1 +n2)/(n1n2)) 1 1 (n1n2/(n1 +n2))2(2+r) 0 2(n1n2/(n1 +n2))3 see Methods

G(0)
n zr exp(�g z2/2) 2 1,1/z diagonal(1/g,1/r) 0 not needed (n�1)!!/gn/2

Z(n)
KW zr exp(�z2 ) 2 1,1/z diagonal(1/2,1/r) 0 not needed (�2/9)n (L�3n/(2n)!) ’3n�1

j=0 ( j+1/2)

Table 1. Functions and parameters of the decompositions involving orthogonal polynomials (rows 1:5) quantum mechanical
wave functions (rows 6,7), partition functions (rows 8,9).

upon proper identification of µ and j , according to the considered case. Therefore, Gn and ZKW can be interpreted as the
coefficient c1 of the projection of j on the master form e1, i.e. j = c1 e1, and determined in terms of intersection numbers by
using (4). In this work, we consider simple theoretical models, admitting univariate integral representations of Gn and ZKW .
Within the theory of a real scalar field with quartic self-interaction, also considered in35, 36, we compute Gn perturbatively, in
terms of the Green’s function of the free theory, G(0)

n , as well as derive relations among n-point functions, that are exact in the
coupling constant, hence obtaining, in a novel fashion, results that are canonically obtained by applying Wick’s theorem. For
ZKW , we consider the univariate model discussed by Itzykson and Zuber50, and determine it perturbatively, as ZKW = Â•

n=0 Z(n)
KW ,

by evaluating the coefficients of the series in terms of intersection numbers, finally finding an alternative, yet equivalent result
to the one in the literature.

All results are displayed in Table 1, whereas the Methods Section contains the computational details.

Conclusion
We exported to Quantum Mechanics and Quantum Field Theory a decomposition algorithm and computational tools recently
developed in the context of scattering amplitudes’ and Feynman integrals’ calculus. Orthogonality relations for polynomials,
matrix elements of quantum mechanical operators, Green functions within Wick’s theorem (hence moments of distributions
within Isserlis’ theorem), Witten-Kontsevich partition function of integrable systems, therefore, provided additional proof
of evidence on the role of the de Rham Intersection Theory in fundamental physics. When these analyses developed within
physics contexts are combined with the study of Aomoto-Gel’fand integrals, Euler-Mellin integrals, GKZ hypergeometric
systems, and other special functions, which have been the natural target of investigation within pure mathematical areas, like
differential and algebraic topology, combinatorics and number theory, they seem to point toward a uniform framework ruling
calculus which spans across various scientific disciplines.

Our results are applicable to the study of generalised moments of probability distributions: the dimension of the cohomology
groups corresponds to the number of independent moments - which we can call master moments; the intersection numbers allow
us to derive linear and quadratic relations among them. The latter can be used for decomposing all moments of a distribution in
terms of master moments, as well as to build functional equations, difference and differential equations to evaluate the master
moments. In this fashion, one can export the experience and tools developed in Feynman calculus in all problems that admit a
statistical interpretation.

In our vision, the moments of distribution admit a physical interpretation in terms of generalised fluxes and, therefore
represent conserved quantities, invariant under deformations of the differential forms: De Rham twisted theory = Stokes’s
theorem for fluxes of singular differential forms through hypersurfaces with holes. Our study shows that eigenfunctions in
Quantum Mechanics and fields in Quantum Field Theory, which represent elements of Hilbert and Fock’s spaces, respectively,
that can have infinite dimensions, generate matrix-elements that belong to de Rham’s cohomology groups, (or better to spaces
that are isomorphic to them) which have a finite number of dimensions. Therefore, the knowledge of the master moments and
the inner product within the cohomology group is sufficient to determine all moments of distributions.

Our analysis, carried out for univariate integral representations, points to the importance of developing efficient methods for
the computations of multivariate intersection numbers for differential forms or to better say, for twisted cocycles, which are
crucial for dealing with moments of generical multivariate distributions. The simple, paradigmatic applications discussed here
can be considered the first step toward a systematic analysis of Quantum Mechanics in light of Intersection Theory. On the

5/11

According to our evaluation algorithm, we decompose j using the master decomposition formula (4), by following the same
pattern previously applied to Hermite’s polynomials. In Tab. 1, we summarize the relevant ingredients of the decomposition.
They can be used to test our algorithm, and reproduce, for instance, the following known cases51: hn|mi= dnm ; hn|z2k+1|ni= 0 ;
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The mean values of the Hamiltonian operator hn|H|ni, with H in coordinate space, defined as H ⌘ (1/2)(�—2 + z2), yield
twisted period integrals with j being a linear combination of even powers of z, i.e. j = Ân
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in terms of Laguerre polynomials, where the normalization factors are, Nn` = (2/n)3/2
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action SE , is defined as
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Therefore, Gn can be interpreted as the coefficient of the projection of the cocycle j on the master form e1, i.e. j = c1 e1, with
c1 = Gn, and it can be determined within intersection theory, as observed in35, 36.

Single field, f 4-theory
Let us consider a toy theory for a real scalar field f(x), defined by the action SE ⌘ S0 + eS1 , with S0 = (g/2)f 2(x) , and
S1 = f 4(x) , where S0 represents the free kinetic term, and S1, a quartic self-interaction term, with coupling constant e . By
replacing f(x) with the coordinate z, i.e. f(x)⌘ z, the n-point Green’s function Gn for this theory can be defined through (16),
and can be determined by applying our computation algorithm to the decomposition of the forms j = zn dz .

Free theory. The n-point Green’s function G(0)
n in the free theory, is defined by considering just the kinetic term in the

definition of µ ⌘ e�S0 , and it can be computed by using the master decomposition formula (4). In fact, as for the case
of the Hermite polynomials, let us consider u defined as u ⌘ zr µ , such that limr!0 u = µ . For this type of Gaussian
integrals, the dimension of the cohomology group is n = 2, (see the case of Hermite polynomials in Tab.1, which can be
obtained by setting g = 2), and we take the following basis of cocycles and dual cocycles, {ê1, ê2} = {ĥ1, ĥ2} = {1,1/z},
yielding the intersection matrix, C = diagonal(1/g,1/r) . By applying the master decomposition formula (4), and taking
the r ! 0 limit, the decomposition of j in terms of the master forms e1 and e2, reads j = c1 e1 + c2 e2, with c2 = 0, where
c1 = G(0)

n = 1/gn/2(n�1)!! , for even n values. This result corresponds to the application of Wick’s theorem in Quantum Field
Theory, which in the free theory allows rewriting any n-point functions combinatorially, in terms of products of two-point
functions. From the general result of the n-point correlator, we can read the 2-point Green function for the free theory,
corresponding to the well-known propagator of the f field, G(0)
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2-point function: the propagator

Perturbation Theory. The n-point correlation function Gn in the full theory can be computed perturbatively, in the small
coupling limit, e ! 0, and expressed in terms of G(0)

n . For example, the determination of the next-to-leading order (NLO)
corrections to the 2-point function, proceeds as follows,

G2 =

R
dz z2 e�S0�eS1
R

dz e�S0�eS1
= G(0)

2 + e
⇣

G(0)
2 G(0)

4 �G(0)
6

⌘
+O(e2) =

1
g

✓
1�12e 1

g2

◆
+O(e2) , (17)

where the term proportional to e is the NLO correction to the free propagator. Notice that, in this result, Wick’s theorem still
appears in the combinatorics of the G(0)

2 j terms.

Exact theory. Let us consider now the decomposition of j = zn dz in the exact theory, with µ ⌘ e�SE , and evaluate the
intersection numbers with u ⌘ zr µ , such that limr!0 u = µ . In this case, n = 4, namely, the dimension of the twisted
cohomology group is larger than in the free theory case. We choose a basis of cocycles, {ê1, ê2, ê3, ê4} = {1,1/z,z,z2},
and for the dual cocycles {ĥi}4

i=1 = {êi}4
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Z

G
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Kontsevich-Witten t function
In the study of completely integrable systems, like e.g. the Korteweg de Vries equation, the so-called Sato’s t functions can
be seen as generating functions of integrable hierarchies50, a special realization being given by the Kontsevich-Witten (KW)
t-function48, 49. As the last application, let us consider the univariate version of the KW-matrix, generically defined as,
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h
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⇣
� i

3! F3 + L
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L
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which can be Taylor expanded in series50, as ZKW = Â•
n=0 Z(n)

KW . The series coefficients are determined from the master formula,R
uj = c1 E1 with u and E1 defined as for the Gaussian-like integrals Hn and Wn in Tab.1, and j ⌘ Nn z6n, where Nn ⌘ e2n and

e ⌘ i/(3!)(L/2)�3/2, finally yielding c1 = Z(n)
KW = (�2/9)n (L�3n/(2n)!) ’3n�1

j=0 ( j+1/2) , in agreement with the literature50.
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b. Perturbation Theory. The n-point correlation
function Gn in the full theory can be computed perturba-
tively, in the small coupling limit, ϵ → 0, and expressed

in terms of G(0)
n .

Let us describe the determination of the next-to-leading
order (NLO) corrections to the 2-point function,

G2 =

∫

dz z2 e−S0−ϵS1

∫

dz e−S0−ϵS1

=

∫

dz z2 e−S0(1− ϵS1 + . . .)
∫

dz e−S0(1− ϵS1 + . . .)

=
(

G(0)
2 − ϵG(0)

6 + . . .
)(

1 + ϵG(0)
4 + . . .

)

= G(0)
2 + ϵ

(

G(0)
2 G(0)

4 −G(0)
6

)

+O(ϵ2)

=
1

γ

(

1− 12ϵ
1

γ2

)

+O(ϵ2) , (59)

where the term proportional to ϵ is the NLO correction
to the free propagator. Notice that in this result Wick’s

theorem still appears in the combinatorics of the G(0)
2j

terms.
c. Exact theory. Let us consider now the decompo-

sition of ϕ = zn dz in the exact theory, with

µ ≡ e−SE , (60)

and evaluate the intersection numbers with

u ≡ zρ µ , (61)

such that limρ→0 u = µ. In this case, ν = 4, namely, the
dimension of the twisted cohomology group is larger than
in the free theory case. We choose a basis of cocycles,
{ê1, ê2, ê3, ê4} = {1, 1/z, z, z2}, and for the dual cocycles
{ĥi}4i=1 = {êi}4i=1, yielding the intersection matrix,

C =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 1
4γ

0 1
ρ 0 0

0 0 1
4γ 0

1
4γ 0 0 − γ

16ϵ2

⎞

⎟

⎟

⎟

⎟

⎠

. (62)

The master decomposition formula (10) can be used
to project the cocycle ϕ = z4 dz onto the master forms,
which, after taking the ρ→ 0 limit reads,

ϕ = c1 e1 + c2 e2 + c3 e3 + c4 e4 , (63)

with

c1 =
1

4ϵ
, c2 = 0 , c3 = 0 , c4 = −

γ

4ϵ
. (64)

The cocycles decomposition translates into the integral
relation,

∫

Γ
dz z4 e−SE = c1

∫

Γ
dz e−SE + c4

∫

Γ
dz z2 e−SE ,(65)

which, by dividing both sides by the first integral appear-
ing in the r.h.s., can be rewritten as a relation between
n-point functions in the exact theory,

G4 = c1 + c4G2 . (66)

This relation can be used to express G2 in terms of G4,
as

G2 =
1

γ

(

1− 4ϵG4

)

, (67)

which is an all-order result. To verify that it is compatible
with the result earlier obtained in perturbation theory, we
observe that in order to determine G2 up to the first order
in ϵ, it is sufficient to keep just the leading order of G4 in

the r.h.s. i.e. G4 = G(0)
4 +O(ϵ), implying

G2 =
1

γ

(

1− 4ϵG(0)
4

)

+O(ϵ4), (68)

which corresponds to the same result obtained in pertur-
bation theory, upon substituting

G(0)
4 =

1

γ2
3! ! =

3

γ2
, (69)

which can be read out of (57).

CONCLUSION

We showed that Intersection Theory of Twisted de
Rham Cohomolgies plays a pivotal role on the algebraic
structure of special functions that appear in Quantum
Mechanics and Quantum Field Theory.

We applied de Rham’s theory to simple, univariate in-
tegrals, built out of orthogonal polynomials, quantum me-
chanical eigenfunctions, and fields, by interpreting them
as twisted period integrals, namely as pairings of twisted
cycles and cocycles. We derived the algebraic properties
of these integral functions from the decomposition prop-
erties of cocycles, showing that the linear relations they
obey can be derived by means of intersection numbers
of twisted cocycles. We exported to Quantum Mechan-
ics and Quantum Field Theory a decomposition algorithm
and computational tools recently developed in the context
of scattering amplitudes’ and Feynman integrals’ calculus.
Orthogonality relations for polynomials, matrix elements
of quantum mechanical operators, Green functions within
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{ê1, ê2, ê3, ê4} = {1, 1/z, z, z2}, and for the dual cocycles
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of scattering amplitudes’ and Feynman integrals’ calculus.
Orthogonality relations for polynomials, matrix elements
of quantum mechanical operators, Green functions within

According to our evaluation algorithm, we decompose j using the master decomposition formula (4), by following the same
pattern previously applied to Hermite’s polynomials. In Tab. 1, we summarize the relevant ingredients of the decomposition.
They can be used to test our algorithm, and reproduce, for instance, the following known cases51: hn|mi= dnm ; hn|z2k+1|ni= 0 ;
hn|z4|ni= (3/4)(2n2 +2n+1) ; hn|z3|n�3i=

p
n(n�1)(n�2)/8 ; hn|z3|n�1i=

p
9n3/8 .

The mean values of the Hamiltonian operator hn|H|ni, with H in coordinate space, defined as H ⌘ (1/2)(�—2 + z2), yield
twisted period integrals with j being a linear combination of even powers of z, i.e. j = Ân

k=0 bk z2k, for suitable coefficients bk.
We verified that their decomposition via intersection numbers gives the expected result hn|H|ni= (n+1/2).

Hydrogen Atom. The radial eigenfunctions of the H-atom in position space (r ⌘ z), with principal quantum number n, and
orbital quantum number `, (for unitary Bohr radius a0 = 1) are defined as

hz|n,`i= Rn,`(z) = e�
z
n Wn,`(z) , with Wn,`(z)⌘ Nn`

✓
2z
n

◆`

L2`+1
(n�`�1)

✓
2z
n

◆
, (13)

in terms of Laguerre polynomials, where the normalization factors are, Nn` = (2/n)3/2
p
(n� `�1)!/(2n(n+ `)!) .

For illustration purposes, let us consider matrix elements for arbitrary principal quantum number n, and identical orbital
quantum number `, of the type,

hn1,`|zk|n2,`i=
Z •

0
dzz2 Rn1,`(z)zk Rn2,`(z) =

Z

G
µ j = c1 E1 , with µ ⌘ z2 e�z

⇣
1

n1
+ 1

n2

⌘

, and j ⌘Wn1,`(z)zk Wn2,`(z) . (14)

Tab. 1 contains the relevant ingredients of the decomposition. They can be used to test our algorithm, and reproduce the
following known cases51: hn1,`|n2,`i= dn1n2 ; hn,`|z|n,`i= (1/2)(3n2 � `(`+1)) ; hn,`|z�1|n,`i= 1/n2 ; hn,`|z�2|n,`i=
2/(n3(2`+1)) ; hn,`|z�3|n,`i= 2/(n3`(`+1)(2`+1)) ; to list a few.

Green’s functions
The Euclidean n-point Green’s functions in Field Theory, Gn = Gn(x1, . . . ,xn) is a for generic fields f(x), and for any given
action SE , is defined as

Gn ⌘
R

Df f(x1) · · ·f(xn)e�SE
R

Df e�SE
, equivalently written as

Z
Df f(x1) · · ·f(xn)e�SE = Gn

Z
Df e�SE . (15)

The latter can be read as a relation between integral of type (6),
Z

G
µ j = Gn E1 , with µ ⌘ e�SE , j ⌘ f(x1) · · ·f(xn)Df , E1 ⌘

Z

G
µ e1 , and e1 ⌘ Df . (16)

Therefore, Gn can be interpreted as the coefficient of the projection of the cocycle j on the master form e1, i.e. j = c1 e1, with
c1 = Gn, and it can be determined within intersection theory, as observed in35, 36.

Single field, f 4-theory
Let us consider a toy theory for a real scalar field f(x), defined by the action SE ⌘ S0 + eS1 , with S0 = (g/2)f 2(x) , and
S1 = f 4(x) , where S0 represents the free kinetic term, and S1, a quartic self-interaction term, with coupling constant e . By
replacing f(x) with the coordinate z, i.e. f(x)⌘ z, the n-point Green’s function Gn for this theory can be defined through (16),
and can be determined by applying our computation algorithm to the decomposition of the forms j = zn dz .

Free theory. The n-point Green’s function G(0)
n in the free theory, is defined by considering just the kinetic term in the

definition of µ ⌘ e�S0 , and it can be computed by using the master decomposition formula (4). In fact, as for the case
of the Hermite polynomials, let us consider u defined as u ⌘ zr µ , such that limr!0 u = µ . For this type of Gaussian
integrals, the dimension of the cohomology group is n = 2, (see the case of Hermite polynomials in Tab.1, which can be
obtained by setting g = 2), and we take the following basis of cocycles and dual cocycles, {ê1, ê2} = {ĥ1, ĥ2} = {1,1/z},
yielding the intersection matrix, C = diagonal(1/g,1/r) . By applying the master decomposition formula (4), and taking
the r ! 0 limit, the decomposition of j in terms of the master forms e1 and e2, reads j = c1 e1 + c2 e2, with c2 = 0, where
c1 = G(0)

n = 1/gn/2(n�1)!! , for even n values. This result corresponds to the application of Wick’s theorem in Quantum Field
Theory, which in the free theory allows rewriting any n-point functions combinatorially, in terms of products of two-point
functions. From the general result of the n-point correlator, we can read the 2-point Green function for the free theory,
corresponding to the well-known propagator of the f field, G(0)

2 = 1/g .
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6

type u ν êi C-matrix ρ0 E1

Harmonic Oscillator Wn zρ exp
(

−z2
)

2 1, 1/z diagonal(1/2, 1/ρ) 0
√
π

H-atom Wn,ℓ zρ exp(−z) 1 1 (n1n2/(n1 + n2))
2(2 + ρ) 0 2(n1n2/(n1 + n2))

3

Table II. Functions and parameters of the decomposition involving eigenfunctions.

B. n-point Green’s functions

The Euclidean n-point Green’s functions in Field The-
ory, Gn = Gn(x1, . . . , xn) is a for generic fields φ(x), and
for any given action SE , is defined as

Gn ≡
∫

Dφφ(x1) · · ·φ(xn) e−SE

∫

Dφ e−SE
. (45)

This equation is equivalent to,
∫

Dφφ(x1) · · ·φ(xn) e
−SE = Gn

∫

Dφ e−SE , (46)

which can be read as a relation between integral of type
(13),

∫

Γ
µϕ = Gn E1 , (47)

upon defining,

µ ≡ e−SE , (48)

ϕ ≡ φ(x1) · · ·φ(xn)Dφ , (49)

E1 ≡
∫

Γ
µ e1 , with e1 = Dφ . (50)

Therefore, Gn can be interpreted as the coefficient of the
projection of the cocycle ϕ on the master form e1, i.e.
ϕ = c1 e1, with c1 = Gn, and it can be determined within
intersection theory, as observed in [48, 49].

1. Single field, φ4-theory

Let us consider a toy theory for a real scalar field φ(x),
defined by the action

SE ≡ S0 + ϵS1 , (51)

with S0 =
1

2
γ φ2(x) , S1 = φ4(x) , (52)

where S0 represents the free kinetic term, and S1, a quar-
tic self-interaction term, with coupling constant ϵ.

By replacing φ(x) with the coordinate z, i.e. φ(x) ≡ z,
the n-point Green’s function Gn for this theory can be
defined through (47), and can be determined by applying
our computation algorithm to the decomposition of the
cocycle ϕ,

ϕ = zn dz . (53)

a. Free theory. The n-point Green’s function G(0)
n in

the free theory, is defined by considering just the kinetic
term in the definition of

µ ≡ e−S0 , (54)

and it can be computed by using the master decomposi-
tion formula (10). In fact, as for the case of the Hermite
polynomials, let us consider u defined as

u ≡ zρ µ , (55)

such that limρ→0 u = µ. For this type of Gaussian inte-
grals, the dimension of the cohomology group is ν = 2,
(see the case of Hermite polynomials in Tab.I, which can
be obtained by setting γ = 2), and we take the following
basis of cocycles and dual cocycles, {ê1, ê2} = {ĥ1, ĥ2} =
{1, 1/z}, yielding the intersection matrix,

C =

(

1
γ 0

0 1
ρ

)

. (56)

By applying the master decomposition formula (10), and
taking the ρ → 0 limit, the decomposition of ϕ in terms
of the master forms e1 and e2, reads ϕ = c1 e1 + c2 e2,
with c2 = 0, and

c1 = G(0)
n =

1

γn/2
(n− 1)! ! , for even n . (57)

This result corresponds to the application of Wick’s the-
orem in Quantum Field Theory, which in the free theory
allows to rewrite any n point functions combinatorially in
terms of products of two point functions. From the gen-
eral result of the n-point correlator, we can read the 2-
point correlation function for the free theory, correspond-
ing to the propagator of the φ field,

G(0)
2 =

1

γ
. (58)
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such that limρ→0 u = µ. For this type of Gaussian inte-
grals, the dimension of the cohomology group is ν = 2,
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be obtained by setting γ = 2), and we take the following
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This result corresponds to the application of Wick’s the-
orem in Quantum Field Theory, which in the free theory
allows to rewrite any n point functions combinatorially in
terms of products of two point functions. From the gen-
eral result of the n-point correlator, we can read the 2-
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with S0 =
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γ φ2(x) , S1 = φ4(x) , (52)

where S0 represents the free kinetic term, and S1, a quar-
tic self-interaction term, with coupling constant ϵ.

By replacing φ(x) with the coordinate z, i.e. φ(x) ≡ z,
the n-point Green’s function Gn for this theory can be
defined through (47), and can be determined by applying
our computation algorithm to the decomposition of the
cocycle ϕ,

ϕ = zn dz . (53)

a. Free theory. The n-point Green’s function G(0)
n in

the free theory, is defined by considering just the kinetic
term in the definition of

µ ≡ e−S0 , (54)

and it can be computed by using the master decomposi-
tion formula (10). In fact, as for the case of the Hermite
polynomials, let us consider u defined as

u ≡ zρ µ , (55)

such that limρ→0 u = µ. For this type of Gaussian inte-
grals, the dimension of the cohomology group is ν = 2,
(see the case of Hermite polynomials in Tab.I, which can
be obtained by setting γ = 2), and we take the following
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By applying the master decomposition formula (10), and
taking the ρ → 0 limit, the decomposition of ϕ in terms
of the master forms e1 and e2, reads ϕ = c1 e1 + c2 e2,
with c2 = 0, and

c1 = G(0)
n =

1

γn/2
(n− 1)! ! , for even n . (57)

This result corresponds to the application of Wick’s the-
orem in Quantum Field Theory, which in the free theory
allows to rewrite any n point functions combinatorially in
terms of products of two point functions. From the gen-
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point correlation function for the free theory, correspond-
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i) Green’s Function

According to our evaluation algorithm, we decompose j using the master decomposition formula (4), by following the same
pattern previously applied to Hermite’s polynomials. In Tab. 1, we summarize the relevant ingredients of the decomposition.
They can be used to test our algorithm, and reproduce, for instance, the following known cases51: hn|mi= dnm ; hn|z2k+1|ni= 0 ;
hn|z4|ni= (3/4)(2n2 +2n+1) ; hn|z3|n�3i=

p
n(n�1)(n�2)/8 ; hn|z3|n�1i=

p
9n3/8 .

The mean values of the Hamiltonian operator hn|H|ni, with H in coordinate space, defined as H ⌘ (1/2)(�—2 + z2), yield
twisted period integrals with j being a linear combination of even powers of z, i.e. j = Ân

k=0 bk z2k, for suitable coefficients bk.
We verified that their decomposition via intersection numbers gives the expected result hn|H|ni= (n+1/2).

Hydrogen Atom. The radial eigenfunctions of the H-atom in position space (r ⌘ z), with principal quantum number n, and
orbital quantum number `, (for unitary Bohr radius a0 = 1) are defined as

hz|n,`i= Rn,`(z) = e�
z
n Wn,`(z) , with Wn,`(z)⌘ Nn`

✓
2z
n

◆`

L2`+1
(n�`�1)

✓
2z
n

◆
, (13)

in terms of Laguerre polynomials, where the normalization factors are, Nn` = (2/n)3/2
p
(n� `�1)!/(2n(n+ `)!) .

For illustration purposes, let us consider matrix elements for arbitrary principal quantum number n, and identical orbital
quantum number `, of the type,

hn1,`|zk|n2,`i=
Z •

0
dzz2 Rn1,`(z)zk Rn2,`(z) =

Z

G
µ j = c1 E1 , with µ ⌘ z2 e�z

⇣
1

n1
+ 1

n2

⌘

, and j ⌘Wn1,`(z)zk Wn2,`(z) . (14)

Tab. 1 contains the relevant ingredients of the decomposition. They can be used to test our algorithm, and reproduce the
following known cases51: hn1,`|n2,`i= dn1n2 ; hn,`|z|n,`i= (1/2)(3n2 � `(`+1)) ; hn,`|z�1|n,`i= 1/n2 ; hn,`|z�2|n,`i=
2/(n3(2`+1)) ; hn,`|z�3|n,`i= 2/(n3`(`+1)(2`+1)) ; to list a few.

Green’s functions
The Euclidean n-point Green’s functions in Field Theory, Gn = Gn(x1, . . . ,xn) is a for generic fields f(x), and for any given
action SE , is defined as

Gn ⌘
R

Df f(x1) · · ·f(xn)e�SE
R

Df e�SE
, equivalently written as

Z
Df f(x1) · · ·f(xn)e�SE = Gn

Z
Df e�SE . (15)

The latter can be read as a relation between integral of type (6),
Z

G
µ j = Gn E1 , with µ ⌘ e�SE , j ⌘ f(x1) · · ·f(xn)Df , E1 ⌘

Z

G
µ e1 , and e1 ⌘ Df . (16)

Therefore, Gn can be interpreted as the coefficient of the projection of the cocycle j on the master form e1, i.e. j = c1 e1, with
c1 = Gn, and it can be determined within intersection theory, as observed in35, 36.

Single field, f 4-theory
Let us consider a toy theory for a real scalar field f(x), defined by the action SE ⌘ S0 + eS1 , with S0 = (g/2)f 2(x) , and
S1 = f 4(x) , where S0 represents the free kinetic term, and S1, a quartic self-interaction term, with coupling constant e . By
replacing f(x) with the coordinate z, i.e. f(x)⌘ z, the n-point Green’s function Gn for this theory can be defined through (16),
and can be determined by applying our computation algorithm to the decomposition of the forms j = zn dz .

Free theory. The n-point Green’s function G(0)
n in the free theory, is defined by considering just the kinetic term in the

definition of µ ⌘ e�S0 , and it can be computed by using the master decomposition formula (4). In fact, as for the case
of the Hermite polynomials, let us consider u defined as u ⌘ zr µ , such that limr!0 u = µ . For this type of Gaussian
integrals, the dimension of the cohomology group is n = 2, (see the case of Hermite polynomials in Tab.1, which can be
obtained by setting g = 2), and we take the following basis of cocycles and dual cocycles, {ê1, ê2} = {ĥ1, ĥ2} = {1,1/z},
yielding the intersection matrix, C = diagonal(1/g,1/r) . By applying the master decomposition formula (4), and taking
the r ! 0 limit, the decomposition of j in terms of the master forms e1 and e2, reads j = c1 e1 + c2 e2, with c2 = 0, where
c1 = G(0)

n = 1/gn/2(n�1)!! , for even n values. This result corresponds to the application of Wick’s theorem in Quantum Field
Theory, which in the free theory allows rewriting any n-point functions combinatorially, in terms of products of two-point
functions. From the general result of the n-point correlator, we can read the 2-point Green function for the free theory,
corresponding to the well-known propagator of the f field, G(0)

2 = 1/g .
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Therefore, Gn can be interpreted as the coefficient of the projection of the cocycle j on the master form e1, i.e. j = c1 e1, with
c1 = Gn, and it can be determined within intersection theory, as observed in35, 36.

Single field, f 4-theory
Let us consider a toy theory for a real scalar field f(x), defined by the action SE ⌘ S0 + eS1 , with S0 = (g/2)f 2(x) , and
S1 = f 4(x) , where S0 represents the free kinetic term, and S1, a quartic self-interaction term, with coupling constant e . By
replacing f(x) with the coordinate z, i.e. f(x)⌘ z, the n-point Green’s function Gn for this theory can be defined through (16),
and can be determined by applying our computation algorithm to the decomposition of the forms j = zn dz .

Free theory. The n-point Green’s function G(0)
n in the free theory, is defined by considering just the kinetic term in the

definition of µ ⌘ e�S0 , and it can be computed by using the master decomposition formula (4). In fact, as for the case
of the Hermite polynomials, let us consider u defined as u ⌘ zr µ , such that limr!0 u = µ . For this type of Gaussian
integrals, the dimension of the cohomology group is n = 2, (see the case of Hermite polynomials in Tab.1, which can be
obtained by setting g = 2), and we take the following basis of cocycles and dual cocycles, {ê1, ê2} = {ĥ1, ĥ2} = {1,1/z},
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According to our evaluation algorithm, we decompose j using the master decomposition formula (4), by following the same
pattern previously applied to Hermite’s polynomials. In Tab. 1, we summarize the relevant ingredients of the decomposition.
They can be used to test our algorithm, and reproduce, for instance, the following known cases51: hn|mi= dnm ; hn|z2k+1|ni= 0 ;
hn|z4|ni= (3/4)(2n2 +2n+1) ; hn|z3|n�3i=

p
n(n�1)(n�2)/8 ; hn|z3|n�1i=

p
9n3/8 .

The mean values of the Hamiltonian operator hn|H|ni, with H in coordinate space, defined as H ⌘ (1/2)(�—2 + z2), yield
twisted period integrals with j being a linear combination of even powers of z, i.e. j = Ân

k=0 bk z2k, for suitable coefficients bk.
We verified that their decomposition via intersection numbers gives the expected result hn|H|ni= (n+1/2).

Hydrogen Atom. The radial eigenfunctions of the H-atom in position space (r ⌘ z), with principal quantum number n, and
orbital quantum number `, (for unitary Bohr radius a0 = 1) are defined as

hz|n,`i= Rn,`(z) = e�
z
n Wn,`(z) , with Wn,`(z)⌘ Nn`

✓
2z
n

◆`

L2`+1
(n�`�1)

✓
2z
n

◆
, (13)

in terms of Laguerre polynomials, where the normalization factors are, Nn` = (2/n)3/2
p
(n� `�1)!/(2n(n+ `)!) .

For illustration purposes, let us consider matrix elements for arbitrary principal quantum number n, and identical orbital
quantum number `, of the type,

hn1,`|zk|n2,`i=
Z •

0
dzz2 Rn1,`(z)zk Rn2,`(z) =

Z

G
µ j = c1 E1 , with µ ⌘ z2 e�z

⇣
1

n1
+ 1

n2

⌘

, and j ⌘Wn1,`(z)zk Wn2,`(z) . (14)
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action SE , is defined as

Gn ⌘
R

Df f(x1) · · ·f(xn)e�SE
R

Df e�SE
, equivalently written as

Z
Df f(x1) · · ·f(xn)e�SE = Gn

Z
Df e�SE . (15)

The latter can be read as a relation between integral of type (6),
Z

G
µ j = Gn E1 , with µ ⌘ e�SE , j ⌘ f(x1) · · ·f(xn)Df , E1 ⌘

Z

G
µ e1 , and e1 ⌘ Df . (16)

Therefore, Gn can be interpreted as the coefficient of the projection of the cocycle j on the master form e1, i.e. j = c1 e1, with
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Perturbation Theory. The n-point correlation function Gn in the full theory can be computed perturbatively, in the small
coupling limit, e ! 0, and expressed in terms of G(0)

n . For example, the determination of the next-to-leading order (NLO)
corrections to the 2-point function, proceeds as follows,

G2 =

R
dz z2 e�S0�eS1
R

dz e�S0�eS1
= G(0)

2 + e
⇣

G(0)
2 G(0)

4 �G(0)
6

⌘
+O(e2) =

1
g

✓
1�12e 1

g2

◆
+O(e2) , (17)

where the term proportional to e is the NLO correction to the free propagator. Notice that, in this result, Wick’s theorem still
appears in the combinatorics of the G(0)

2 j terms.

Exact theory. Let us consider now the decomposition of j = zn dz in the exact theory, with µ ⌘ e�SE , and evaluate the
intersection numbers with u ⌘ zr µ , such that limr!0 u = µ . In this case, n = 4, namely, the dimension of the twisted
cohomology group is larger than in the free theory case. We choose a basis of cocycles, {ê1, ê2, ê3, ê4} = {1,1/z,z,z2},
and for the dual cocycles {ĥi}4

i=1 = {êi}4
i=1, yielding the (4⇥4) intersection matrix C, with just five non-vanishing entries:

C14 = 1/(4e) , C22 = 1/r , C33 = 1/(4e) , C41 = 1/(4e) , C44 =�g/(16e2) . The master decomposition formula (4) can be
used to project j = z4 dz onto the master forms, which, after taking the r ! 0 limit reads, j = c1 e1 + c2 e2 + c3 e3 + c4 e4 ,
with c1 = 1/e ,c2 = c3 = 0 ,c4 =�g/(4e) . This decomposition translates into the integral relation,

Z

G
uj = c1 E1 + c4 E4 , implying G4 = c1 + c4G2 , (18)

which is obtained by dividing both sides of the former equation by E1, and using the definition of Gn . This is a relation between
n-point functions in the exact theory, and can be used to express G2 in terms of G4, as G2 = (1/g)(1�4eG4) , which is an
all-order result. To verify that the last equation is compatible with the result earlier obtained in perturbation theory, we observe
that in order to determine G2 up to the first order in e , it is sufficient to keep just the leading order of G4 in the r.h.s. i.e.
G4 = G(0)

4 +O(e) , therefore yielding G2 = (1/g)
⇣

1�4eG(0)
4

⌘
+O(e4) , which is the same result obtained in perturbation

theory, upon substituting G(0)
4 = (1/g2)3!! = 3/g2 .

Kontsevich-Witten t function
In the study of completely integrable systems, like e.g. the Korteweg de Vries equation, the so-called Sato’s t functions can
be seen as generating functions of integrable hierarchies50, a special realization being given by the Kontsevich-Witten (KW)
t-function48, 49. As the last application, let us consider the univariate version of the KW-matrix, generically defined as,

ZKW ⌘

R
dF exp

h
�Tr

⇣
� i

3! F3 + L
2 F2

⌘i

R
dF exp

h
�Tr

⇣
L
2 F2

⌘i , (19)

which can be Taylor expanded in series50, as ZKW = Â•
n=0 Z(n)

KW . The series coefficients are determined from the master formula,R
uj = c1 E1 with u and E1 defined as for the Gaussian-like integrals Hn and Wn in Tab.1, and j ⌘ Nn z6n, where Nn ⌘ e2n and

e ⌘ i/(3!)(L/2)�3/2, finally yielding c1 = Z(n)
KW = (�2/9)n (L�3n/(2n)!) ’3n�1

j=0 ( j+1/2) , in agreement with the literature50.

References
1. Aomoto, K. & Kita, M. Theory of Hypergeometric Functions. Springer Monographs in Mathematics (Springer Japan,

2011).

2. Yoshida, M. Hypergeometric Functions, My Love: Modular Interpretations of Configuration Spaces. Aspects of
Mathematics (Vieweg+Teubner Verlag, 2013).

3. Kita, M. & Yoshida, M. Intersection Theory for Twisted Cycles. Math. Nachrichten 166, 287–304, DOI: 10.1002/mana.
19941660122 (1994).

4. Kita, M. & Yoshida, M. Intersection Theory for Twisted Cycles II — Degenerate Arrangements. Math. Nachrichten 168,
171–190, DOI: 10.1002/mana.19941680111 (1994).

5. Cho, K. & Matsumoto, K. Intersection theory for twisted cohomologies and twisted Riemann’s period relations I. Nagoya
Math. J. 139, 67–86, DOI: 10.1017/S0027763000005304 (1995).

6. Matsumoto, K. Intersection numbers for logarithmic k-forms. Osaka J. Math. 35, 873–893 (1998).

9/11

Perturbation Theory. The n-point correlation function Gn in the full theory can be computed perturbatively, in the small
coupling limit, e ! 0, and expressed in terms of G(0)

n . For example, the determination of the next-to-leading order (NLO)
corrections to the 2-point function, proceeds as follows,

G2 =

R
dz z2 e�S0�eS1
R

dz e�S0�eS1
= G(0)

2 + e
⇣

G(0)
2 G(0)

4 �G(0)
6

⌘
+O(e2) =

1
g

✓
1�12e 1

g2

◆
+O(e2) , (17)

where the term proportional to e is the NLO correction to the free propagator. Notice that, in this result, Wick’s theorem still
appears in the combinatorics of the G(0)

2 j terms.

Exact theory. Let us consider now the decomposition of j = zn dz in the exact theory, with µ ⌘ e�SE , and evaluate the
intersection numbers with u ⌘ zr µ , such that limr!0 u = µ . In this case, n = 4, namely, the dimension of the twisted
cohomology group is larger than in the free theory case. We choose a basis of cocycles, {ê1, ê2, ê3, ê4} = {1,1/z,z,z2},
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6

type u ν êi C-matrix ρ0 E1

Harmonic Oscillator Wn zρ exp
(

−z2
)

2 1, 1/z diagonal(1/2, 1/ρ) 0
√
π

H-atom Wn,ℓ zρ exp(−z) 1 1 (n1n2/(n1 + n2))
2(2 + ρ) 0 2(n1n2/(n1 + n2))

3

Table II. Functions and parameters of the decomposition involving eigenfunctions.

B. n-point Green’s functions

The Euclidean n-point Green’s functions in Field The-
ory, Gn = Gn(x1, . . . , xn) is a for generic fields φ(x), and
for any given action SE , is defined as

Gn ≡
∫

Dφφ(x1) · · ·φ(xn) e−SE

∫

Dφ e−SE
. (45)

This equation is equivalent to,
∫

Dφφ(x1) · · ·φ(xn) e
−SE = Gn

∫

Dφ e−SE , (46)

which can be read as a relation between integral of type
(13),

∫

Γ
µϕ = Gn E1 , (47)

upon defining,

µ ≡ e−SE , (48)

ϕ ≡ φ(x1) · · ·φ(xn)Dφ , (49)

E1 ≡
∫

Γ
µ e1 , with e1 = Dφ . (50)

Therefore, Gn can be interpreted as the coefficient of the
projection of the cocycle ϕ on the master form e1, i.e.
ϕ = c1 e1, with c1 = Gn, and it can be determined within
intersection theory, as observed in [48, 49].

1. Single field, φ4-theory

Let us consider a toy theory for a real scalar field φ(x),
defined by the action

SE ≡ S0 + ϵS1 , (51)

with S0 =
1

2
γ φ2(x) , S1 = φ4(x) , (52)

where S0 represents the free kinetic term, and S1, a quar-
tic self-interaction term, with coupling constant ϵ.

By replacing φ(x) with the coordinate z, i.e. φ(x) ≡ z,
the n-point Green’s function Gn for this theory can be
defined through (47), and can be determined by applying
our computation algorithm to the decomposition of the
cocycle ϕ,

ϕ = zn dz . (53)

a. Free theory. The n-point Green’s function G(0)
n in

the free theory, is defined by considering just the kinetic
term in the definition of

µ ≡ e−S0 , (54)

and it can be computed by using the master decomposi-
tion formula (10). In fact, as for the case of the Hermite
polynomials, let us consider u defined as

u ≡ zρ µ , (55)

such that limρ→0 u = µ. For this type of Gaussian inte-
grals, the dimension of the cohomology group is ν = 2,
(see the case of Hermite polynomials in Tab.I, which can
be obtained by setting γ = 2), and we take the following
basis of cocycles and dual cocycles, {ê1, ê2} = {ĥ1, ĥ2} =
{1, 1/z}, yielding the intersection matrix,

C =

(

1
γ 0

0 1
ρ

)

. (56)

By applying the master decomposition formula (10), and
taking the ρ → 0 limit, the decomposition of ϕ in terms
of the master forms e1 and e2, reads ϕ = c1 e1 + c2 e2,
with c2 = 0, and

c1 = G(0)
n =

1

γn/2
(n− 1)! ! , for even n . (57)

This result corresponds to the application of Wick’s the-
orem in Quantum Field Theory, which in the free theory
allows to rewrite any n point functions combinatorially in
terms of products of two point functions. From the gen-
eral result of the n-point correlator, we can read the 2-
point correlation function for the free theory, correspond-
ing to the propagator of the φ field,

G(0)
2 =

1

γ
. (58)
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b. Perturbation Theory. The n-point correlation
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where the term proportional to ϵ is the NLO correction
to the free propagator. Notice that in this result Wick’s

theorem still appears in the combinatorics of the G(0)
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such that limρ→0 u = µ. In this case, ν = 4, namely, the
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The master decomposition formula (10) can be used
to project the cocycle ϕ = z4 dz onto the master forms,
which, after taking the ρ→ 0 limit reads,
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which is an all-order result. To verify that it is compatible
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which corresponds to the same result obtained in pertur-
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which can be read out of (57).
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{ĥi}4i=1 = {êi}4i=1, yielding the intersection matrix,

C =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 1
4γ

0 1
ρ 0 0

0 0 1
4γ 0

1
4γ 0 0 − γ

16ϵ2

⎞

⎟

⎟

⎟

⎟

⎠

. (62)

The master decomposition formula (10) can be used
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and for the dual cocycles {ĥi}4

i=1 = {êi}4
i=1, yielding the (4⇥4) intersection matrix C, with just five non-vanishing entries:

C14 = 1/(4e) , C22 = 1/r , C33 = 1/(4e) , C41 = 1/(4e) , C44 =�g/(16e2) . The master decomposition formula (4) can be
used to project j = z4 dz onto the master forms, which, after taking the r ! 0 limit reads, j = c1 e1 + c2 e2 + c3 e3 + c4 e4 ,
with c1 = 1/e ,c2 = c3 = 0 ,c4 =�g/(4e) . This decomposition translates into the integral relation,

Z

G
uj = c1 E1 + c4 E4 , implying G4 = c1 + c4G2 , (18)

which is obtained by dividing both sides of the former equation by E1, and using the definition of Gn . This is a relation between
n-point functions in the exact theory, and can be used to express G2 in terms of G4, as G2 = (1/g)(1�4eG4) , which is an
all-order result. To verify that the last equation is compatible with the result earlier obtained in perturbation theory, we observe
that in order to determine G2 up to the first order in e , it is sufficient to keep just the leading order of G4 in the r.h.s. i.e.
G4 = G(0)

4 +O(e) , therefore yielding G2 = (1/g)
⇣

1�4eG(0)
4

⌘
+O(e4) , which is the same result obtained in perturbation

theory, upon substituting G(0)
4 = (1/g2)3!! = 3/g2 .

Kontsevich-Witten t function
In the study of completely integrable systems, like e.g. the Korteweg de Vries equation, the so-called Sato’s t functions can
be seen as generating functions of integrable hierarchies50, a special realization being given by the Kontsevich-Witten (KW)
t-function48, 49. As the last application, let us consider the univariate version of the KW-matrix, generically defined as,

ZKW ⌘

R
dF exp

h
�Tr

⇣
� i

3! F3 + L
2 F2

⌘i

R
dF exp

h
�Tr

⇣
L
2 F2

⌘i , (19)

which can be Taylor expanded in series50, as ZKW = Â•
n=0 Z(n)

KW . The series coefficients are determined from the master formula,R
uj = c1 E1 with u and E1 defined as for the Gaussian-like integrals Hn and Wn in Tab.1, and j ⌘ Nn z6n, where Nn ⌘ e2n and

e ⌘ i/(3!)(L/2)�3/2, finally yielding c1 = Z(n)
KW = (�2/9)n (L�3n/(2n)!) ’3n�1

j=0 ( j+1/2) , in agreement with the literature50.

References
1. Aomoto, K. & Kita, M. Theory of Hypergeometric Functions. Springer Monographs in Mathematics (Springer Japan,

2011).

2. Yoshida, M. Hypergeometric Functions, My Love: Modular Interpretations of Configuration Spaces. Aspects of
Mathematics (Vieweg+Teubner Verlag, 2013).

3. Kita, M. & Yoshida, M. Intersection Theory for Twisted Cycles. Math. Nachrichten 166, 287–304, DOI: 10.1002/mana.
19941660122 (1994).

4. Kita, M. & Yoshida, M. Intersection Theory for Twisted Cycles II — Degenerate Arrangements. Math. Nachrichten 168,
171–190, DOI: 10.1002/mana.19941680111 (1994).

5. Cho, K. & Matsumoto, K. Intersection theory for twisted cohomologies and twisted Riemann’s period relations I. Nagoya
Math. J. 139, 67–86, DOI: 10.1017/S0027763000005304 (1995).

6. Matsumoto, K. Intersection numbers for logarithmic k-forms. Osaka J. Math. 35, 873–893 (1998).

9/11

Perturbation Theory. The n-point correlation function Gn in the full theory can be computed perturbatively, in the small
coupling limit, e ! 0, and expressed in terms of G(0)

n . For example, the determination of the next-to-leading order (NLO)
corrections to the 2-point function, proceeds as follows,

G2 =

R
dz z2 e�S0�eS1
R

dz e�S0�eS1
= G(0)

2 + e
⇣

G(0)
2 G(0)

4 �G(0)
6

⌘
+O(e2) =

1
g

✓
1�12e 1

g2

◆
+O(e2) , (17)

where the term proportional to e is the NLO correction to the free propagator. Notice that, in this result, Wick’s theorem still
appears in the combinatorics of the G(0)

2 j terms.

Exact theory. Let us consider now the decomposition of j = zn dz in the exact theory, with µ ⌘ e�SE , and evaluate the
intersection numbers with u ⌘ zr µ , such that limr!0 u = µ . In this case, n = 4, namely, the dimension of the twisted
cohomology group is larger than in the free theory case. We choose a basis of cocycles, {ê1, ê2, ê3, ê4} = {1,1/z,z,z2},
and for the dual cocycles {ĥi}4

i=1 = {êi}4
i=1, yielding the (4⇥4) intersection matrix C, with just five non-vanishing entries:

C14 = 1/(4e) , C22 = 1/r , C33 = 1/(4e) , C41 = 1/(4e) , C44 =�g/(16e2) . The master decomposition formula (4) can be
used to project j = z4 dz onto the master forms, which, after taking the r ! 0 limit reads, j = c1 e1 + c2 e2 + c3 e3 + c4 e4 ,
with c1 = 1/e ,c2 = c3 = 0 ,c4 =�g/(4e) . This decomposition translates into the integral relation,

Z

G
uj = c1 E1 + c4 E4 , implying G4 = c1 + c4G2 , (18)

which is obtained by dividing both sides of the former equation by E1, and using the definition of Gn . This is a relation between
n-point functions in the exact theory, and can be used to express G2 in terms of G4, as G2 = (1/g)(1�4eG4) , which is an
all-order result. To verify that the last equation is compatible with the result earlier obtained in perturbation theory, we observe
that in order to determine G2 up to the first order in e , it is sufficient to keep just the leading order of G4 in the r.h.s. i.e.
G4 = G(0)

4 +O(e) , therefore yielding G2 = (1/g)
⇣

1�4eG(0)
4

⌘
+O(e4) , which is the same result obtained in perturbation

theory, upon substituting G(0)
4 = (1/g2)3!! = 3/g2 .

Kontsevich-Witten t function
In the study of completely integrable systems, like e.g. the Korteweg de Vries equation, the so-called Sato’s t functions can
be seen as generating functions of integrable hierarchies50, a special realization being given by the Kontsevich-Witten (KW)
t-function48, 49. As the last application, let us consider the univariate version of the KW-matrix, generically defined as,

ZKW ⌘

R
dF exp

h
�Tr

⇣
� i

3! F3 + L
2 F2

⌘i

R
dF exp

h
�Tr

⇣
L
2 F2

⌘i , (19)

which can be Taylor expanded in series50, as ZKW = Â•
n=0 Z(n)

KW . The series coefficients are determined from the master formula,R
uj = c1 E1 with u and E1 defined as for the Gaussian-like integrals Hn and Wn in Tab.1, and j ⌘ Nn z6n, where Nn ⌘ e2n and

e ⌘ i/(3!)(L/2)�3/2, finally yielding c1 = Z(n)
KW = (�2/9)n (L�3n/(2n)!) ’3n�1

j=0 ( j+1/2) , in agreement with the literature50.
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Univariate Model

Perturbation Theory. The n-point correlation function Gn in the full theory can be computed perturbatively, in the small
coupling limit, e ! 0, and expressed in terms of G(0)

n . For example, the determination of the next-to-leading order (NLO)
corrections to the 2-point function, proceeds as follows,

G2 =

R
dz z2 e�S0�eS1
R

dz e�S0�eS1
= G(0)

2 + e
⇣

G(0)
2 G(0)

4 �G(0)
6

⌘
+O(e2) =

1
g

✓
1�12e 1

g2

◆
+O(e2) , (17)

where the term proportional to e is the NLO correction to the free propagator. Notice that, in this result, Wick’s theorem still
appears in the combinatorics of the G(0)

2 j terms.

Exact theory. Let us consider now the decomposition of j = zn dz in the exact theory, with µ ⌘ e�SE , and evaluate the
intersection numbers with u ⌘ zr µ , such that limr!0 u = µ . In this case, n = 4, namely, the dimension of the twisted
cohomology group is larger than in the free theory case. We choose a basis of cocycles, {ê1, ê2, ê3, ê4} = {1,1/z,z,z2},
and for the dual cocycles {ĥi}4

i=1 = {êi}4
i=1, yielding the (4⇥4) intersection matrix C, with just five non-vanishing entries:

C14 = 1/(4e) , C22 = 1/r , C33 = 1/(4e) , C41 = 1/(4e) , C44 =�g/(16e2) . The master decomposition formula (4) can be
used to project j = z4 dz onto the master forms, which, after taking the r ! 0 limit reads, j = c1 e1 + c2 e2 + c3 e3 + c4 e4 ,
with c1 = 1/e ,c2 = c3 = 0 ,c4 =�g/(4e) . This decomposition translates into the integral relation,

Z

G
uj = c1 E1 + c4 E4 , implying G4 = c1 + c4G2 , (18)

which is obtained by dividing both sides of the former equation by E1, and using the definition of Gn . This is a relation between
n-point functions in the exact theory, and can be used to express G2 in terms of G4, as G2 = (1/g)(1�4eG4) , which is an
all-order result. To verify that the last equation is compatible with the result earlier obtained in perturbation theory, we observe
that in order to determine G2 up to the first order in e , it is sufficient to keep just the leading order of G4 in the r.h.s. i.e.
G4 = G(0)

4 +O(e) , therefore yielding G2 = (1/g)
⇣

1�4eG(0)
4

⌘
+O(e4) , which is the same result obtained in perturbation

theory, upon substituting G(0)
4 = (1/g2)3!! = 3/g2 .

Kontsevich-Witten t function
In the study of completely integrable systems, like e.g. the Korteweg de Vries equation, the so-called Sato’s t functions can
be seen as generating functions of integrable hierarchies50, a special realization being given by the Kontsevich-Witten (KW)
t-function48, 49. As the last application, let us consider the univariate version of the KW-matrix, generically defined as,

ZKW ⌘

R
dF exp

h
�Tr

⇣
� i

3! F3 + L
2 F2

⌘i

R
dF exp

h
�Tr

⇣
L
2 F2

⌘i , (19)

which can be Taylor expanded in series50, as ZKW = Â•
n=0 Z(n)

KW . The series coefficients are determined from the master formula,R
uj = c1 E1 with u and E1 defined as for the Gaussian-like integrals Hn and Wn in Tab.1, and j ⌘ Nn z6n, where Nn ⌘ e2n and

e ⌘ i/(3!)(L/2)�3/2, finally yielding c1 = Z(n)
KW = (�2/9)n (L�3n/(2n)!) ’3n�1

j=0 ( j+1/2) , in agreement with the literature50.
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4 Methods
Twisted de Rham cohomology
Twisted de Rham cohomology aims to tackle integrals of the form

Z

G
uj (8)

with j ⌘ ĵ dz1 ^ · · ·^ dzn, and G is a regulated integration contour such that u(∂G) = 0. In the cases of our interest ĵ is a
meromorphic function of the complex integration variables z1, . . . ,zn, and u ⌘ Q ’ j Pr j

j , where Pj and Q are meromorphic
with allowed singularities at infinity, and r j are generic exponents.

After introducing the connection w ⌘ d ln(u) = Ân
i=1 ŵi dzi, with ŵi ⌘ ∂i ln(u), we can define the covariant derivative

—w ⌘ d +w^= u�1 ·d ·u acting on differential forms. If Wn is the space of n-forms, then the twisted cohomology groups are
defined by

Hn
w :=

ker{—w : Wn ! Wn+1}
Im{—w : Wn�1 ! Wn} , (9)

which means that their elements are —w -closed n-forms up to additive —w -exact (n�1)-forms.
Similarly, one can define twisted homology. However, since our strategy is to work with cohomology, we defer to the

literature for a precise definition of Hw
n . We limit ourselves to saying that its elements are pairs (G,u) , called twisted cycles.

The only relevant issue is that Hn
w and Hw

n are isomorphic, hence they have the same dimensions, n = dimHw
n = dimHn

w that
generically corresponds to the number of critical points of the function ln(u), viewed as a Morse height function.

Orthogonal Polynomials
Univariate orthogonal polynomials Pn = Pn(z) over an integration interval say G, labelled by integer indices n are known to
obey orthogonality conditions generically expressed as

Z

G
µ PnPm dz = fn dnm =

Z

G
µ j = c1 E1 . (10)

which can be naturally cast in the form (6), by simply interpreting j ⌘ Pn Pm dz , as a differential 1-form. Therefore, we can
apply our evaluation algorithm to the set of orthogonal polynomials listed in Table 1, demonstrating that the orthogonality
relation (10) emerges from the decomposition formula, and amounts to c1 E1 .

We consider the following type of orthogonal polynomials: Laguerre L(r)
n , Legendre Pn, Tchebyshev Tn, Gegenbauer C(r)

n ,
Hermite Hn. For each type, in Tab. 1, we provide the relevant data needed for the decomposition via intersection numbers: the
regulated twist u, the functions êi characterizing the bases of forms; the C matrix, the value of r0; the expression of E1 and of
c1, yielding agreement with the results known in the literature. Let us observe that, in the case of Hermite polynomials, given
the expression of u, the vector space dimension is n = 2, yielding j = c1 e1 + c2 e2; nevertheless, due to the adopted basis
choice, c2 = 0, therefore, j = c1 e1 holds as in the other cases having n = 1. Moreover, in the case of the Laguerre and of the
Gegenbauer polynomials, the integration measure µ and the twist u coincide, therefore the coefficients c1 and E1 are exact in r ,
and no limit on r is required.

Matrix Elements in Quantum Mechanics
The computations we have just done can be easily extended to the computation of the matrix elements of powers of operators in
position space, for instance. We illustrate some examples involving powers of the position operator, i.e. h•|zk|•i, where k may
be a positive or negative integer, for two celebrated physics cases, the harmonic oscillator and the Hydrogen atom, in Quantum
Mechanics.

Harmonic Oscillator. The eigenfunctions of the unidimensional Harmonic Oscillator in position space (x ⌘ z), with principal
quantum number n, (for unitary mass and pulsation, m = 1 = w) are defined as

hz|ni= yn(z) = e�
z2
2 Wn(z) , with Wn(z)⌘ Nn Hn(z) , (11)

in terms of Hermite polynomials, where the normalization factors are, Nn ⌘ 1/
p
(2nn!

p
p) . The matrix elements hm|zk|ni can

be cast in the form (6) as,

hm|zk|ni=
Z •

�•
dzym(z)zk yn(z) =

Z

G
µ j = c1 E1 , with µ ⌘ e�z2

, and j ⌘Wm(z)zk Wn(z)dz. (12)
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Perturbation Theory. The n-point correlation function Gn in the full theory can be computed perturbatively, in the small
coupling limit, e ! 0, and expressed in terms of G(0)

n . For example, the determination of the next-to-leading order (NLO)
corrections to the 2-point function, proceeds as follows,

G2 =

R
dz z2 e�S0�eS1
R

dz e�S0�eS1
= G(0)

2 + e
⇣

G(0)
2 G(0)

4 �G(0)
6

⌘
+O(e2) =

1
g

✓
1�12e 1

g2

◆
+O(e2) , (17)

where the term proportional to e is the NLO correction to the free propagator. Notice that, in this result, Wick’s theorem still
appears in the combinatorics of the G(0)

2 j terms.

Exact theory. Let us consider now the decomposition of j = zn dz in the exact theory, with µ ⌘ e�SE , and evaluate the
intersection numbers with u ⌘ zr µ , such that limr!0 u = µ . In this case, n = 4, namely, the dimension of the twisted
cohomology group is larger than in the free theory case. We choose a basis of cocycles, {ê1, ê2, ê3, ê4} = {1,1/z,z,z2},
and for the dual cocycles {ĥi}4

i=1 = {êi}4
i=1, yielding the (4⇥4) intersection matrix C, with just five non-vanishing entries:

C14 = 1/(4e) , C22 = 1/r , C33 = 1/(4e) , C41 = 1/(4e) , C44 =�g/(16e2) . The master decomposition formula (4) can be
used to project j = z4 dz onto the master forms, which, after taking the r ! 0 limit reads, j = c1 e1 + c2 e2 + c3 e3 + c4 e4 ,
with c1 = 1/e ,c2 = c3 = 0 ,c4 =�g/(4e) . This decomposition translates into the integral relation,

Z

G
uj = c1 E1 + c4 E4 , implying G4 = c1 + c4G2 , (18)

which is obtained by dividing both sides of the former equation by E1, and using the definition of Gn . This is a relation between
n-point functions in the exact theory, and can be used to express G2 in terms of G4, as G2 = (1/g)(1�4eG4) , which is an
all-order result. To verify that the last equation is compatible with the result earlier obtained in perturbation theory, we observe
that in order to determine G2 up to the first order in e , it is sufficient to keep just the leading order of G4 in the r.h.s. i.e.
G4 = G(0)

4 +O(e) , therefore yielding G2 = (1/g)
⇣

1�4eG(0)
4

⌘
+O(e4) , which is the same result obtained in perturbation

theory, upon substituting G(0)
4 = (1/g2)3!! = 3/g2 .

Kontsevich-Witten t function
In the study of completely integrable systems, like e.g. the Korteweg de Vries equation, the so-called Sato’s t functions can
be seen as generating functions of integrable hierarchies50, a special realization being given by the Kontsevich-Witten (KW)
t-function48, 49. As the last application, let us consider the univariate version of the KW-matrix, generically defined as,

ZKW ⌘

R
dF exp

h
�Tr

⇣
� i

3! F3 + L
2 F2

⌘i

R
dF exp

h
�Tr

⇣
L
2 F2

⌘i , (19)

which can be Taylor expanded in series50, as ZKW = Â•
n=0 Z(n)

KW . The series coefficients are determined from the master formula,R
uj = c1 E1 with u and E1 defined as for the Gaussian-like integrals Hn and Wn in Tab.1, and j ⌘ Nn z6n, where Nn ⌘ e2n and

e ⌘ i/(3!)(L/2)�3/2, finally yielding c1 = Z(n)
KW = (�2/9)n (L�3n/(2n)!) ’3n�1

j=0 ( j+1/2) , in agreement with the literature50.
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Itzykson-Zuber (1992)

Type u n êi C-matrix r0 E1 c1

L(r)
n zr exp(�z) 1 1 r – G(1+r) (r +1)(r +2) · · ·(r +n)/n!

Pn (z2 �1)r 1 1 2r/(4r2 �1) 0 2 1/(2n+1)
Tn (1� z2)r 1 1 2r/(4r2 �1) �1/2 p 1/2
C(r)

n (1� z2)r�1/2 1 1 (1�2r)/(4r(r �1)) –
p

pG(1/2+r)/G(1+r) r(2r(2r +1) · · ·(2r +n�1))/((n+r)n!)
Hn zr exp(�z2) 2 1,1/z diagonal(1/2,1/r) 0

p
p 2nn!

Wn zr exp(�z2) 2 1,1/z diagonal(1/2,1/r) 0
p

p see Methods
Wn,` zr+2 exp(�z(n1 +n2)/(n1n2)) 1 1 (n1n2/(n1 +n2))2(2+r) 0 2(n1n2/(n1 +n2))3 see Methods

G(0)
n zr exp(�g z2/2) 2 1,1/z diagonal(1/g,1/r) 0 not needed (n�1)!!/gn/2

Z(n)
KW zr exp(�z2 ) 2 1,1/z diagonal(1/2,1/r) 0 not needed (�2/9)n (L�3n/(2n)!) ’3n�1

j=0 ( j+1/2)

Table 1. Functions and parameters of the decompositions involving orthogonal polynomials (rows 1:5) quantum mechanical
wave functions (rows 6,7), partition functions (rows 8,9).

upon proper identification of µ and j , according to the considered case. Therefore, Gn and ZKW can be interpreted as the
coefficient c1 of the projection of j on the master form e1, i.e. j = c1 e1, and determined in terms of intersection numbers by
using (4). In this work, we consider simple theoretical models, admitting univariate integral representations of Gn and ZKW .
Within the theory of a real scalar field with quartic self-interaction, also considered in35, 36, we compute Gn perturbatively, in
terms of the Green’s function of the free theory, G(0)

n , as well as derive relations among n-point functions, that are exact in the
coupling constant, hence obtaining, in a novel fashion, results that are canonically obtained by applying Wick’s theorem. For
ZKW , we consider the univariate model discussed by Itzykson and Zuber50, and determine it perturbatively, as ZKW = Â•

n=0 Z(n)
KW ,

by evaluating the coefficients of the series in terms of intersection numbers, finally finding an alternative, yet equivalent result
to the one in the literature.

All results are displayed in Table 1, whereas the Methods Section contains the computational details.

Conclusion
We exported to Quantum Mechanics and Quantum Field Theory a decomposition algorithm and computational tools recently
developed in the context of scattering amplitudes’ and Feynman integrals’ calculus. Orthogonality relations for polynomials,
matrix elements of quantum mechanical operators, Green functions within Wick’s theorem (hence moments of distributions
within Isserlis’ theorem), Witten-Kontsevich partition function of integrable systems, therefore, provided additional proof
of evidence on the role of the de Rham Intersection Theory in fundamental physics. When these analyses developed within
physics contexts are combined with the study of Aomoto-Gel’fand integrals, Euler-Mellin integrals, GKZ hypergeometric
systems, and other special functions, which have been the natural target of investigation within pure mathematical areas, like
differential and algebraic topology, combinatorics and number theory, they seem to point toward a uniform framework ruling
calculus which spans across various scientific disciplines.

Our results are applicable to the study of generalised moments of probability distributions: the dimension of the cohomology
groups corresponds to the number of independent moments - which we can call master moments; the intersection numbers allow
us to derive linear and quadratic relations among them. The latter can be used for decomposing all moments of a distribution in
terms of master moments, as well as to build functional equations, difference and differential equations to evaluate the master
moments. In this fashion, one can export the experience and tools developed in Feynman calculus in all problems that admit a
statistical interpretation.

In our vision, the moments of distribution admit a physical interpretation in terms of generalised fluxes and, therefore
represent conserved quantities, invariant under deformations of the differential forms: De Rham twisted theory = Stokes’s
theorem for fluxes of singular differential forms through hypersurfaces with holes. Our study shows that eigenfunctions in
Quantum Mechanics and fields in Quantum Field Theory, which represent elements of Hilbert and Fock’s spaces, respectively,
that can have infinite dimensions, generate matrix-elements that belong to de Rham’s cohomology groups, (or better to spaces
that are isomorphic to them) which have a finite number of dimensions. Therefore, the knowledge of the master moments and
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Perturbation Theory. The n-point correlation function Gn in the full theory can be computed perturbatively, in the small
coupling limit, e ! 0, and expressed in terms of G(0)

n . For example, the determination of the next-to-leading order (NLO)
corrections to the 2-point function, proceeds as follows,

G2 =

R
dz z2 e�S0�eS1
R

dz e�S0�eS1
= G(0)

2 + e
⇣

G(0)
2 G(0)

4 �G(0)
6

⌘
+O(e2) =

1
g

✓
1�12e 1

g2

◆
+O(e2) , (17)

where the term proportional to e is the NLO correction to the free propagator. Notice that, in this result, Wick’s theorem still
appears in the combinatorics of the G(0)

2 j terms.

Exact theory. Let us consider now the decomposition of j = zn dz in the exact theory, with µ ⌘ e�SE , and evaluate the
intersection numbers with u ⌘ zr µ , such that limr!0 u = µ . In this case, n = 4, namely, the dimension of the twisted
cohomology group is larger than in the free theory case. We choose a basis of cocycles, {ê1, ê2, ê3, ê4} = {1,1/z,z,z2},
and for the dual cocycles {ĥi}4

i=1 = {êi}4
i=1, yielding the (4⇥4) intersection matrix C, with just five non-vanishing entries:

C14 = 1/(4e) , C22 = 1/r , C33 = 1/(4e) , C41 = 1/(4e) , C44 =�g/(16e2) . The master decomposition formula (4) can be
used to project j = z4 dz onto the master forms, which, after taking the r ! 0 limit reads, j = c1 e1 + c2 e2 + c3 e3 + c4 e4 ,
with c1 = 1/e ,c2 = c3 = 0 ,c4 =�g/(4e) . This decomposition translates into the integral relation,

Z

G
uj = c1 E1 + c4 E4 , implying G4 = c1 + c4G2 , (18)

which is obtained by dividing both sides of the former equation by E1, and using the definition of Gn . This is a relation between
n-point functions in the exact theory, and can be used to express G2 in terms of G4, as G2 = (1/g)(1�4eG4) , which is an
all-order result. To verify that the last equation is compatible with the result earlier obtained in perturbation theory, we observe
that in order to determine G2 up to the first order in e , it is sufficient to keep just the leading order of G4 in the r.h.s. i.e.
G4 = G(0)

4 +O(e) , therefore yielding G2 = (1/g)
⇣

1�4eG(0)
4

⌘
+O(e4) , which is the same result obtained in perturbation

theory, upon substituting G(0)
4 = (1/g2)3!! = 3/g2 .

Kontsevich-Witten t function
In the study of completely integrable systems, like e.g. the Korteweg de Vries equation, the so-called Sato’s t functions can
be seen as generating functions of integrable hierarchies50, a special realization being given by the Kontsevich-Witten (KW)
t-function48, 49. As the last application, let us consider the univariate version of the KW-matrix, generically defined as,

ZKW ⌘

R
dF exp

h
�Tr

⇣
� i

3! F3 + L
2 F2

⌘i

R
dF exp

h
�Tr

⇣
L
2 F2

⌘i , (19)

which can be Taylor expanded in series50, as ZKW = Â•
n=0 Z(n)

KW . The series coefficients are determined from the master formula,R
uj = c1 E1 with u and E1 defined as for the Gaussian-like integrals Hn and Wn in Tab.1, and j ⌘ Nn z6n, where Nn ⌘ e2n and

e ⌘ i/(3!)(L/2)�3/2, finally yielding c1 = Z(n)
KW = (�2/9)n (L�3n/(2n)!) ’3n�1

j=0 ( j+1/2) , in agreement with the literature50.
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Fourier integrals from Intersection Theory

Fourier integrals in Baikov representation as twisted periods

Brunello, Crisanti, Giroux, Smith & P.M. (2023)  

3

satisfied by the basis of master integrals in any external
variable x

@xJi = [⌦x]ijJj . (14)

To see this, we note that in the language of twisted coho-
mology, eq. (14) translates to

@x hei| = h@x(uei)/u| = [⌦x]ij hej | , (15)

which implies

[⌦x]ij = h@x(uei)/u, qeki [C�1]kj . (16)

We reiterate that the derivations of eqs. (11) and (16) do
not involve solving (potentially large) systems of linear
equations but instead exclusively rely on the computation
of intersection numbers.

Fourier integrals in Baikov representation We
consider a generic D-dimensional Fourier integral, which
takes the form

f̃({xi}) =

Z
f({qi})

LY

j=1

eiqj ·xj d̄Dqj , (17a)

with measure: d̄Dqj =
dDqj

(2⇡)D/2
. (17b)

Eq. (17) is the Fourier transform of the func-
tion/distribution f performed over L internal vectors
{qi}. The result is a function of E external vectors {xi}.
We denote the set of n = L

2
(L+1)+LE internal scalar

products as

Si = {q
2

1
, q1 · q2, . . . , q

2

L, q1 · x1, q1 · x2, . . . , qL · xE} . (18)

To reinterpret the Fourier transform in eq. (17) as a
twisted period, we propose to change variables to the
Baikov variables [36, 48]: the procedure involves a first
change of variables from the internal vectors qi to the
internal scalar products Si, followed by a second change
of variables,

zi = Aij Sj +Bj , (19)

where Aij is an n⇥ n matrix and Bj is an n-dimensional
vector. Both operations only depend on the external
scalar products {Si}. Once the dust settles, the result
reads

f̃ =

Z

CR

u(z)'L(z) , (20)

where

CR =
L\

i=1

⇢
detG{qi,...,qL,y1,...,yE}

detG{qi+1,...,qL,y1,...,yE}
> 0

�
, (21)

is the contour of integration. The di↵erential form
'L(z) = f(z) dnz contains the function/distribution f we
would like to Fourier transform and

u(z) =  eig(z)B(z)
D�L�E�1

2 , (22)

is the twist. Here, g(z) is always linear in z and we define

G({x}) = det[xi · xj ] , (23a)

B(z) = G(q1, . . . , qL, y1, . . . , yE) , (23b)

 =
⇡

L(1�L�2E)
4 G(y1, . . . , yE)

E�D+1
2

2
LD
2 detA

QL
j=1

�
⇣

D�L�E+j
2

⌘ . (23c)

Note that B � 0 on CR. Complementary details regarding
the derivation of eq. (20) can be found in app. A.

Representing a Fourier integral as the twisted period in
eq. (20) enables the use of intersection theory for the
construction of di↵erential equation (c.f., eq. (14)). Thus,
the master Fourier integrals Ji can be evaluated by solv-
ing the system of di↵erential equations, analogously to
Feynman integrals.

III. APPLICATIONS

In this section, we apply the formalism described above
to three families of Fourier integrals arising in various
corners of particle physics. An ancillary Mathematica
file (ancillary.m) containing complementary details for
each example is attached to the preprint version of this
letter.

Below, M = 1,D�1 denotes the Minkowski spacetime
manifold. Unless specified otherwise, we work in the
mostly plus Lorentzian signature (�,+,+, ...,+).

A. Fourier transform of a scalar propagator

As a first example, we consider the Fourier transform of
a massive scalar Feynman propagator,

In =

Z

M
d̄Dq

eiq·x

(q2 +m2 � i")n
. (24)

We work with dimensionless integrals Kn, defined
by

In = m
D�2n

Kn , Kn =

Z

M
d̄Dk

eik·v

(k2+1�i")n
, (25)

where v = mx and k = q/m are both dimensionless
vectors. For Kn, we have L = 1 internal vector {k}

and E = 1 external vector {v}. We define the n =
2 integration variables as z1 = k

2 + 1 and z2 = k · v.
Thus, in the Baikov representation, this integral takes the
form

Kn =

Z
dz

z
n
1

u(z) , (26)

where the twist is given by

u(z1, z2) =
eiz2⌧

2�D
2

2
D
2
p
⇡�((D� 1)/2)

((z1�1)⌧�z
2

2
)

D�3
2 , (27)
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is the twist. Here, g(z) is always linear in z and we define
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Note that B � 0 on CR. Complementary details regarding
the derivation of eq. (20) can be found in app. A.

Representing a Fourier integral as the twisted period in
eq. (20) enables the use of intersection theory for the
construction of di↵erential equation (c.f., eq. (14)). Thus,
the master Fourier integrals Ji can be evaluated by solv-
ing the system of di↵erential equations, analogously to
Feynman integrals.

III. APPLICATIONS

In this section, we apply the formalism described above
to three families of Fourier integrals arising in various
corners of particle physics. An ancillary Mathematica
file (ancillary.m) containing complementary details for
each example is attached to the preprint version of this
letter.

Below, M = 1,D�1 denotes the Minkowski spacetime
manifold. Unless specified otherwise, we work in the
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To see this, we note that in the language of twisted coho-
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of intersection numbers.
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Application-2: Spectral gravitation wave form in KMOC formalism 5

Exp3 = inh2010|S†
a3S|12iin
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Figure 1. The KMOC momentum space waveform as the
expectation value of measuring a graviton (labelled by 3) in
the background of two Schwarzschild black holes/heavy scalars
(labelled by 1 and 2). The prime decorations on 10 and 20

emphasize that the scattering is non forward (no in and out
states are exactly collinear). To obtain, e.g., the spectral
waveform, one needs to Fourier transform this observable to
impact parameter.

holes (modeled here as heavy scalars) scattering o↵ each
other, from and back to the far past (see Fig. 1).

To establish the connection with scattering amplitudes
more precisely, it is useful to first introduce the generators
a, a

†
, b and b

† for the algebra of asymptotic measurements.
Its existence is physically motivated by the naive expec-
tation that finite energy excitations in the “bulk” should
decay into a set of stable and free particles at asymptotic
times. This means that the asymptotic states are assumed
to be free of any external forces/fields, so that they do
not radiate nor decay.4

The annihilation and creation operators in the far past are
denoted, respectively, by a and a

†, while those in the far
future are similarly denoted by b and b

†. In what follows,
the key property is that a and b are conjugated to each
other with respect to unitary time evolution : b = S

†
aS

(and, similarly, b† = S
†
a
†
S), where SS

† = . We refer
the reader to [59] for complementary details.

The background in which the scattering occurs is defined
by perturbations of the time-invariant vacuum |0i in the
far past

|12i = a
†
2
a
†
1
|0i and |1020i = a

†
20a

†
10 |0i . (38)

As these two-particle states evolve over time, they can
interact non-trivially with each other (i.e., create and
absorb particles). Then, Exp3 is defined as

Exp3 = inh2
010|b3|12iin . (39)

4
In the context of collider physics, particles encountered near the

detectors are, of course, generally not free (their motion is most

likely a↵ected by background fields). In such cases, it is essential

to also consider the scattering of unstable particles (which can

decay and radiate). Recent literature on this subtle subject

includes [61–63].

The connection between Exp3 and amplitudes is made
manifest in two steps. First, using the relation b = S

†
aS

and inserting a complete basis of states5 =
PR

X |XihX|

in eq. (39), we obtain

Exp3 = inh2
010|S†

a3S|12iin

=
XZ

X

inh2
010|S†

|XihX3|S|12iin . (40)

Next, plugging the decomposition formula S = + iT of
the 4-point S-matrix (where T is the connected part) into
eq. (40), we obtain

Exp3 = inh32
010|iT |12iin

+
XZ

X

inh2
010|T †

|XihX3|T |12iin . (41)

The first term is a (conventional) time-ordered 3  2
amplitude, while the second term is a product of two
time-ordered amplitudes glued together by a s1020 =
�(p10+p20)2 channel cut. In practice, we can therefore
compute Exp3 perturbatively, directly from conventional
time-ordered Feynman rules. (Alternatively, it was re-
cently explained in [64] how to obtain such observables
from analytic continuations of time-ordered scattering
amplitudes.)

To eventually streamline comparison with experimental
data, one may opt to work with waveforms expressed as
functions of variables other than momenta. Such quan-
tities can be derived from Exp3 after performing addi-
tional Fourier transforms. For example, obtaining the
spectral waveform requires to Fourier transform Exp3 to
impact parameter space. Similarly, to obtain the time
domain waveform, an additional Fourier transform in the
frequency of the outgoing graviton is needed.

It was recently demonstrated in [55] (see also [53]) that
to obtain the leading-order (tree-level) spectral waveform
in pure general relativity and N = 8 supergravity, one
must perform Fourier transforms of the form6

I
⌫2m
�1�2

=

Z

M
d̄Dq

�(u1·q)�(u2·(q�k))q⌫1 . . .q
⌫2me�iq·b

[q2 � i"]�1 [(q�k)2 � i"]�2
, (42)

where the ui s denote the (dimensionless) classical ve-
locities of the heavy external objects, k is the (on-shell:
k
2 = 0) graviton momentum and b the impact parame-

ter.

5
The symbol

PR
X formally denotes an integral-sum over the on-shell

phase space of the inserted state |Xi (see [59, eq. (3.5)]).
6
Note that the exponential has the non-standard sign. This is due

to our use of a signature convention opposite to that in [53, 55].
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⇤

Figure 2. The bare color dipole cross-section discussed in the
main text. The eikonal quark and anti-quark are represented
by (red) Wilson lines. The color potential, which appears as a
static two-dimensional pancake in the laboratory rest frame,
models the highly boosted target nucleus and is represented
by the blue region.

Using these results, and by computing the b ! 0 limit of
eq. (52), c1 is fixed to

c1 =
1

4
csc

✓
⇡D

2

◆
. (58)

Putting everything together, the final expressions for the
dimensionful master integrals read

I1 =

�
b
2
/w

2
2

� 4�D
4

2⇡ (y2�1)
D�2

4

K 4�D
2

 p
b2w2p
y2�1

!
, (59a)

I2 =

�
b
2
/w

2
2

� 6�D
4

4⇡ (y2�1)
D�4

4

K 6�D
2

 p
b2w2p
y2 � 1

!
. (59b)

where K⌫(z) stands for the modified Bessel function of
the second kind. The D ! 4 limit of eq. (59a) is smooth
and agrees with [53, eq. (C16)], once convention di↵er-
ences are taken into account. The D-dimensional analytic
expressions in eq. (59) are new and constitute one of the
main results of this work.

C. QCD color dipole scattering

A central objective of future electron-ion collision experi-
ments [65] is to gather data on how the density of partons
inside hadrons changes as a function of energy. It is
theorized that, as energy increases, this density becomes
larger and larger until it reaches the so-called satura-
tion regime of QCD, where non-linear e↵ects from gluon
recombination (gg ! g) take over soft bremsstrahlung.
This prediction arises in the color glass condensate inter-
pretation of deep inelastic scattering (DIS) [66, 67]. In
this framework, the incoming lepton emits a high-energy
virtual photon scattering from the color potential of the
proton. This interaction is then modeled in the frame
where the virtual photon fluctuates into a color dipole
(quarkonia) that scatters eikonally from the color potential
(see Fig. 2).

At leading order, the total cross-section for the photon
polarization states is obtained by applying the optical the-

orem to the color dipole forward amplitude T [68]

�
�⇤p
LO

= 2

Z
d2bqd

2bq̄dz| (�?, q
2
, z)|2T (bq,bq̄, Y ) . (60)

Here,  =  �⇤"qq̄ denotes the lightcone wavefunction
of the virtual photon of momentum q in the frame
where it decays into a quarkonia dipole of transverse
size �?=|bq�bq̄| carrying a fraction z of the photon’s
longitudinal momentum. The forward amplitude T is
related to the correlator of Wilson lines

Ũ(bq,bq̄, Y ) =
1

Nc

tr[U(bq, Y )U†(bq̄, Y )] , (61)

via T = 1�Ũ . Here, Nc denotes the number of colors and
each Wilson line U(bp, Y ) represents a parton p traversing
the target at transverse position/impact parameter bp

and rapidity Y = Y (z) (see Fig. 2).

The rapidity evolution of the target color field is de-
scribed by the Jalilian-Marian–Iancu–McLerran–Weigert–
Leonidov–Kovner (JIMWLK) equation [69]. An approxi-
mate, yet more tractable, large-Nc/mean-field description
is given by the Balitsky–Kovchegov (BK) equation [70–72],
which is to leading order accuracy given by

@Ũ(bq,bq̄, Y )

@Y
=

Z
d2bg K

LO

BK
(bq,bq̄,bg)

⇥ [Ũ(bq,bg, Y )Ũ(bg,bq̄, Y )� Ũ(bq,bq̄, Y )] ,

(62)

where K
LO

BK
(bq,bq̄,bg) =

↵sNc
2⇡2

(bq̄�bq)
2

(bq̄�bg)
2(bq�bg)

2 and ↵s is

the strong coupling constant.7

The solution to the BK equation predicts an interesting
feature of the DIS total cross-section known as geometrical
scaling [76]. This scaling is indicative of gluon saturation
within the hadron in the Regge limit.

Over the past decade, significant e↵orts have been made
to refine the BK equation by including next-to-leading or-
der corrections and beyond (see, e.g., [73, 77–79]). These
refinements involve calculating higher-order corrections
in the strong coupling constant, which can be quite cum-
bersome. In particular, as intermediate steps, it is often
necessary to trade the transverse-momentum dependence
in expressions in favor of transverse position. This step
necessarily leads to complicated Fourier integrals.

As illustrative examples, we consider two D-dimensional
families of integrals relevant to deep inelastic scattering

7
When considering high energy QCD in situations involving dilute

targets and projectiles, the partonic Wilson lines in eq. (62) tend

to stay close to unity such that Ũ ! 1
�

[73]. In such scenarios, T
is a small parameter and the relevant physics is governed by the

linearized version eq. (62) known as the 1-loop Balitsky–Fadin–

Kuraev–Lipatov (BFKL) equation (see [74, 75] and [68] for a

recent review).
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ones illustrate cut vertices. The Fourier integrals discussed in
the main text emerge as intermediate steps in the computation
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In particular, in D = 2, eqs. (63a) and (63b) appear in
the derivation of the NLO BK equation [77, eq. (42)]. A
small subset of diagrams leading to their appearance is
shown in Fig. 3.

In the following, we present new closed-form formulae for
eqs. (63a) and (63b) in D dimensions. We anticipate these
results to be useful considering that the O(✏) correction
to the NLO BK equation yields non-trivial contributions
to the NNLO BK equation in the critical dimension.8
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ij , namely
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More precisely, as prescribed by the “spacelike-timelike corre-

spondence” [79–81], at any fixed order in ↵s, the non-global log

Hamiltonian is independent of ✏ in dimensional regularization and

equals the BK Hamiltonian in the critical dimension (recall that

non-global observables (e.g., jet shapes) involve incomplete/“non-

global” integrals over final states phase space. These phase-space

cuts lead soft radiation to not be integrated over all angles, result-
ing in “non-global” large logarithms that need to be resummed).

Concretely,
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This situation bears similarity to the relation between the soft

anomalous dimension �s, which is independent of ✏, and the

rapidity anomalous dimension, as mentioned in [82, eq. (6.21)].
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Therefore, in order to find the tensor decompsoition of
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a and K
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Cosmological wavefunctions

Toy-model: 
Arkani-Hamed, Baumann, Hillmann, Joyce, Lee, Pimentel 

Arkani-Hamed, Benincasa, Postnikov

Benincasa, Vazao

1.1 Road Map and Summary

It has not escaped our notice that this paper is rather long. This section therefore serves as a high-

level overview of the salient points of the analysis, and as a roadmap for the developments in the

rest of the text. We will sketch the logic that leads from the time/energy integrals arising in bulk

perturbation theory, to the di↵erential equations that they satisfy, and finally to an alternative

viewpoint where these di↵erential equations originate from combinatorial ideas applied to graphs

and kinematic polygons associated to the cosmological wavefunction. The story will be told

through the lens of the simplest nontrivial example—the cosmological four-point function—with

pointers to where details and generalizations can be found in the text.

Toy model Throughout, we will focus on the particular model of a conformally coupled scalar

field (with polynomial self-interactions), described by the action

S =

Z
d4x

p
�g

2

4�1

2
(@�)2 �

1

12
R�

2
�

X

p>2

�p

p!
�
p

3

5 . (1.4)

We will study correlation functions in an FRW cosmology, with a power-law scale factor a(⌘) =

(⌘/⌘0)�(1+"). The utility of this toy model is that it can be simply related to a flat-space quantum

field theory with particular time-dependent couplings, allowing us to parameterize the features

of various cosmologies in a uniform way. As a practical matter, we will study correlations in

this model by computing the vacuum wavefunctional. We briefly review the basic features of the

wavefunction and its connection to correlation functions in flat space in Section 2.2.

Twisted integrals The fact that the action (1.4) can be cast as a flat-space field theory with

time-dependent couplings allows us to relate the elementary building blocks of the wavefunction

(“wavefunction coe�cients”) to their flat-space counterparts integrated over energies, as in (1.1).

In Section 2.4, we explain this correspondence in detail, while in Section 2.5 we provide many

explicit examples.

An illustrative example is the single-exchange process at tree level:

X1 X2Y

In flat space, the number of external lines of this “two-site chain” is irrelevant (though we have

drawn it for p = 3), and the result depends only on the sum of the external energies flowing

into the two vertices—which we denote by X1 and X2—as well as the internal energy Y flowing

through the diagram. The wavefunction coe�cient associated to this diagram is

 flat =
1

(X1 +X2)(X1 + Y )(X2 + Y )
. (1.5)

Notice that the result is a rational function with three poles: the “total-energy singularity” at

X1+X2 = 0 and two “partial-energy singularities” at X1+Y = 0 and X2+Y = 0. The locations

of these singularities encode aspects of the spacetime evolution that generated these correlations,
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through the diagram. The wavefunction coe�cient associated to this diagram is
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1 Introduction

There are many indications that the spacetime concept must be replaced by deeper principles as

part of the next upheavals in fundamental physics. Nowhere is the need for an understanding of

emergent space-time more pressing than in cosmology, where the birth of spacetime and the Uni-

verse itself are intimately connected at the Big Bang singularity. Moreover, actual observations

of the Universe are static, correlating structures at di↵erent spatial locations, but fixed moments

in time. We invoke a cosmological history to explain these spatial patterns, but ultimately “cos-

mological time” is an auxiliary concept, not present in the observables themselves. This calls

for a new “timeless” understanding of cosmology, reproducing the approximate notion of time

evolution where appropriate, but deforming away from it when the need becomes exigent.

Descending from these perhaps dangerously lofty conceptual heights, there is also a more prac-

tical reason to seek such a timeless description of cosmology. The conventional textbook methods

for computing cosmological correlators1 (and also the underlying cosmological wavefunction) are

very complicated. One of the main reasons is that all Feynman diagram calculations involve

time integrals from past infinity to the present for all interaction vertices. This leads to tremen-

dous complexity in intermediate stages of the computations, mirroring a similar explosion of

complexity familiar in the study of scattering amplitudes in asymptotically flat space. And yet,

as in the case of scattering amplitudes, the final expressions are vastly simpler. This provides

a much more down-to-earth motivation for finding a new understanding of time evolution, one

purely formulated in terms of spatial variables defining the kinematic dependence of the cosmo-

logical correlators, without a trace of integration over time coordinates. Echoing developments

in scattering amplitudes over the past decade, we can hope to find entirely new sorts of mathe-

matical questions in kinematic space, to which cosmological correlators are the answers, with the

interpretation in terms of time evolution arising only as a derived concept.

In this paper, we will give the first complete example of such a description of the cosmolog-

ical wavefunction for a simple class of toy models, working at tree level. We will consider the

wavefunction for conformally coupled scalars with general polynomial interactions, evolving in an

FRW cosmology with scale factor a(⌘) = (⌘/⌘0)�(1+"). Equivalently, after a conformal rescaling,

we have a theory of a massless scalar field in flat space, with time-dependent interactions.

As a first step, we will consider the contributions to the wavefunction associated with individual

Feynman diagrams. Representing the time-dependent couplings in the frequency domain allows

all time integrations to be performed, determining the cosmological wavefunction in terms of the

flat-space wavefunction as

 FRW(Ev, EI) =

Z 1

0

Y

v

d!v

 
Y

v

!v

!
"

 flat(Ev + !v, EI) , (1.1)

where Ev and EI are the “energies” associated with the vertices and the internal edges of the

graph, respectively. The flat-space wavefunction is a rational function of the energies Ev and EI ,

1In recent years, there has been remarkable progress in understanding features of the quantum field theory
wavefunctionals of various theories, both in flat space and in cosmology [1–22], and of correlation functions di-
rectly [23–56]. In many cases, these correlations are most naturally studied in momentum space, and there has
been commensurate progress in the study of momentum-space conformal field theory [57–65].
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Twisted period integrals

with simple poles when the sum of the energies entering any subgraph vanishes. The cosmological

wavefunction (1.1) is then an integral over the deformed flat-space wavefunction, weighted by a

“twist factor” (
Q

v
!v)

". Already this integral gives a formula for the wavefunction with no explicit

reference to integrations over time, but this is clearly only a cosmetic di↵erence—we have simply

gone to Fourier space, with the integrals over vertex energies being conjugate to those over the

vertex times.

However, there is a much more interesting way in which this integral representation opens

the door to a “timeless” description of cosmological correlators. Our cosmological integrals are

special cases of a wide class of integrals of the form

I(C,D;n; ") =

Z 1

0
dx1 · · · dxm P (x)

Y

I

(CIjxj +DI)
�nI+"I , (1.2)

where P (x) is some polynomial in the x variables, and the singularities of the integrand are pow-

ers of linear factors, raised to integer powers nI possibly “twisted” by fractional parameters "I .

There are naively an infinite number of these integrals parameterized by the general integers nI .

However, there are also an infinite number of linear relations between these integrals generated

by integration-by-parts identities. A complete understanding of the vector space of all indepen-

dent integrals of this type is o↵ered by the study of the so-called “twisted cohomology” of the

“hyperplane arrangement” attached to the linear half-spaces (C · x+D) > 0. Quite beautifully,

there is a finite-dimensional space of linearly independent integrals, whose dimension is given by

the number of bounded regions carved out by the hyperplanes. We can therefore choose a basis

Ia of these integrals, and every other integral with arbitrary powers nI can be written as a linear

combination of these basis integrals, with coe�cients that are rational functions of the parameters

(C,D, n, "). This in turn implies that the total di↵erential of any of the basis functions Ia with

respect to the parameters (C,D) must satisfy a di↵erential equation. The reason is simply that

the total di↵erential of any integral in this class must be a linear combination of basis integrals,

so that

dIa = AabIb , (1.3)

where Aab is a matrix of one-forms depending on the data (C,D).

When applied to the cosmological wavefunction (1.1), we learn a first important fact:

The cosmological wavefunction satisfies a di↵erential equation,

which governs how it changes as the external kinematics are varied.

We will see that the particular solution of this linear system of di↵erential equations is com-

pletely fixed by a natural set of boundary conditions, enforcing the absence of unphysical “folded

singularities” in the wavefunction, as dictated by the choice of the adiabatic vacuum in the far

past, together with a single “factorization” condition near certain singularities in energy space.

The factorization limit distinguishes the wavefunction from the actual correlation function (which

satisfies the same di↵erential equation).
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Cosmological correlator example
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1 Example: Cosmological correlators

We are interested in finding the di↵erential equation in canonical form for the following integral:

I =

Z
dz1 ^ dz2

(z1z2)✏

(z1 + y1 + 1)(z2 + y2 + 1)(z1 + z2 + y1 + y2)
(1)

using Intersection Theory. In order to do so, let us rewrite it as:

I =

Z

C
u(z1, z2)'(z1, z2) (2)

where:

• u(z1, z2) is the twist and it is defined as:

u = (z1z2)
✏
(D1D2D3)

�
(3)

where � is a regulator, and

D1 = (z1 + y1 + 1) , D2 = (z2 + y2 + 1) , D3 = (z1 + z2 + y1 + y2) (4)

• ' is a di↵erential 2-form:

' =
1

D1D2D3
dz1 ^ dz2 . (5)

We fix the order of the integration variable as: z1, z2 where z1 is the outermost variable.

We then evaluate the connection w as:

! = d log(u) = !1dz1 + !2dz2 (6)

where:

!1 =
�(2y1 + y2 + 2z1 + z2 + 1)

(y1 + z1 + 1)(y1 + y2 + z1 + z2)
+

✏

z1
(7)

!2 =
�(y1 + 2y2 + z1 + 2z2 + 1)

(y2 + z2 + 1)(y1 + y2 + z1 + z2)
+

✏

z2
(8)

1
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Number of MIs = dimH and bases choice

We count the number of Master integrals (MIs) as the number of zeroes of Omega. By solving the

system of equations: (
!1 = 0

!2 = 0
(9)

we get:

⌫ = 3 (10)

To get instead the number of MIs for the internal layer we just need to solve

!2 = 0

w.r.t z2 obtaining

⌫2 = 2

. We choose the internal bases as:

e(2) = h(2)
=

⇢
1

D1
,

1

D2

�
, (11)

e(21) = h(21)
=

⇢
1

D1D3
,

1

D2D3
,

1

D1D2D3

�
(12)

In order to obtain the di↵erential equation with respect to a variable x, we need to compute the matrix

⌦x, defined as,and then we take the limit � ! 0 at the end of the computation:

⌦x = FC�1 , (13)

where C is the C-matrix, defined as: Cij = hei|hji, and F is defined as:

Fij = h�i|hji , �i = (@x + �)ei , � = @x log(u) . (14)

So, first we need to compute the C-matrix:

C =

0

B@

2(�+✏)2

�2(2�+✏)(3�+2✏)
1

�(3�+2✏)
1
�2

1
�(3�+2✏)

2(�+✏)2

�2(2�+✏)(3�+2✏)
1
�2

1
�2

1
�2

3
�2

1

CA (15)

and then Omega, obtaining, after the limit � ! 0:

⌦z1 =

0

B@

✏
y1+1 0 0

0
✏
y1

0

0
✏

y1(y1+1)
✏

y1+1

1

CA (16)

and

⌦z2 =

0

B@

✏
y2

0 0

0
✏

y2+1 0

✏
y2(y2+1) 0

✏
y2+1

1

CA (17)
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Intersection Matrix

2 MIs in the internal layer

4 MIs in the external layer

Brunello & P.M. (2023) 
[unpublished]  

• u(z1, z2) is the twist and it is defined as:

u = (z1z2)
✏
(D1D2D3)

�
(2.19)

where � is a regulator, and

D1 = (z1 + y1 + 1) , D2 = (z2 + y2 + 1) , D3 = (z1 + z2 + y1 + y2) (2.20)

• ' is a di↵erential 2-form:

' =
1

D1D2D3
dz1 ^ dz2 . (2.21)

We fix the order of the integration variable as: z1, z2 where z1 is the outermost variable.

We then evaluate the connection ! as:

! = d log(u) = !1dz1 + !2dz2 (2.22)

where:

!1 =
�(2y1 + y2 + 2z1 + z2 + 2)

(y1 + z1 + 1)(y1 + y2 + z1 + z2 + 1)
+

✏

z1
(2.23)

!2 =
�(y1 + 2y2 + z1 + 2z2 + 2)

(y2 + z2 + 1)(y1 + y2 + z1 + z2 + 1)
+

✏

z2
(2.24)

We count the number of Master integrals (MIs) as the number of zeroes of Omega. By solving the

system of equations: (
!1 = 0

!2 = 0
(2.25)

w.r.t. z1, z2 we get:

⌫ = 4 (2.26)

To get instead the number of MIs for the internal layer we just need to solve

!2 = 0

w.r.t z2 obtaining

⌫2 = 2 . (2.27)

We choose the internal bases as:

e
(2)

=

⇢
1

D1
,

1

D2

�
, (2.28)

e
(21)

=

⇢
1

✏D
2
3

,
1

D1D3
,

1

D2D3
,

1

D1D2D3

�
(2.29)

The metric matrix is given by:

C =

0

BBBB@

(�+✏)2

�(�2�1)✏2(3�+2✏) � �+✏
(��1)�✏(3�+2✏) � �+✏

(��1)�✏(3�+2✏)
1

�✏��2✏

� �+✏
�(�+1)✏(3�+2✏)

2(�+✏)2

�2(2�+✏)(3�+2✏)
1

3�2+2�✏
1
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2(�+✏)2

�2(2�+✏)(3�+2✏)
1
�2

� 1
�2✏+�✏
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�2

1
�2

3
�2

1

CCCCA
(2.30)
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where � is a regulator, and

D1 = (z1 + y1 + 1) , D2 = (z2 + y2 + 1) , D3 = (z1 + z2 + y1 + y2) (2.20)

• ' is a di↵erential 2-form:

' =
1

D1D2D3
dz1 ^ dz2 . (2.21)

We fix the order of the integration variable as: z1, z2 where z1 is the outermost variable.

We then evaluate the connection ! as:

! = d log(u) = !1dz1 + !2dz2 (2.22)

where:

!1 =
�(2y1 + y2 + 2z1 + z2 + 2)

(y1 + z1 + 1)(y1 + y2 + z1 + z2 + 1)
+

✏

z1
(2.23)
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(y2 + z2 + 1)(y1 + y2 + z1 + z2 + 1)
+
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z2
(2.24)

We count the number of Master integrals (MIs) as the number of zeroes of Omega. By solving the

system of equations: (
!1 = 0

!2 = 0
(2.25)

w.r.t. z1, z2 we get:

⌫ = 4 (2.26)

To get instead the number of MIs for the internal layer we just need to solve

!2 = 0

w.r.t z2 obtaining

⌫2 = 2 . (2.27)

We choose the internal bases as:
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⇢
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�
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⇢
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1.1 Road Map and Summary

It has not escaped our notice that this paper is rather long. This section therefore serves as a high-

level overview of the salient points of the analysis, and as a roadmap for the developments in the

rest of the text. We will sketch the logic that leads from the time/energy integrals arising in bulk

perturbation theory, to the di↵erential equations that they satisfy, and finally to an alternative

viewpoint where these di↵erential equations originate from combinatorial ideas applied to graphs

and kinematic polygons associated to the cosmological wavefunction. The story will be told

through the lens of the simplest nontrivial example—the cosmological four-point function—with

pointers to where details and generalizations can be found in the text.

Toy model Throughout, we will focus on the particular model of a conformally coupled scalar

field (with polynomial self-interactions), described by the action

S =

Z
d4x

p
�g

2

4�1

2
(@�)2 �

1

12
R�

2
�

X

p>2

�p

p!
�
p

3

5 . (1.4)

We will study correlation functions in an FRW cosmology, with a power-law scale factor a(⌘) =

(⌘/⌘0)�(1+"). The utility of this toy model is that it can be simply related to a flat-space quantum

field theory with particular time-dependent couplings, allowing us to parameterize the features

of various cosmologies in a uniform way. As a practical matter, we will study correlations in

this model by computing the vacuum wavefunctional. We briefly review the basic features of the

wavefunction and its connection to correlation functions in flat space in Section 2.2.

Twisted integrals The fact that the action (1.4) can be cast as a flat-space field theory with

time-dependent couplings allows us to relate the elementary building blocks of the wavefunction

(“wavefunction coe�cients”) to their flat-space counterparts integrated over energies, as in (1.1).

In Section 2.4, we explain this correspondence in detail, while in Section 2.5 we provide many

explicit examples.

An illustrative example is the single-exchange process at tree level:

X1 X2Y

In flat space, the number of external lines of this “two-site chain” is irrelevant (though we have

drawn it for p = 3), and the result depends only on the sum of the external energies flowing

into the two vertices—which we denote by X1 and X2—as well as the internal energy Y flowing

through the diagram. The wavefunction coe�cient associated to this diagram is

 flat =
1

(X1 +X2)(X1 + Y )(X2 + Y )
. (1.5)

Notice that the result is a rational function with three poles: the “total-energy singularity” at

X1+X2 = 0 and two “partial-energy singularities” at X1+Y = 0 and X2+Y = 0. The locations

of these singularities encode aspects of the spacetime evolution that generated these correlations,

7
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1 Example: Cosmological correlators

We are interested in finding the di↵erential equation in canonical form for the following integral:

I =

Z
dz1 ^ dz2

(z1z2)✏

(z1 + y1 + 1)(z2 + y2 + 1)(z1 + z2 + y1 + y2)
(1)

using Intersection Theory. In order to do so, let us rewrite it as:

I =

Z

C
u(z1, z2)'(z1, z2) (2)

where:

• u(z1, z2) is the twist and it is defined as:

u = (z1z2)
✏
(D1D2D3)

�
(3)

where � is a regulator, and

D1 = (z1 + y1 + 1) , D2 = (z2 + y2 + 1) , D3 = (z1 + z2 + y1 + y2) (4)

• ' is a di↵erential 2-form:

' =
1

D1D2D3
dz1 ^ dz2 . (5)

We fix the order of the integration variable as: z1, z2 where z1 is the outermost variable.

We then evaluate the connection w as:

! = d log(u) = !1dz1 + !2dz2 (6)

where:

!1 =
�(2y1 + y2 + 2z1 + z2 + 1)

(y1 + z1 + 1)(y1 + y2 + z1 + z2)
+

✏

z1
(7)

!2 =
�(y1 + 2y2 + z1 + 2z2 + 1)

(y2 + z2 + 1)(y1 + y2 + z1 + z2)
+

✏

z2
(8)

1

System of Differential Equations

PoS(MA2019)015

From Diagrammar to Diagrammalgebra

• Integral decomposition (2). By using the master decomposition formulas of contours and
dual contours, integrals and dual integrals can be straightforwardly written as,

� = hi! |C'] =
a’
8=1

08 �
0
8 , and �̃ = [C! |i'i =

a’
8=1

0̃8 �̃
0
8 , (22)

respectively in terms the MIs � 08 = hi! |W8], and of the dual MIs �̃ 08 = [[8 |i'i, for 8 = 1, . . . , a.

In the above formulas, C and H are (a⇥a)-matrices of intersection numbers, which, in general,
di�er from the identity matrix. For intersections number of orthonormal elelements they turn
into unit matrices, hence simplifying the decomposition formulas. The Gram-Schmidt algorithm
can be employed to build orthonormal bases from generic sets of independent elements, using
the intersection numbers as scalar products. More generally the coe�cients appearing in the four
types of decomposition formulas for twisted cocycles and cycles and their duals given above are
independent of the respective dual elements. Therefore, by exploiting the freedom in choosing the
corresponding dual bases may yield striking simplifications [31, 102, 103].

Let me remark that the above discussion and the decomposition formulas defined above hold
also in the case of relative twisted de Rham theory, namely releasing the non-integer conditions for
the exponents U8 that appear in the definition of D [102–104].

2.1.2 Di�erential Equations

• Di�erential Forms. The identity resolution I2 can be used to derive the system of di�erential
equation obeyed by the master forms h48 |. In fact, let as assume that the D depends on an
external variables, say G, then

mG h48 | = h(mG + fG)48 | = h(mG + fG)48 | I2 = ⌦8 9 h4 9 | , (23)

where the entries of the matrix of the system are ⌦8 9 = h(mG + fG)48 |⌘:i (C�1): 9 , and
fG ⌘ mG log(D).
Following similar steps, the system of di�erential equations for the master dual forms |⌘8i
reads,

mG |⌘8i = | (mG � fG)⌘8i = I2 | (mG � fG)⌘8i = ⌦̃8 9 |⌘ 9i , (24)

where the entries of the matrix ⌦̃ are ⌦̃8 9 = (C�1) 9: h4: | (mG � fG)⌘8i .

• Master Integrals Since integrals are obtained by pairing forms and integration contours, the
matrices ⌦ and ⌦̃, whose entries are computed by evaluating intersection numbers, are the
matrix of the system of di�erential equations obeyed by the master integrals �8 and by the
dual master integrals �̃, respectively ,

mG �8 = ⌦8 9 � 9 , mG �̃8 = ⌦8 9 �̃ 9 . (25)

• Intersection Matrices. The systems of di�erential equations for forms and dual forms can be
used to show that the intersection matrices C and its inverse C

�1 satisfy di�erential equations,
known as secondary equations [35, 36, 105],

mGC = ⌦.C + C.⌦̃ , mGC
�1 = ⌦̃.C�1 � C

�1.⌦ , (26)

7

PoS(MA2019)015

From Diagrammar to Diagrammalgebra

• Integral decomposition (2). By using the master decomposition formulas of contours and
dual contours, integrals and dual integrals can be straightforwardly written as,

� = hi! |C'] =
a’
8=1

08 �
0
8 , and �̃ = [C! |i'i =

a’
8=1

0̃8 �̃
0
8 , (22)

respectively in terms the MIs � 08 = hi! |W8], and of the dual MIs �̃ 08 = [[8 |i'i, for 8 = 1, . . . , a.

In the above formulas, C and H are (a⇥a)-matrices of intersection numbers, which, in general,
di�er from the identity matrix. For intersections number of orthonormal elelements they turn
into unit matrices, hence simplifying the decomposition formulas. The Gram-Schmidt algorithm
can be employed to build orthonormal bases from generic sets of independent elements, using
the intersection numbers as scalar products. More generally the coe�cients appearing in the four
types of decomposition formulas for twisted cocycles and cycles and their duals given above are
independent of the respective dual elements. Therefore, by exploiting the freedom in choosing the
corresponding dual bases may yield striking simplifications [31, 102, 103].

Let me remark that the above discussion and the decomposition formulas defined above hold
also in the case of relative twisted de Rham theory, namely releasing the non-integer conditions for
the exponents U8 that appear in the definition of D [102–104].

2.1.2 Di�erential Equations

• Di�erential Forms. The identity resolution I2 can be used to derive the system of di�erential
equation obeyed by the master forms h48 |. In fact, let as assume that the D depends on an
external variables, say G, then

mG h48 | = h(mG + fG)48 | = h(mG + fG)48 | I2 = ⌦8 9 h4 9 | , (23)

where the entries of the matrix of the system are ⌦8 9 = h(mG + fG)48 |⌘:i (C�1): 9 , and
fG ⌘ mG log(D).
Following similar steps, the system of di�erential equations for the master dual forms |⌘8i
reads,

mG |⌘8i = | (mG � fG)⌘8i = I2 | (mG � fG)⌘8i = ⌦̃8 9 |⌘ 9i , (24)

where the entries of the matrix ⌦̃ are ⌦̃8 9 = (C�1) 9: h4: | (mG � fG)⌘8i .

• Master Integrals Since integrals are obtained by pairing forms and integration contours, the
matrices ⌦ and ⌦̃, whose entries are computed by evaluating intersection numbers, are the
matrix of the system of di�erential equations obeyed by the master integrals �8 and by the
dual master integrals �̃, respectively ,

mG �8 = ⌦8 9 � 9 , mG �̃8 = ⌦8 9 �̃ 9 . (25)

• Intersection Matrices. The systems of di�erential equations for forms and dual forms can be
used to show that the intersection matrices C and its inverse C

�1 satisfy di�erential equations,
known as secondary equations [35, 36, 105],

mGC = ⌦.C + C.⌦̃ , mGC
�1 = ⌦̃.C�1 � C

�1.⌦ , (26)

7

PoS(MA2019)015

From Diagrammar to Diagrammalgebra

• Integral decomposition (2). By using the master decomposition formulas of contours and
dual contours, integrals and dual integrals can be straightforwardly written as,

� = hi! |C'] =
a’
8=1

08 �
0
8 , and �̃ = [C! |i'i =

a’
8=1

0̃8 �̃
0
8 , (22)

respectively in terms the MIs � 08 = hi! |W8], and of the dual MIs �̃ 08 = [[8 |i'i, for 8 = 1, . . . , a.

In the above formulas, C and H are (a⇥a)-matrices of intersection numbers, which, in general,
di�er from the identity matrix. For intersections number of orthonormal elelements they turn
into unit matrices, hence simplifying the decomposition formulas. The Gram-Schmidt algorithm
can be employed to build orthonormal bases from generic sets of independent elements, using
the intersection numbers as scalar products. More generally the coe�cients appearing in the four
types of decomposition formulas for twisted cocycles and cycles and their duals given above are
independent of the respective dual elements. Therefore, by exploiting the freedom in choosing the
corresponding dual bases may yield striking simplifications [31, 102, 103].

Let me remark that the above discussion and the decomposition formulas defined above hold
also in the case of relative twisted de Rham theory, namely releasing the non-integer conditions for
the exponents U8 that appear in the definition of D [102–104].

2.1.2 Di�erential Equations

• Di�erential Forms. The identity resolution I2 can be used to derive the system of di�erential
equation obeyed by the master forms h48 |. In fact, let as assume that the D depends on an
external variables, say G, then

mG h48 | = h(mG + fG)48 | = h(mG + fG)48 | I2 = ⌦8 9 h4 9 | , (23)

where the entries of the matrix of the system are ⌦8 9 = h(mG + fG)48 |⌘:i (C�1): 9 , and
fG ⌘ mG log(D).
Following similar steps, the system of di�erential equations for the master dual forms |⌘8i
reads,

mG |⌘8i = | (mG � fG)⌘8i = I2 | (mG � fG)⌘8i = ⌦̃8 9 |⌘ 9i , (24)

where the entries of the matrix ⌦̃ are ⌦̃8 9 = (C�1) 9: h4: | (mG � fG)⌘8i .

• Master Integrals Since integrals are obtained by pairing forms and integration contours, the
matrices ⌦ and ⌦̃, whose entries are computed by evaluating intersection numbers, are the
matrix of the system of di�erential equations obeyed by the master integrals �8 and by the
dual master integrals �̃, respectively ,

mG �8 = ⌦8 9 � 9 , mG �̃8 = ⌦8 9 �̃ 9 . (25)

• Intersection Matrices. The systems of di�erential equations for forms and dual forms can be
used to show that the intersection matrices C and its inverse C

�1 satisfy di�erential equations,
known as secondary equations [35, 36, 105],

mGC = ⌦.C + C.⌦̃ , mGC
�1 = ⌦̃.C�1 � C

�1.⌦ , (26)

7

We count the number of Master integrals (MIs) as the number of zeroes of Omega. By solving the

system of equations: (
!1 = 0

!2 = 0
(9)

we get:

⌫ = 3 (10)

To get instead the number of MIs for the internal layer we just need to solve

!2 = 0

w.r.t z2 obtaining

⌫2 = 2

. We choose the internal bases as:

e(2) = h(2)
=

⇢
1

D1
,

1

D2

�
, (11)

e(21) = h(21)
=

⇢
1

D1D3
,

1

D2D3
,

1

D1D2D3

�
(12)

In order to obtain the di↵erential equation with respect to a variable x, we need to compute the matrix

⌦x, defined as,and then we take the limit � ! 0 at the end of the computation:

⌦x = lim
�!0

FC�1 , (13)

where C is the C-matrix, defined as: Cij = hei|hji, and F is defined as:

Fij = h�i|hji , �i = (@x + �)ei , � = @x log(u) . (14)

So, first we need to compute the C-matrix:

C =

0

B@

2(�+✏)2

�2(2�+✏)(3�+2✏)
1

�(3�+2✏)
1
�2

1
�(3�+2✏)

2(�+✏)2

�2(2�+✏)(3�+2✏)
1
�2

1
�2

1
�2

3
�2

1

CA (15)

and then ⌦, obtaining, after taking the limit � ! 0:

⌦y1 =

0

B@

✏
y1+1 0 0

0
✏
y1

0

0
✏

y1(y1+1)
✏

y1+1

1

CA (16)

and

⌦y2 =

0

B@

✏
y2

0 0

0
✏

y2+1 0

✏
y2(y2+1) 0

✏
y2+1

1

CA (17)

2
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0
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0

0
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and

⌦z2 =
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✏
y2

0 0

0
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y2+1 0
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y2(y2+1) 0
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y2+1

1

CA (17)

2

Master Decomposition Formula

Canonical system

• u(z1, z2) is the twist and it is defined as:

u = (z1z2)
✏
(D1D2D3)

�
(2.19)

where � is a regulator, and

D1 = (z1 + y1 + 1) , D2 = (z2 + y2 + 1) , D3 = (z1 + z2 + y1 + y2) (2.20)

• ' is a di↵erential 2-form:

' =
1

D1D2D3
dz1 ^ dz2 . (2.21)

We fix the order of the integration variable as: z1, z2 where z1 is the outermost variable.

We then evaluate the connection ! as:

! = d log(u) = !1dz1 + !2dz2 (2.22)

where:

!1 =
�(2y1 + y2 + 2z1 + z2 + 2)

(y1 + z1 + 1)(y1 + y2 + z1 + z2 + 1)
+

✏

z1
(2.23)

!2 =
�(y1 + 2y2 + z1 + 2z2 + 2)

(y2 + z2 + 1)(y1 + y2 + z1 + z2 + 1)
+

✏

z2
(2.24)

We count the number of Master integrals (MIs) as the number of zeroes of Omega. By solving the

system of equations: (
!1 = 0

!2 = 0
(2.25)

w.r.t. z1, z2 we get:

⌫ = 4 (2.26)

To get instead the number of MIs for the internal layer we just need to solve

!2 = 0

w.r.t z2 obtaining

⌫2 = 2 . (2.27)

We choose the internal bases as:

e
(2)

=

⇢
1

D1
,

1

D2

�
, (2.28)

e
(21)

=

⇢
1

✏D
2
3

,
1

D1D3
,

1

D2D3
,

1

D1D2D3

�
(2.29)

The metric matrix is given by:

C =

0

BBBB@

(�+✏)2

�(�2�1)✏2(3�+2✏) � �+✏
(��1)�✏(3�+2✏) � �+✏

(��1)�✏(3�+2✏)
1

�✏��2✏

� �+✏
�(�+1)✏(3�+2✏)

2(�+✏)2

�2(2�+✏)(3�+2✏)
1

3�2+2�✏
1
�2

� �+✏
�(�+1)✏(3�+2✏)

1
3�2+2�✏

2(�+✏)2

�2(2�+✏)(3�+2✏)
1
�2

� 1
�2✏+�✏

1
�2

1
�2

3
�2

1

CCCCA
(2.30)
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In order to obtain the systems di↵erential equations with respect to each variable y1, y2, we need to

compute the matrices ⌦y1 ,⌦y2 ,and then to take the limit � ! 0 at the end of the computation, as:

⌦y1 = lim
�!0

hr�y1
ei|ejiC�1

kj , (2.31)

where r�y1
= (@y1 + �y1), with �y1 = @y1 log(u), and analogously for y2.

The 1-forms �y1 and �y2 are given by:

�y1 =
�(2y1 + y2 + 2z1 + z2 + 2)

(y1 + z1 + 1)(y1 + y2 + z1 + z2 + 1)
, (2.32)

�y2 =
�(y1 + 2y2 + z1 + 2z2 + 2)

(y2 + z2 + 1)(y1 + y2 + z1 + z2 + 1)
, (2.33)

and the matrices ⌦y1 ,⌦y2 are found to be:

⌦y1 =

0

BBB@

2✏
y1+y2+1 0 0 0

� ✏
y1+1

✏
y1+1 0 0

✏
y1

0
✏
y1

0

✏
y1(y1+1) 0

✏
y1(y1+1)

✏
y1+1

1

CCCA
(2.34)

and

⌦y2 =

0

BBB@

2✏
y1+y2+1 0 0 0

✏
y2

✏
y2

0 0

� ✏
y2+1 0

✏
y2+1 0

✏
y2(y2+1)

✏
y2(y2+1) 0

✏
y2+1

1

CCCA
(2.35)

which are in canonical form.
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In order to obtain the systems di↵erential equations with respect to each variable y1, y2, we need to

compute the matrices ⌦y1 ,⌦y2 ,and then to take the limit � ! 0 at the end of the computation, as:

⌦y1 = lim
�!0

hr�y1
ei|ejiC�1

kj , (2.31)

where r�y1
= (@y1 + �y1), with �y1 = @y1 log(u), and analogously for y2.

The 1-forms �y1 and �y2 are given by:

�y1 =
�(2y1 + y2 + 2z1 + z2 + 2)

(y1 + z1 + 1)(y1 + y2 + z1 + z2 + 1)
, (2.32)

�y2 =
�(y1 + 2y2 + z1 + 2z2 + 2)

(y2 + z2 + 1)(y1 + y2 + z1 + z2 + 1)
, (2.33)

and the matrices ⌦y1 ,⌦y2 are found to be:

⌦y1 =

0

BBB@

2✏
y1+y2+1 0 0 0

� ✏
y1+1

✏
y1+1 0 0

✏
y1

0
✏
y1

0

✏
y1(y1+1) 0

✏
y1(y1+1)

✏
y1+1

1

CCCA
(2.34)

and

⌦y2 =

0

BBB@

2✏
y1+y2+1 0 0 0

✏
y2

✏
y2

0 0

� ✏
y2+1 0

✏
y2+1 0

✏
y2(y2+1)

✏
y2(y2+1) 0

✏
y2+1

1

CCCA
(2.35)

which are in canonical form.
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Pokraka et al. (2023)Cohomology-based methods for cosmological correlations @ tree level

Differential Equations for cosmological correlations @ tree level Arkani-Hamed, Baumann, Hillmann, Joyce, Lee, Pimentel (2023)

1.1 Road Map and Summary

It has not escaped our notice that this paper is rather long. This section therefore serves as a high-

level overview of the salient points of the analysis, and as a roadmap for the developments in the

rest of the text. We will sketch the logic that leads from the time/energy integrals arising in bulk

perturbation theory, to the di↵erential equations that they satisfy, and finally to an alternative

viewpoint where these di↵erential equations originate from combinatorial ideas applied to graphs

and kinematic polygons associated to the cosmological wavefunction. The story will be told

through the lens of the simplest nontrivial example—the cosmological four-point function—with

pointers to where details and generalizations can be found in the text.

Toy model Throughout, we will focus on the particular model of a conformally coupled scalar

field (with polynomial self-interactions), described by the action

S =

Z
d4x

p
�g

2

4�1

2
(@�)2 �

1

12
R�

2
�

X

p>2

�p

p!
�
p

3

5 . (1.4)

We will study correlation functions in an FRW cosmology, with a power-law scale factor a(⌘) =

(⌘/⌘0)�(1+"). The utility of this toy model is that it can be simply related to a flat-space quantum

field theory with particular time-dependent couplings, allowing us to parameterize the features

of various cosmologies in a uniform way. As a practical matter, we will study correlations in

this model by computing the vacuum wavefunctional. We briefly review the basic features of the

wavefunction and its connection to correlation functions in flat space in Section 2.2.

Twisted integrals The fact that the action (1.4) can be cast as a flat-space field theory with

time-dependent couplings allows us to relate the elementary building blocks of the wavefunction

(“wavefunction coe�cients”) to their flat-space counterparts integrated over energies, as in (1.1).

In Section 2.4, we explain this correspondence in detail, while in Section 2.5 we provide many

explicit examples.

An illustrative example is the single-exchange process at tree level:

X1 X2Y

In flat space, the number of external lines of this “two-site chain” is irrelevant (though we have

drawn it for p = 3), and the result depends only on the sum of the external energies flowing

into the two vertices—which we denote by X1 and X2—as well as the internal energy Y flowing

through the diagram. The wavefunction coe�cient associated to this diagram is

 flat =
1

(X1 +X2)(X1 + Y )(X2 + Y )
. (1.5)

Notice that the result is a rational function with three poles: the “total-energy singularity” at

X1+X2 = 0 and two “partial-energy singularities” at X1+Y = 0 and X2+Y = 0. The locations

of these singularities encode aspects of the spacetime evolution that generated these correlations,
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where exactly 1 master integral per sector appears. In-
tegration by parts identities will shift powers of denom-
inators by integer units, relating integrals on di�erent
sub-sectors. Rewriting equation (31) in Baikov variables,
one obtains a family of one-loop n-points Feynman inte-
grals with variables raised to half-integer powers:

I
(ns, 1; 0)
{1} = Ÿ0

2n

⁄
Ÿ

eœE(1)

dy2
e

Ÿ

eœE(1)

#
y2

e

$1/2
#
Ÿ(y2

e)
$‘

, (33)

which in momentum space correspond to:

I
(ns, 1; 0)
{1} = 1

2n

⁄

Rn

d̨l
1

---̨l
---
---̨l + P̨1

--- · · ·

------
l̨ +

ns≠1ÿ

j=1
P̨j

------

. (34)

In general, such integral belongs to the integral fam-
ily:

I
(ns, 1; 0)
{·g} :=

⁄
Ÿ

eœE(1)

dy2
e

Ÿ

eœE(1)

!
y2

e

"·e

#
Ÿ(y2)

$‘ (35)

=
⁄

Rns

d̨l
1

[(̨l)2]·12 · · · [(̨l + P̨1 + . . . + P̨ns≠1)2]·ns,1

(36)

with ·e œ Z + 1/2, e œ E
(1). Integrals of the type of

equation (33) cannot be related to subsectors where some
denominators do not appear, and for each master Feyn-
man integral appearing with k external legs, we have a
sector with ‹(FI)

k master cosmological integrals. The total
number of master integral of the zero sector is:

‹(CI)
ns

=
nsÿ

k=2

ns!
k!(ns ≠ k)! ‹(FI)

k , (37)

where the various subsectors are appearing in the with
di�erential equations blocks of dimension ‹(FI)

k . Summing
the series, we obtain:

‹(CI)
ns

= 3ns ≠ 2ns≠1(2 + ns) . (38)

V. ONE-LOOP TWO-SITE GRAPH

In this section, we discuss how all the technology outlined
in the previous sections manifests itself in the simplest
case of the one-loop two-site integral and allows us to get
insights on the integrated function, – see Figure 2.
Let us consider the following representation for this inte-
gral:

I(2, 1) =
⁄

R2
+

Ÿ

sœV

5
dxs

xs
x–

s

6
I

(2, 1)
{1} , (39)

x1 x2

y12

y21

Figure 2. One-loop two-site diagram. The corresponding inte-
grand has 5 denominators, each corresponding to a connected
subgraph of the above graph. Two subgraphs enclose each
of the two sites, then two subgraphs enclose both sites and
cut one edge twice and finally there is the full graph which
corresponds to the total energy pole.

I
(2, 1)
{1} = Ÿ0

⁄

�

Ÿ

eœE(1)

[dye ye] Ÿ‰

qGqg1qg2

3
1

qG12

+ 1
qG21

4
(40)

where E
(1) := {e12, e21} is the set of the two edges connect-

ing the sites s1 and s2, and Ÿ, Ÿ¶ and ‰ can be obtained
from (14) by setting L = 1, n(1)

e = ns = 2, while gj

identifies the subgraph containing just the site sj (whose
weight is xj + Xj) and Gij := G \ {eij} is the subgraph
obtained from G by deleting the edge between the sites si

and sj – in this simple case where there are only two sites,
the two edges are indicated by reversing the order of the
labels of the sites they connect. The linear polynomials
associated to these subgraphs are given by 9, which can
be explicitly written as,

qG = x̃1 + x̃2,

qg1 = x̃1 + y12 + y21,

qg2 = x̃2 + y12 + y21,

qG12 = x̃1 + x̃2 + 2y12,

qG21 = x̃1 + x̃2 + 2y21.

(41)

where for simplicity we denoted x̃i = xi + Xi.
Loop edge weight integration – Upon exploiting the
invariance of the integrand under the y112 ¡ y21 ex-
change, and the partial fraction relations emerging from
the identity:

qg1 ≠ qg2 = x̃1 ≠ x̃2 , (42)

the integral I
(2, 1)
{1} , appearing in (40), can be recast as a

combination of twisted period integrals (13), correspond-
ing to two sets of two denominators, namely {qg1 , qG12}

and {qg2 , qG21}. The latter set can be mapped onto the
former, by exchanging x̃1 ¡ x̃2. Therefore, the computa-
tional complexity of the problem reduces remarkably to
the evaluation of just one type of period integrals, defined
as:

I
(2, 1)
·g1 ·G12

:=
⁄

�
Ÿ‰ Ï·g1 ·G12

, Ï·g1 ·G12
:= dy12dy21

q
·g1
g1 q

·G12
G12

. (43)

From equation (17) it is possible to identify a number
‹ = 6 of master integrals, which can be chosen as: I =

10

+(≠1)–(X1 ≠ X2)(P + X1)–
2F1

1
1 ≠ –, ≠2–; 1 ≠ 2–; X1 ≠ X2

P + X1

2

+(X1 + X2)(P + X1)–
2F1

1
1 ≠ –, ≠2–; 1 ≠ 2–; X1 + X2

P + X1

26

≠fi5/24≠–≠1 csc(fi–) csc(2fi–)
�(≠– )�

!
– + 3

2
"

(P + X1)

5
(≠1)–(X1 ≠ X2)2–+2

3F2

1
1, 1, – + 2; 2, 2 – + 3; X1 ≠ X2

P + X1

2

+(X1 + X2)2–+2
3F2

1
1, 1, – + 2; 2, 2– + 3; X1 + X2

P + X1

26

+
fi5/22≠2–≠1 csc(fi–) csc(2fi –)

!
(≠1)– (X1 ≠ X2)2–+1 + (X1 + X2)2–+1"

� (≠–)�
!
– + 3

2
" log

1
P + X1

P

2

+(X1 ¡ X2). (50)

VI. ONE-LOOP THREE-SITE GRAPH

Let us move on to the next-to-simplest one-loop case,
constituted by the one-loop three-site integral – See Fig.
3. As we will show, it has some distinctive features
which were absent in the previous case. The easiest to
spot is the fact that now the volumes in the edge weight
measure are higher degree polynomials that no longer
factorizes in a product of linear polynomials. Actually,
such a factorization occurs for the one-loop two-site case
only.
In what follows, we restrict ourselves to the case in which
there is just one external state at each site, so that |P̨i| æ

Xi. Reducing the number of scales from six to three
simplifies the problem while still capturing all the essential
complexities.
The representation for the integrand coming from one
of the sign triangulations 11 of the underlying cosmo-
logical polytope, which corresponds to the choice G¶ =
{G, g1, g2, g3}, is given in terms of the sum of six sim-
plices. Interestingly, it is enough to focus on the study
of the di�erential equations for one of them, as the oth-
ers can be derived through permutations of integration
variables and external kinematics. Explicitly, such repre-
sentation for the integrand yields the following form for
the integral I

(3, 1)
{1} :

I
(3, 1)
{1} = Ÿ0

⁄

�

Ÿ

eœE(1)

[dye ye] Ÿ‰

qG

3Ÿ

j=1
qgj

◊

◊

5
1

qG12

3
1

qg23

+ 1
qg31

4
+

+ 1
qG23

3
1

qg31

+ 1
qg12

4
+ 1

qG31

3
1

qg12

+ 1
qg23

46

(51)

where Ÿ, ‰ and Ÿ¶ can be obtained from 14 by setting
L = 1 and ns = 3. Furthermore, for regularization pur-
poses, we can consider d = 3 + 2‘. The set of edges E

(1)

is given by E
(1) := {e12, e23, e31}. Finally, it is useful

x1

x2 x3

y12

y23

y31

Figure 3. One loop three-site diagram. The corresponding
integrand has 10 denominators, each corresponding to a con-
nected subgraph of the above graph. Three subgraphs which
enclose a single site, three which enclose two sites at a time,
three which enclose all three sites but cut each edge twice and
finally the full graph which corresponds to the total energy
singularity.

to write here the explicit expression for the linear poly-
nomials {qg, g ™ G}, whose associated subgraphs follow
the same conventions introduced in the previous section
with gs1...sñs

being the connected subgraph containing
the sites s1, . . . sñs , while Gij := G \ {eij} is the subgraph
obtained from G by deleting the edge eij connecting the
sites si and sj :

qG =
3ÿ

i=1
Xi,

qgj = yj≠1,j + Xj + yj,j+1,

qGj,j+1 =
3ÿ

s=1
Xs + yj,j+1 ,

(52)

with j = 1, 2, 3.
Partial fraction identities allows focusing only on
subsets of three denominators: the evaluation can
then be split into two types of contributions, separat-
ing the calculation of the sectors with denominators
{qgj , j = 1, 2, 3} fi {qg23}, and of ones containing qG12
and the pairs {(qgj , qgj+1), (qgj , qg24); j = 1, 2, 3}.

Polylogarithmic sector – Let us begin with the sector
identified by {qgj , j = 1, 2, 3} fi {qg23}. The associated

Linear algebra from Algebraic Geometry and Syzygy equations

Linear algebra from Intersection Theory

(y-integration) Canonical Differential Equations for  MIs: polylog structureν = 6

Analytic solution: back of a envelope result

Linear algebra from Algebraic Geometry and Syzygy equations

Linear algebra from Intersection Theory

Site-weight x-integration: Mellin Transform and Method of Brackets

(y-integration) Analytic solution 
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{I00, I10, I01, I02, I≠11, I11} – since now on we suppress
the superscript for notational convenience.

As described in Section IV, the sector without denomina-
tors contains ‹(CI)

2 = 1 master integrals, which has been
chosen as I00, and in momentum space it can be rewritten
as a massless one-loop two point function with massive ex-
ternal momenta, belonging to the integral family I·g1·g2

,
with denominators raised to with half-integer exponents,
in Euclidean space:

I·g1·g2
:=

⁄
d˛̧

[(˛̧)2]·g1 [(˛̧ + P̨ )2]·g2
, ·gj œ Z + 1

2 . (44)

Using the algebraic geometry methods of section III, and
independently using intersection theory [58], as shown in
appendix A, it is possible to obtain the di�erential equa-
tions obeyed by the master integrals. With a change of
basis J = R.I , through the rotation matrix R described
in appendix B, it is possible to find a family of master
integrals:

J1 = (1 + 2‘)2

P 2 I00 ,

J2 = ‘(1 + 2‘)
P

I10 ,

J3 = 1
P

!
‘(1 + 4‘) I01 + ‘(x̃1 + x̃2) I02

"
,

J4 = ≠ ‘ I02 ,

J5 = ‘(1 + 2‘)
2P (x̃1 + x̃2)

!
I≠11 ≠ I00 + (x̃2 ≠ x̃1) I01

"
,

J6 = ‘2
I11 , (45)

obeying a canonical system of di�erential equations [76–
78], as defined in (27), where the total di�erential ma-
trix,

dA = Âx̃1dx̃1 + Âx̃2dx̃2 + ÂP dP

=
8ÿ

i=1
Mi d log(wi) , (46)

is in d log form: Mi are constant matrices whereas the
letters wi œ {P, x̃1 + x̃2, x̃1 + P, x̃2 + P, x̃1 + x̃2 + 2P, x̃1 ≠

P, x̃2 ≠P, x̃1 + x̃2 ≠ 2P} (the last three entries correspond
to spurious singularities) form a rational alphabet. The
system of di�erential equations admits a solution in terms
of iterated integrals, as shown in (28), which in this case
give rise to generalized polylogarithms [102, 103, 108, 109].
The analytic expression for our master integrals up to
order O(‘2) is obtained after fixing boundary conditions
either via direct integration or imposing regularity at the
spurious singularity - see appendix B, for details. Using
the results of the master integrals, I

(2, 1)
{1} reads as,

I
(2, 1)
{1} = ≠

1
‘(x̃1 + x̃2) + (≠2 log(P ) ≠ “E + 2 ≠ log(4fi))

x̃1 + x̃2

+ 2
x̃2

1 ≠ x̃2
2

5
x̃2 log

3
P + x̃1

P

4
≠ x̃1 log

3
P + x̃2

P

46

≠
1
P

5
fi2

6 + Li2
3

P ≠ x̃2
P + x̃1

4
+ Li2

3
P ≠ x̃1
P + x̃2

4

+ 1
2 log2

3
P + x̃1
P + x̃2

46
. (47)

Site weight integration – The integration over the
x-variables of equation (39) can be performed directly
in terms of known Mellin transforms [110], and via the
Method of Brackets [111, 112]. Such method is based
on Ramanujan’s master theorem which states that given
a complex valued function g(x), which can be Taylor
expanded around x æ 0 as:

g(x) =
Œÿ

k=0

G(k)
k! (≠x)k , (48)

then its Mellin transform is given by
⁄ Œ

0
xs≠1g(x)dx = �(s)G(≠s) . (49)

The final result, which is symmetric under the exchange
of X1 ¡ X2, can be expressed as a linear combination
of Hypergeometric functions 2F1 and 3F2 and logarithms,
and reads as:

I(2, 1) =
2≠3≠2–fi3/2(X1 + X2)1+2– csc(fi–)2�

!
≠ 1

2 ≠ –
"

�[≠–]

1
2 ≠ 1

‘
≠ log

!
4fie“E P 2"2

+fi3/2 csc2(fi–)
8(– + 1)2P

5
≠4

Ô
fi

!
(P + X1)–+1 ≠ 2 (X1 ≠ P )–+1"

(P + X2)–+1

≠
4≠–�

!
≠– ≠ 1

2
"

(X1 + X2)2–+2

� (≠–) 2F1

1
1, ≠2( – + 1); ≠–; P + X1

X1 + X2

26

+fi2 csc(fi–) csc(2fi–)(P + X1)–

4– + 2

5
≠2(P + X1) ((P ≠ X2)– + (≠1)–(P + X2)–) 10

+(≠1)–(X1 ≠ X2)(P + X1)–
2F1

1
1 ≠ –, ≠2–; 1 ≠ 2–; X1 ≠ X2

P + X1

2

+(X1 + X2)(P + X1)–
2F1

1
1 ≠ –, ≠2–; 1 ≠ 2–; X1 + X2

P + X1

26

≠fi5/24≠–≠1 csc(fi–) csc(2fi–)
�(≠– )�

!
– + 3

2
"

(P + X1)

5
(≠1)–(X1 ≠ X2)2–+2

3F2

1
1, 1, – + 2; 2, 2 – + 3; X1 ≠ X2

P + X1

2

+(X1 + X2)2–+2
3F2

1
1, 1, – + 2; 2, 2– + 3; X1 + X2

P + X1

26

+
fi5/22≠2–≠1 csc(fi–) csc(2fi –)

!
(≠1)– (X1 ≠ X2)2–+1 + (X1 + X2)2–+1"

� (≠–)�
!
– + 3

2
" log

1
P + X1

P

2

+(X1 ¡ X2). (50)

VI. ONE-LOOP THREE-SITE GRAPH

Let us move on to the next-to-simplest one-loop case,
constituted by the one-loop three-site integral – See Fig.
3. As we will show, it has some distinctive features
which were absent in the previous case. The easiest to
spot is the fact that now the volumes in the edge weight
measure are higher degree polynomials that no longer
factorizes in a product of linear polynomials. Actually,
such a factorization occurs for the one-loop two-site case
only.
In what follows, we restrict ourselves to the case in which
there is just one external state at each site, so that |P̨i| æ

Xi. Reducing the number of scales from six to three
simplifies the problem while still capturing all the essential
complexities.
The representation for the integrand coming from one
of the sign triangulations 11 of the underlying cosmo-
logical polytope, which corresponds to the choice G¶ =
{G, g1, g2, g3}, is given in terms of the sum of six sim-
plices. Interestingly, it is enough to focus on the study
of the di�erential equations for one of them, as the oth-
ers can be derived through permutations of integration
variables and external kinematics. Explicitly, such repre-
sentation for the integrand yields the following form for
the integral I

(3, 1)
{1} :

I
(3, 1)
{1} = Ÿ0

⁄

�

Ÿ

eœE(1)

[dye ye] Ÿ‰

qG

3Ÿ

j=1
qgj

◊

◊

5
1

qG12

3
1

qg23

+ 1
qg31

4
+

+ 1
qG23

3
1

qg31

+ 1
qg12

4
+ 1

qG31

3
1

qg12

+ 1
qg23

46

(51)

where Ÿ, ‰ and Ÿ¶ can be obtained from 14 by setting
L = 1 and ns = 3. Furthermore, for regularization pur-
poses, we can consider d = 3 + 2‘. The set of edges E

(1)

is given by E
(1) := {e12, e23, e31}. Finally, it is useful

x1

x2 x3

y12

y23

y31

Figure 3. One loop three-site diagram. The corresponding
integrand has 10 denominators, each corresponding to a con-
nected subgraph of the above graph. Three subgraphs which
enclose a single site, three which enclose two sites at a time,
three which enclose all three sites but cut each edge twice and
finally the full graph which corresponds to the total energy
singularity.

to write here the explicit expression for the linear poly-
nomials {qg, g ™ G}, whose associated subgraphs follow
the same conventions introduced in the previous section
with gs1...sñs

being the connected subgraph containing
the sites s1, . . . sñs , while Gij := G \ {eij} is the subgraph
obtained from G by deleting the edge eij connecting the
sites si and sj :

qG =
3ÿ

i=1
Xi,

qgj = yj≠1,j + Xj + yj,j+1,

qGj,j+1 =
3ÿ

s=1
Xs + yj,j+1 ,

(52)

with j = 1, 2, 3.
Partial fraction identities allows focusing only on
subsets of three denominators: the evaluation can
then be split into two types of contributions, separat-
ing the calculation of the sectors with denominators
{qgj , j = 1, 2, 3} fi {qg23}, and of ones containing qG12
and the pairs {(qgj , qgj+1), (qgj , qg24); j = 1, 2, 3}.

Polylogarithmic sector – Let us begin with the sector
identified by {qgj , j = 1, 2, 3} fi {qg23}. The associated

Two-site graph

Three-site graph

Mapping cosmological integrals to QFT-like integrals in momentum space, with semi-integer denominator powers

From momentum-space to Baikov representation to cast them as twisted period integrals

(y-integration) Differential Equations for  MIs: polylog and elliptic structureν = 41

11

Figure 4. Zero sector of the one-loop three-site-graph. The
first four integrals form a 4 ◊ 4 homogeneous diagonal block,
corresponding to the one-loop three point function with denom-
inator raised to half-integer powers, and each of the subsequent
three integrals form a 1 ◊ 1 diagonal block, and can be iden-
tified with one-loop two-point functions with denominators
raised to half integer powers.

integrals can be written as

I·g1 ·g2 ·g3 ·g23
=

⁄

�
µd Ï·g1 ·g2 ·g3 ·g23

,

Ï·g1 ·g2 ·g3 ·g23
=

Ÿ

eœE(1)

dye

q·g1
g1 q·g2

g2 q·g3
g3 q

·g23
g23

.

(53)

From the counting procedure prescribed by equation (17),
the integral family has 15 master integrals, whose master
forms can be chosen as:

e1 = Ï0000 , e2 = y2
12Ï0000 , e3 = y2

23Ï0000 ,

e4 = y2
31Ï0000 , e5 = y12Ï0000 , e6 = y23Ï0000 ,

e7 = y31Ï0000 , e8 = Ï1000 , e9 = Ï0100 ,

e10 = Ï0010 , e11 = y23Ï0001 , e12 = y31Ï0001 ,

e13 = y12Ï0001 , e14 = Ï0002 , e15 = Ï1110 .
(54)

As described in section IV, the sub-sector without de-
nominators contains ‹(CI)

3 = 7 master integrals, and its
di�erential equations are shown in figure 4. Heuristically,
this large number can be motivated by rewriting the mea-
sure of the integral in momentum space, which belongs
to the integral family:

I
(3, 1; 0)
·1·2·3 =

⁄

R3
d̨l

1
[(̨l)2]·1 [(̨l + P̨1)2]·2 [(̨l + P̨1 + P̨2)2]·3

,

(55)

where ·i œ Z + 1/2. The integral in equation (55) is the
one-loop three-point function with massive external mo-
menta of mass Pi and with massless denominator raised to
half-integer powers, in Euclidean spacetime. Integration
by parts in ye will mix integrals with denominators raised
to half-integer powers with those raised to integer ones, a
property that does not hold for momentum space integra-
tion by parts identities, and which e�ectively increases
the number of master integrals.
It is possible to find a ‘-factorized form for the di�erential
equation matrices obeyed by these integrals [77, 113–116].

Figure 5. Homogeneous sector of the one-loop three-site graph
with denominator qa. There are a total of 9 master integrals,
which decouple in blocks of dimensions 1 ◊ 1, 2 ◊ 2, 2 ◊ 2, 4 ◊ 4.
In the last block, the elliptic family appears.

Also in this case, the total di�erential can be written
in dlog form, indicating that the space of functions con-
sists of generalized polylogarithms, and the alphabet for
this sector, together with the equivalent sectors in the
remaining three similar integrals (obtained by replacing
qg23 with qj,j+1, j ”= 2), reads:

W = {X1, X2, X3, X1 + X2, X2 + X3, X1 + X3,

≠X3 + X1 ≠ X2, X3 + X1 ≠ X2,

≠X3 + X1 + X2, X3 + X1 + X2} . (56)

In the generic case of multiple external legs, in which
xi ”= Pi, the basis of this sector increases to 34. The
function space consists only of generalized polylogarithms,
but algebraic letters appear in the alphabet.

Elliptic sector – Let us now turn our attention to the
sectors containing the denominator qG12 :

I·g·gÕ ·G12
=

⁄

�
µd Ï·g·gÕ ·G12

,

Ï·g·gÕ ·G21
=

Ÿ

eœE(1)

dye

q
·g
g q

·gÕ

gÕ q
·G12
G12

,

(57)

where (g, gÕ) takes values in the set of pairs
{(gj , gj+1), (gj , g23)}.
The sub-sector containing only the denominator qG12 , has
9 master integrals, that can be chosen as follows:

e1 = y23y31Ï001 , e2 = y23Ï001 , e3 = y23Ï002 ,

e4 = y31Ï001 , e5 = y31Ï002 , e6 = Ï002 ,

e7 = Ï001 , e8 = y2
23Ï001 , e9 = y2

31Ï001 ,
(58)

and whose shape of the di�erential equation is shown in
Fig.5. Constructing the Picard-Fuchs operators for each
homogeneous block of the di�erential equation in d = 3 as
in equation (30), where we used the change of variables:
X1 æ a1⁄, X2 æ ⁄, X3 æ 1, we found a di�erential
operator of third order L3, corresponding to the sector
formed by the last 3 master integrals of equation (58),

DEQ: 
structure of the 
elliptic sector 
(4x4)-block
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Artificial Neural Network

Universal approximator of : it take in input , and estimating  by adjusting the values of its internal parameters y(x) x y(x) θ

x → ynn(x, θ) |ynn(x, θ) − y(x) | < ϵ

NN updates its parameter during several iterations “epochs” by supervised learning, namely requiring a pre-generated dataset (xdata, ydata)

NN training loop

• The input x̨data is feeded to the NN to produce a prediction ynn(x̨data, ◊).

• A Loss function measures the error between the prediction ynn(x̨data, ◊) and the

actual values ydata, i.e L = 1
Ndata

|ynn(x̨data, ◊) ≠ ytrue(x̨data)|2.

• The gradient of the Loss is computed and used by an optimizer to update the NN

parameters.

Update Weights

Loss Function

Done

� �
Y

N

Hidden Layer

y

Ldata = 1
Ndata

� y(x, �) � ytrue(x) �2
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A LOSS functions measure the accuracy between the prediction and the actual data: Ldata = 1
Ndata

|ynn(xdata, θ) − y(xdata) |2

Gradient descent algorithm controls the convergence towards a minimum



Physics Informed Neural Network

Including Physical laws in the training process:

NN vs PINN

The core idea of PINN is to include Physical laws in the training process.
- Conservation of mass, momentum, energy, the system dynamics

[Raissi, Perdikaris, Karniadakis (2017)]

Standard NN

• Requires large amounts of data for
supervised learning.

• The data must be generated by
employing other methods, analytical
or numerical.

• Fails to generalize the behaviour
outside of the training range,
especially for the solutions of DEs.

Physics Informed NN

• Embeds knowledge of the system
through PDEs and/or ODEs during
training.

• Does not require a large dataset.
• Can predict the solution of the DEs

beyond the training range
(unsupervised learning).

Boni Di�erential Equations for Feynman Integrals and Physics Informed Neural Network 15 of 30

LPINN = λdata Ldata + λPDE LPDE

PDE(x) = ∑
k

gk(xi, ∂i)y(x) = 0

More stringent LOSS

LPDE = 1
Ncoll ∑

x∈xcoll

|PDE(x) − 0 |2



Physics Informed Neural Network

Including Physical laws in the training process:

PDE(x) = ∑
k

gk(xi, ∂i)y(x) = 0 LPDE = 1
Ncoll ∑

x∈xcoll

|PDE(x) − 0 |2

LPINN = λdata Ldata + λPDE LPDE

Training of PINN

The training loop is similar to the NN case, but now the PINN output both
ynn(x̨data, ◊) and ynn(x̨coll, ◊) which is derived to produce the Physics informed
term in the loss:

y

Update Weights

� �

Done
Y

N

PDE

Automatic Differentiation PINN

Loss from BC Physics LossTotal Loss =
LPINN

yx

yxx

yxxx

� (y(x, �)) = 0

Ldata = 1
Ndata

� y(x, �) � ytrue(x) �2 LPDE = 1
Ncoll

� � (y(x, �)) �2

Boni Di�erential Equations for Feynman Integrals and Physics Informed Neural Network 17 of 30



Physics Informed Neural Network

the boundary condition, thus !b = 0. However, the central part of the PINNs concept

concerns the loss function LF(✓), that is evaluated at Nc collocation points which are not

necessarily coinciding in time values with Ndata. The distribution of Nc is also taken to be

uniform in the full time domain, or on a subinterval of it.

Some of the Pytorch Python-based codes and data-sets accompanying this manuscript are

available on the GitHub repository at https://github.com/hubertbaty/PINNS-EDO. These

have been inspired by the codes provided on https://benmoseley.blog and available on

GitHub repository at https://github.com/benmoseley/harmonic-oscillator-pinn. We have

chosen to use very simple deep feed-forward networks architectures with hyperbolic tangent

activation functions. In this work, the optimal choice of detailed architecture of the network

(number of hidden layers, number of neurons per layer) and of hyperparameters (learning

rate, loss weights) is done manually. Although more systematic/automatic procedures could

be used, this is a more complicated task not considered in this work.

Note that we use the notation y for the desired ODE solution in the following instead of

u introduced in the previous section for a PDE case.

FIG. 2. Tutorial solution ŷ✓(t) (red solid line) predicted by the normal NN for nt = 4000 iterations

(in left panel) and nt = 24000 iterations (in right panel) respectively, and compared to the exact

solution (blue hatched line). The chosen training data set values are indicated using circles (with

Ndata = 101). The physical information is not used, i.e. !F = 0.

7

FIG. 3. Loss function as a function of the number of epochs (i.e. number of iterations nt),

corresponding to the previous figure.

FIG. 4. Tutorial solution obtained in two cases using the normal NN, for a low number of data

(Ndata = 26) uniformly taken within the whole time domain (left panel), and for Ndata = 61 taken

within a left subinterval (right panel). The convergence is stopped at nt = 48000.

III. ILLUSTRATION OF THE METHOD ON A SIMPLE TUTORIAL EXAMPLE

A. The di↵erential equation: a tutorial example

Let us consider the following equation example, called tutorial equation below, to be

solved for y(t),

dy

dt
+ 0.1t� sin(⇡t/2) = 0, (11)

fo t 2 [0, 30], using the initial condition y0 = y(0) = 1. As can be seen below, the corre-

sponding solution contains two time scales, a first one due to the sinusoidal forcing term,

and a second one due to the linear term in t
10 that gives an exponentially decreasing envelope

amplitude.

8

Harmonic Oscillator ∂2y
∂t2 + ω2 y = 0

Baty, Baty (2023)  
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Physics Informed Neural Network
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corresponding to the previous figure.

FIG. 4. Tutorial solution obtained in two cases using the normal NN, for a low number of data

(Ndata = 26) uniformly taken within the whole time domain (left panel), and for Ndata = 61 taken

within a left subinterval (right panel). The convergence is stopped at nt = 48000.

III. ILLUSTRATION OF THE METHOD ON A SIMPLE TUTORIAL EXAMPLE

A. The di↵erential equation: a tutorial example

Let us consider the following equation example, called tutorial equation below, to be

solved for y(t),

dy

dt
+ 0.1t� sin(⇡t/2) = 0, (11)

fo t 2 [0, 30], using the initial condition y0 = y(0) = 1. As can be seen below, the corre-

sponding solution contains two time scales, a first one due to the sinusoidal forcing term,

and a second one due to the linear term in t
10 that gives an exponentially decreasing envelope

amplitude.

8

FIG. 5. Tutorial solution obtained in the two cases of the previous figure with PINNs, where a

set of Nc = 50 collocation points is used to calculate an ODE loss function LF . The cases with

Ndata = 26 data points taken within the whole interval, and with Ndata = 61 data values within a

left subinterval, are plotted in left/right panel respectively. The time values (for collocation points)

at which the physical loss function is evaluated are indicated with the small green circle on t axis.

FIG. 6. Tutorial solution obtained with PINNs for Ndata = 61 training data values taken within a

left subinterval, and Nc = 30 collocation points taken within a complementary right subinterval.

FIG. 7. (Left panel) Tutorial solution obtained with PINNs, with Ndata = 1 (initial condition

imposed at t = 0), and Nc = 50 collocation points. (Right panel) Corresponding history of the loss

function.

10

Harmonic Oscillator ∂2y
∂t2 + ω2 y = 0

Baty, Baty (2023)  
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Physics Informed Neural Network
Hypergeometric 2F1

PINN and Hypergeometric DEQs

• The hypergeometric function y = 2F1 is a solution of a second order di�erential

equation (ODE):

x(1 ≠ x) d2y
dx2 + [c ≠ (a + b + 1)x] dy

dx
≠ ab y = 0

with a, b, c œ R

• This 2nd
ODE is equivalent to a 2 ◊ 2 system of 1st

ODEs for two independent

hypergeometric functions M1,2:

M1(x; a, b, c) = —(b ≠ 1, c ≠ b ≠ 1) 2F1(a, b ≠ 1, c ≠ 2, x)
M2(x; a, b, c) = —(b, c ≠ b ≠ 1) (x ≠ 1) 2F1(a + 1, b, c ≠ 1, x)

d

dx

3
M1
M2

4
= A

3
M1
M2

4
, A =

3
0 a

x≠1
1≠b

x
≠2+c≠(≠1+a+b)x

(x≠1)x

4
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a = 1/2, b = 1/2, c = 4

M1(1/2,1/2,4; x) = 4
3π x ((x + 1)E(x) + (x − 1)K(x))

M2(1/2,1/2,4; x) = 16
3π x2 ((2 − x)E(x) + 2(x − 1)K(x))

Results for Hypergeometric DEQs

As novel application the PINN model was trained using the physics-informed loss

function for the hypergeometric di�erential equation system.

• The results are shown for a specific parameter choice of {a = 1/2, b = 1/2, c = 4}

with a PINN architecture consisting of 4 hidden layers, each containing 32 neurons:

Plot for M1 (left) and M2 (right)

Boni Di�erential Equations for Feynman Integrals and Physics Informed Neural Network 21 of 30

Elliptic integrals

Boni, Mandal & P.M. (2024)  



Physics Informed Neural Network @ Feynman Integrals
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Figure 4. Graph representing the propagator structure of the one-mass double box integral family.
The arrows denote the directions of the momenta. Bold lines are massive.
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Figure 5. Training and testing statistics for the one-mass double box.

4.2 Two-loop four-point planar with an external mass

We now consider the family of Feynman integrals represented by the graph in figure 4. We dub
it one-mass double box. These integrals have been computed analytically in refs. [105–110].
We use the results of ref. [108] to construct the boundary dataset and test the model.
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Figure 6. Graph representing the propagator structure of the heavy crossed box integral family. The
arrows denote the directions of the momenta. Bold lines are massive.

There are nF = 18 MIs, which depend on nv = 3 kinematic variables. We choose
v⃗ = {s12, s23, s4}, with sij = (pi + pj)2 and s4 = p24 (p2i = 0 for i = 1, 2, 3). We use the
MI basis of ref. [108], but remove the normalisation factors which make it canonical. The
connection matrices are then linear in ϵ (kmax = 1). The ϵ expansion of the MIs in eq. (2.2)
starts from w∗ = −4, and we truncate it at ϵ0, thus considering nϵ = 5 orders (wmax = 4).
In this case we do not observe any benefit from cancelling the scaling dimensions of the
MIs, and thus refrain from doing so.

We consider the s12 channel:

s12 > s4 − s23 ∧ s23 < 0 ∧ s4 > 0 . (4.1)

The physical singularities are at the boundary of this region,

s12 = 0 , s23 = 0 , s4 = 0 , s12 + s23 − s4 = 0 . (4.2)

We impose a cut on them equal to 10% of s12, which we fix to cs12 = 2.5. The spurious
singularities are

s12 − s4 = 0 , s23 − s4 = 0 , s12 + s23 = 0 . (4.3)

They lie outside of the s12 channel and thus do not need to be cut. The boundary dataset
comprises 6 points distributed on the boundary of the cut s12 channel, as shown in figure 5(a).

The step-up in difficulty of the one-mass double box is considerable compared to the
one-loop massless box. The model input is now two-dimensional, while the output has a 6
times greater size and describes more complicated functions. However, our model still trains
well as shown by the learning curve in figure 5(b). Training of a single NN takes around
53 minutes. The observations made for the box in section 4.1 hold true here too: real and
imaginary parts, as well as the different orders in ϵ, are learnt by our model equally well. For
example, we compare our model against the analytic solutions order by order in ϵ at 105 points
in figures 5(c) and 5(d), showing the magnitude of the relative difference and the logarithm
of the ratio, respectively. Our model achieves a mean magnitude of relative difference of
1.1× 10−2, with a mean logarithm of ratio of −2.8× 10−4. See appendix B.1 for further plots.

4.3 Two-loop four-point non-planar with a closed massive loop
In this section, we study the family of non-planar two-loop four-point integrals represented
by the graph in figure 6. We dub this family heavy crossed box. With respect to the two-loop
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Figure 8. Graph representing the propagator structure of the top double box integral family. The
arrows denote the directions of the momenta. Bold lines are massive.
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Figure 9. Training and testing statistics for the top double box.
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Advanced Applications

– 1-loop 1-mass box
– NM : 4
– MPLs
– Eabs

m = 1 ◊ 10≠4

– 2-loop 1-mass box
– NM : 18
– MPLs
– Eabs

m = 2 ◊ 10≠3

– 2-loop equal-mass
sunrise

– NM : 3
– elliptic case
– Eabs

m = 3 ◊ 10≠5

– 2-loop non-planar
triangle

– NM : 2
– elliptic case
– Eabs

m = 3 ◊ 10≠4
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Improved LOSS including higher-order derivatives 

PINNS & Finite Difference Equations:

Feynman Integrals (propagator powers, dimension-shift)

Euler-Mellin Integrals

 (work in progress)  



To Conclude:
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Ampere’s Law
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Also, the rotational symmetry makes the magnitude B φ-independent, while the translation

symmetry in z direction makes it z-independent. Altogether,

B(s,φ, z) = B(s only) φ̂. (3)

Given this symmetry-restricted from of the magnetic field, we may find its radius de-

pendence from the Ampere’s law. Let the Ampere’s loop L be a circle in the plane ⊥ to the

wire and centered on the wire,

wire

Ampere’s loop

(4)

For this loop, dℓ⃗ = s dφ φ̂, hence

∮

B · dℓ⃗ =

∮

B(s)× s× dφ = 2πs× B(s). (5)

On the other hand, the current through the loop is simply the net current I in the wire, thus

2πs×B(s) = µ0 × I =⇒ B(s) =
µ0 × I

2πs
. (6)

Now consider a wire of finite thickness. For simplicity, let the wire have round cross-

section of radius a and uniform current density

J =
I

πa2
ẑ . (7)

In this case, the same considerations as for the thin wire tells us that the magnetic field is

in the φ̂ direction while its magnitude depends only on the radial coordinate s. Moreover,
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By elaborating on the recent progress made in the area of Feynman integrals, we apply the
intersection theory for twisted de Rham cohomologies to special functions appearing in Quantum
Mechanics and Quantum Field Theory, showing that the algebraic identities they obey can be derived
by means of intersection numbers. Our investigation suggests an algebraic approach generically
applicable to the study of higher-order moments of probability distributions, which are interpreted
as a basis of integrals, where the number of independent moments corresponds to the dimension of
the cohomology groups. Our study o↵ers additional evidence of the intertwinement between physics,
geometry, and statistics.

I. INTRODUCTION

In electromagnetism, Ampere’s theorem states that in
presence of a circuit carrying an electric current I, the
circulation of the induced magnetic field along the bound-
ary of an oriented surface is just µ0(±n)I, where µ0 is the
magnetic permeability of empty space, and n is the total
number of times the wire crosses the surface, whereas the
sign depends on the alignment of the normal to the sur-
face and of the direction of the current flow. In presence
of several closed circuits �k, each carrying a current Ik,
computing the circulation of the induced magnetic field
along a closed path � that wounds them, may look like a
complicated problem, depending on the shapes of � and
�k. Nevertheless, the answer turns out to be simple, be-
cause it can be expressed as a combination of elementary
terms, as µ0

P
k(±nk)Ik, exploiting the geometric infor-

mation carried by the intersection number of �k and (the
surface bounded by) �, i.e. nk = Link(�k, �), known as
Gauss’ linking number. See Figure 1, for an illustration.
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FIG. 1. Circuits linked with the boundary � of a surface S.
The central vector is the orientation of S. Link numbers:
Link(�1, �) = +2, Link(�2, �) = �1, and Link(�3, �) = 0.
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Computing integrals is routine in any scientific ambit:
expectation values in Quantum Mechanics, Feynman in-
tegrals in Quantum Field Theory, Partition Functions in
Statistical Mechanics, and higher momenta in Statistics
are just a few paradigmatic examples out of a plethora
of cases. Stokes’ theorem represents a first step toward a
unifying vision of integrals evaluation as a whole: when
it is possible to look at them as representing fluxes of
closed di↵erential forms through surfaces, it tells us that
such integrals are invariant upon deforming either the
integrand, by exact forms, or the contour, by boundary
terms. This gives rise to the de Rham theory of coho-
mology, and its generalizations, as its twisted version,
which allows the inclusion of singular di↵erential forms.
Thus, within cohomology theories, the analytic proper-
ties of functions are tight to the algebraic properties of
the elements appearing in the corresponding integral rep-
resentations (forms and contours), which, in turn, are
determined by the geometry (holes and singularities) of
their existence domains.

The linearity of integral calculus makes it not sur-
prising that (regulated bounded) integrals form a vector
space structure. The intersection theory of twisted de
Rham cohomology [1–21] o↵ers the proper mathemati-
cal framework to characterize it and to establish linear
and quadratic relations involving the integrals. These
relations emerge from the intersection numbers of either
integration contours or di↵erential forms, (respectively
known as twisted cycles and twisted cocycles). Contours
and forms belong to two distinct vector spaces, respec-
tively known as homology and cohomology groups, natu-
rally generated by bases of independent elements. They
are isomorphic, and their dimension depends on the geo-
metrical properties of the variety associated with the in-
tegration measure: zeroes and critical points of the mea-
sure determine the algebraic and analytic properties of
the integrals.

The cohomology groups associated with the class of in-
tegrals we deal with in this study are finite dimensional
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Also, the rotational symmetry makes the magnitude B φ-independent, while the translation

symmetry in z direction makes it z-independent. Altogether,

B(s,φ, z) = B(s only) φ̂. (3)

Given this symmetry-restricted from of the magnetic field, we may find its radius de-

pendence from the Ampere’s law. Let the Ampere’s loop L be a circle in the plane ⊥ to the

wire and centered on the wire,

wire

Ampere’s loop

(4)

For this loop, dℓ⃗ = s dφ φ̂, hence

∮

B · dℓ⃗ =

∮

B(s)× s× dφ = 2πs× B(s). (5)

On the other hand, the current through the loop is simply the net current I in the wire, thus

2πs×B(s) = µ0 × I =⇒ B(s) =
µ0 × I

2πs
. (6)

Now consider a wire of finite thickness. For simplicity, let the wire have round cross-

section of radius a and uniform current density

J =
I

πa2
ẑ . (7)

In this case, the same considerations as for the thin wire tells us that the magnetic field is

in the φ̂ direction while its magnitude depends only on the radial coordinate s. Moreover,
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tegrals in Quantum Field Theory, Partition Functions in
Statistical Mechanics, and higher momenta in Statistics
are just a few paradigmatic examples out of a plethora
of cases. Stokes’ theorem represents a first step toward a
unifying vision of integrals evaluation as a whole: when
it is possible to look at them as representing fluxes of
closed di↵erential forms through surfaces, it tells us that
such integrals are invariant upon deforming either the
integrand, by exact forms, or the contour, by boundary
terms. This gives rise to the de Rham theory of coho-
mology, and its generalizations, as its twisted version,
which allows the inclusion of singular di↵erential forms.
Thus, within cohomology theories, the analytic proper-
ties of functions are tight to the algebraic properties of
the elements appearing in the corresponding integral rep-
resentations (forms and contours), which, in turn, are
determined by the geometry (holes and singularities) of
their existence domains.

The linearity of integral calculus makes it not sur-
prising that (regulated bounded) integrals form a vector
space structure. The intersection theory of twisted de
Rham cohomology [1–21] o↵ers the proper mathemati-
cal framework to characterize it and to establish linear
and quadratic relations involving the integrals. These
relations emerge from the intersection numbers of either
integration contours or di↵erential forms, (respectively
known as twisted cycles and twisted cocycles). Contours
and forms belong to two distinct vector spaces, respec-
tively known as homology and cohomology groups, natu-
rally generated by bases of independent elements. They
are isomorphic, and their dimension depends on the geo-
metrical properties of the variety associated with the in-
tegration measure: zeroes and critical points of the mea-
sure determine the algebraic and analytic properties of
the integrals.

The cohomology groups associated with the class of in-
tegrals we deal with in this study are finite dimensional
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Also, the rotational symmetry makes the magnitude B φ-independent, while the translation

symmetry in z direction makes it z-independent. Altogether,

B(s,φ, z) = B(s only) φ̂. (3)

Given this symmetry-restricted from of the magnetic field, we may find its radius de-

pendence from the Ampere’s law. Let the Ampere’s loop L be a circle in the plane ⊥ to the

wire and centered on the wire,
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Ampere’s loop
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For this loop, dℓ⃗ = s dφ φ̂, hence
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B(s)× s× dφ = 2πs× B(s). (5)

On the other hand, the current through the loop is simply the net current I in the wire, thus

2πs×B(s) = µ0 × I =⇒ B(s) =
µ0 × I
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. (6)

Now consider a wire of finite thickness. For simplicity, let the wire have round cross-

section of radius a and uniform current density

J =
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In this case, the same considerations as for the thin wire tells us that the magnetic field is

in the φ̂ direction while its magnitude depends only on the radial coordinate s. Moreover,
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By elaborating on the recent progress made in the area of Feynman integrals, we apply the
intersection theory for twisted de Rham cohomologies to special functions appearing in Quantum
Mechanics and Quantum Field Theory, showing that the algebraic identities they obey can be derived
by means of intersection numbers. Our investigation suggests an algebraic approach generically
applicable to the study of higher-order moments of probability distributions, which are interpreted
as a basis of integrals, where the number of independent moments corresponds to the dimension of
the cohomology groups. Our study o↵ers additional evidence of the intertwinement between physics,
geometry, and statistics.

I. INTRODUCTION

In electromagnetism, Ampere’s theorem states that in
presence of a circuit carrying an electric current I, the
circulation of the induced magnetic field along the bound-
ary of an oriented surface is just µ0(±n)I, where µ0 is the
magnetic permeability of empty space, and n is the total
number of times the wire crosses the surface, whereas the
sign depends on the alignment of the normal to the sur-
face and of the direction of the current flow. In presence
of several closed circuits �k, each carrying a current Ik,
computing the circulation of the induced magnetic field
along a closed path � that wounds them, may look like a
complicated problem, depending on the shapes of � and
�k. Nevertheless, the answer turns out to be simple, be-
cause it can be expressed as a combination of elementary
terms, as µ0

P
k(±nk)Ik, exploiting the geometric infor-

mation carried by the intersection number of �k and (the
surface bounded by) �, i.e. nk = Link(�k, �), known as
Gauss’ linking number. See Figure 1, for an illustration.
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FIG. 1. Circuits linked with the boundary � of a surface S.
The central vector is the orientation of S. Link numbers:
Link(�1, �) = +2, Link(�2, �) = �1, and Link(�3, �) = 0.
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Computing integrals is routine in any scientific ambit:
expectation values in Quantum Mechanics, Feynman in-
tegrals in Quantum Field Theory, Partition Functions in
Statistical Mechanics, and higher momenta in Statistics
are just a few paradigmatic examples out of a plethora
of cases. Stokes’ theorem represents a first step toward a
unifying vision of integrals evaluation as a whole: when
it is possible to look at them as representing fluxes of
closed di↵erential forms through surfaces, it tells us that
such integrals are invariant upon deforming either the
integrand, by exact forms, or the contour, by boundary
terms. This gives rise to the de Rham theory of coho-
mology, and its generalizations, as its twisted version,
which allows the inclusion of singular di↵erential forms.
Thus, within cohomology theories, the analytic proper-
ties of functions are tight to the algebraic properties of
the elements appearing in the corresponding integral rep-
resentations (forms and contours), which, in turn, are
determined by the geometry (holes and singularities) of
their existence domains.

The linearity of integral calculus makes it not sur-
prising that (regulated bounded) integrals form a vector
space structure. The intersection theory of twisted de
Rham cohomology [1–21] o↵ers the proper mathemati-
cal framework to characterize it and to establish linear
and quadratic relations involving the integrals. These
relations emerge from the intersection numbers of either
integration contours or di↵erential forms, (respectively
known as twisted cycles and twisted cocycles). Contours
and forms belong to two distinct vector spaces, respec-
tively known as homology and cohomology groups, natu-
rally generated by bases of independent elements. They
are isomorphic, and their dimension depends on the geo-
metrical properties of the variety associated with the in-
tegration measure: zeroes and critical points of the mea-
sure determine the algebraic and analytic properties of
the integrals.

The cohomology groups associated with the class of in-
tegrals we deal with in this study are finite dimensional
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Also, the rotational symmetry makes the magnitude B φ-independent, while the translation

symmetry in z direction makes it z-independent. Altogether,

B(s,φ, z) = B(s only) φ̂. (3)

Given this symmetry-restricted from of the magnetic field, we may find its radius de-

pendence from the Ampere’s law. Let the Ampere’s loop L be a circle in the plane ⊥ to the

wire and centered on the wire,

wire

Ampere’s loop

(4)

For this loop, dℓ⃗ = s dφ φ̂, hence

∮

B · dℓ⃗ =

∮

B(s)× s× dφ = 2πs× B(s). (5)

On the other hand, the current through the loop is simply the net current I in the wire, thus

2πs×B(s) = µ0 × I =⇒ B(s) =
µ0 × I

2πs
. (6)

Now consider a wire of finite thickness. For simplicity, let the wire have round cross-

section of radius a and uniform current density

J =
I

πa2
ẑ . (7)

In this case, the same considerations as for the thin wire tells us that the magnetic field is

in the φ̂ direction while its magnitude depends only on the radial coordinate s. Moreover,
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ary of an oriented surface is just µ0(±n)I, where µ0 is the
magnetic permeability of empty space, and n is the total
number of times the wire crosses the surface, whereas the
sign depends on the alignment of the normal to the sur-
face and of the direction of the current flow. In presence
of several closed circuits �k, each carrying a current Ik,
computing the circulation of the induced magnetic field
along a closed path � that wounds them, may look like a
complicated problem, depending on the shapes of � and
�k. Nevertheless, the answer turns out to be simple, be-
cause it can be expressed as a combination of elementary
terms, as µ0

P
k(±nk)Ik, exploiting the geometric infor-

mation carried by the intersection number of �k and (the
surface bounded by) �, i.e. nk = Link(�k, �), known as
Gauss’ linking number. See Figure 1, for an illustration.
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Computing integrals is routine in any scientific ambit:
expectation values in Quantum Mechanics, Feynman in-
tegrals in Quantum Field Theory, Partition Functions in
Statistical Mechanics, and higher momenta in Statistics
are just a few paradigmatic examples out of a plethora
of cases. Stokes’ theorem represents a first step toward a
unifying vision of integrals evaluation as a whole: when
it is possible to look at them as representing fluxes of
closed di↵erential forms through surfaces, it tells us that
such integrals are invariant upon deforming either the
integrand, by exact forms, or the contour, by boundary
terms. This gives rise to the de Rham theory of coho-
mology, and its generalizations, as its twisted version,
which allows the inclusion of singular di↵erential forms.
Thus, within cohomology theories, the analytic proper-
ties of functions are tight to the algebraic properties of
the elements appearing in the corresponding integral rep-
resentations (forms and contours), which, in turn, are
determined by the geometry (holes and singularities) of
their existence domains.

The linearity of integral calculus makes it not sur-
prising that (regulated bounded) integrals form a vector
space structure. The intersection theory of twisted de
Rham cohomology [1–21] o↵ers the proper mathemati-
cal framework to characterize it and to establish linear
and quadratic relations involving the integrals. These
relations emerge from the intersection numbers of either
integration contours or di↵erential forms, (respectively
known as twisted cycles and twisted cocycles). Contours
and forms belong to two distinct vector spaces, respec-
tively known as homology and cohomology groups, natu-
rally generated by bases of independent elements. They
are isomorphic, and their dimension depends on the geo-
metrical properties of the variety associated with the in-
tegration measure: zeroes and critical points of the mea-
sure determine the algebraic and analytic properties of
the integrals.

The cohomology groups associated with the class of in-
tegrals we deal with in this study are finite dimensional
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Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, Via Marzolo 8, I-35131 Padova, Italy

INFN, sezione di Padova, Via Marzolo 8, I-35131 Padova, Italy

(Dated: February 16, 2023)

By elaborating on the recent progress made in the area of Feynman integrals, we apply the
intersection theory for twisted de Rham cohomologies to special functions appearing in Quantum
Mechanics and Quantum Field Theory, showing that the algebraic identities they obey can be derived
by means of intersection numbers. Our investigation suggests an algebraic approach generically
applicable to the study of higher-order moments of probability distributions, which are interpreted
as a basis of integrals, where the number of independent moments corresponds to the dimension of
the cohomology groups. Our study o↵ers additional evidence of the intertwinement between physics,
geometry, and statistics.

I. INTRODUCTION

In electromagnetism, Ampere’s theorem states that in
presence of a circuit carrying an electric current I, the
circulation of the induced magnetic field along the bound-
ary of an oriented surface is just µ0(±n)I, where µ0 is the
magnetic permeability of empty space, and n is the total
number of times the wire crosses the surface, whereas the
sign depends on the alignment of the normal to the sur-
face and of the direction of the current flow. In presence
of several closed circuits �k, each carrying a current Ik,
computing the circulation of the induced magnetic field
along a closed path � that wounds them, may look like a
complicated problem, depending on the shapes of � and
�k. Nevertheless, the answer turns out to be simple, be-
cause it can be expressed as a combination of elementary
terms, as µ0

P
k(±nk)Ik, exploiting the geometric infor-

mation carried by the intersection number of �k and (the
surface bounded by) �, i.e. nk = Link(�k, �), known as
Gauss’ linking number. See Figure 1, for an illustration.

I3I3I3 �3�3�3

���

�1�1�1

I1I1I1

�2�2�2

I2I2I2

SSS

FIG. 1. Circuits linked with the boundary � of a surface S.
The central vector is the orientation of S. Link numbers:
Link(�1, �) = +2, Link(�2, �) = �1, and Link(�3, �) = 0.

⇤ sergio.cacciatori@uninsubria.it
† pierpaolo.mastrolia@unipd.it

Computing integrals is routine in any scientific ambit:
expectation values in Quantum Mechanics, Feynman in-
tegrals in Quantum Field Theory, Partition Functions in
Statistical Mechanics, and higher momenta in Statistics
are just a few paradigmatic examples out of a plethora
of cases. Stokes’ theorem represents a first step toward a
unifying vision of integrals evaluation as a whole: when
it is possible to look at them as representing fluxes of
closed di↵erential forms through surfaces, it tells us that
such integrals are invariant upon deforming either the
integrand, by exact forms, or the contour, by boundary
terms. This gives rise to the de Rham theory of coho-
mology, and its generalizations, as its twisted version,
which allows the inclusion of singular di↵erential forms.
Thus, within cohomology theories, the analytic proper-
ties of functions are tight to the algebraic properties of
the elements appearing in the corresponding integral rep-
resentations (forms and contours), which, in turn, are
determined by the geometry (holes and singularities) of
their existence domains.

The linearity of integral calculus makes it not sur-
prising that (regulated bounded) integrals form a vector
space structure. The intersection theory of twisted de
Rham cohomology [1–21] o↵ers the proper mathemati-
cal framework to characterize it and to establish linear
and quadratic relations involving the integrals. These
relations emerge from the intersection numbers of either
integration contours or di↵erential forms, (respectively
known as twisted cycles and twisted cocycles). Contours
and forms belong to two distinct vector spaces, respec-
tively known as homology and cohomology groups, natu-
rally generated by bases of independent elements. They
are isomorphic, and their dimension depends on the geo-
metrical properties of the variety associated with the in-
tegration measure: zeroes and critical points of the mea-
sure determine the algebraic and analytic properties of
the integrals.

The cohomology groups associated with the class of in-
tegrals we deal with in this study are finite dimensional

-

Also, the rotational symmetry makes the magnitude B φ-independent, while the translation

symmetry in z direction makes it z-independent. Altogether,

B(s,φ, z) = B(s only) φ̂. (3)

Given this symmetry-restricted from of the magnetic field, we may find its radius de-

pendence from the Ampere’s law. Let the Ampere’s loop L be a circle in the plane ⊥ to the

wire and centered on the wire,

wire

Ampere’s loop

(4)

For this loop, dℓ⃗ = s dφ φ̂, hence

∮

B · dℓ⃗ =

∮

B(s)× s× dφ = 2πs× B(s). (5)

On the other hand, the current through the loop is simply the net current I in the wire, thus

2πs×B(s) = µ0 × I =⇒ B(s) =
µ0 × I

2πs
. (6)

Now consider a wire of finite thickness. For simplicity, let the wire have round cross-

section of radius a and uniform current density

J =
I

πa2
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ABSTRACT

We propose a universal strategy, based on intersection theory, to access the vector space structure of generic classes of
integrals that are ubiquitous in scientific calculus. We show that the relations linking them can be derived by projections, where
the intersection number for differential forms acts as a scalar product. By elaborating on the recent progress made in the
area of Feynman integrals, de Rham’s intersection theory is applied to special functions appearing in Quantum Mechanics
and Quantum Field Theory. Our investigation suggests a novel approach, generally applicable to the study of higher-order
moments of probability distributions, which are interpreted as a basis of integrals. Our study offers additional evidence of the
intertwinement between fundamental physics, geometry, and statistics.

1 Introduction
In electromagnetism, Ampere’s theorem states that in presence of a circuit carrying an electric current I, the circulation of the
induced magnetic field along the boundary of an oriented surface is just µ0(±n)I, where µ0 is the magnetic permeability of
empty space, and n is the total number of times the wire crosses the surface, whereas the sign depends on the alignment of the
normal to the surface and of the direction of the current flow. In presence of several closed circuits gk, each carrying a current Ik,
computing the circulation of the induced magnetic field along a closed path g that wounds them, may look like a complicated
problem, depending on the shapes of g and gk. Nevertheless, the answer turns out to be simple, because it can be expressed as a
combination of elementary terms, as µ0 Âk(±nk)Ik, exploiting the geometric information carried by the intersection number of
gk and (the surface bounded by) g , i.e. nk = Link(gk,g), known as Gauss’ linking number. See Figure 1, for an illustration.
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Figure 1. Circuits linked with the boundary g of a surface S. The central vector is the orientation of S. Link numbers:
Link(g1,g) = +2, Link(g2,g) =�1, and Link(g3,g) = 0.

Computing integrals is routine in any scientific ambit: expectation values in Quantum Mechanics, Feynman integrals in
Quantum Field Theory, Partition Functions in Statistical Mechanics, and higher momenta in Statistics are just a few paradigmatic
examples out of a plethora of cases. Stokes’ theorem represents a first step toward a unifying vision of integrals evaluation
as a whole: when it is possible to look at them as representing fluxes of closed differential forms through surfaces, it tells us
that such integrals are invariant upon deforming either the integrand, by exact forms, or the contour, by boundary terms. This
gives rise to the de Rham theory of cohomology, and its generalizations, as its twisted version, which allows to include singular
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Computing integrals is routine in any scientific ambit:
expectation values in Quantum Mechanics, Feynman in-
tegrals in Quantum Field Theory, Partition Functions in
Statistical Mechanics, and higher momenta in Statistics
are just a few paradigmatic examples out of a plethora
of cases. Stokes’ theorem represents a first step toward a
unifying vision of integrals evaluation as a whole: when
it is possible to look at them as representing fluxes of
closed di↵erential forms through surfaces, it tells us that
such integrals are invariant upon deforming either the
integrand, by exact forms, or the contour, by boundary
terms. This gives rise to the de Rham theory of coho-
mology, and its generalizations, as its twisted version,
which allows the inclusion of singular di↵erential forms.
Thus, within cohomology theories, the analytic proper-
ties of functions are tight to the algebraic properties of
the elements appearing in the corresponding integral rep-
resentations (forms and contours), which, in turn, are
determined by the geometry (holes and singularities) of
their existence domains.

The linearity of integral calculus makes it not sur-
prising that (regulated bounded) integrals form a vector
space structure. The intersection theory of twisted de
Rham cohomology [1–21] o↵ers the proper mathemati-
cal framework to characterize it and to establish linear
and quadratic relations involving the integrals. These
relations emerge from the intersection numbers of either
integration contours or di↵erential forms, (respectively
known as twisted cycles and twisted cocycles). Contours
and forms belong to two distinct vector spaces, respec-
tively known as homology and cohomology groups, natu-
rally generated by bases of independent elements. They
are isomorphic, and their dimension depends on the geo-
metrical properties of the variety associated with the in-
tegration measure: zeroes and critical points of the mea-
sure determine the algebraic and analytic properties of
the integrals.

The cohomology groups associated with the class of in-
tegrals we deal with in this study are finite dimensional
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Also, the rotational symmetry makes the magnitude B φ-independent, while the translation

symmetry in z direction makes it z-independent. Altogether,

B(s,φ, z) = B(s only) φ̂. (3)

Given this symmetry-restricted from of the magnetic field, we may find its radius de-

pendence from the Ampere’s law. Let the Ampere’s loop L be a circle in the plane ⊥ to the

wire and centered on the wire,

wire

Ampere’s loop

(4)

For this loop, dℓ⃗ = s dφ φ̂, hence

∮

B · dℓ⃗ =

∮

B(s)× s× dφ = 2πs× B(s). (5)

On the other hand, the current through the loop is simply the net current I in the wire, thus

2πs×B(s) = µ0 × I =⇒ B(s) =
µ0 × I

2πs
. (6)

Now consider a wire of finite thickness. For simplicity, let the wire have round cross-

section of radius a and uniform current density

J =
I

πa2
ẑ . (7)

In this case, the same considerations as for the thin wire tells us that the magnetic field is

in the φ̂ direction while its magnitude depends only on the radial coordinate s. Moreover,
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Mechanics and Quantum Field Theory, showing that the algebraic identities they obey can be derived
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I. INTRODUCTION

In electromagnetism, Ampere’s theorem states that in
presence of a circuit carrying an electric current I, the
circulation of the induced magnetic field along the bound-
ary of an oriented surface is just µ0(±n)I, where µ0 is the
magnetic permeability of empty space, and n is the total
number of times the wire crosses the surface, whereas the
sign depends on the alignment of the normal to the sur-
face and of the direction of the current flow. In presence
of several closed circuits �k, each carrying a current Ik,
computing the circulation of the induced magnetic field
along a closed path � that wounds them, may look like a
complicated problem, depending on the shapes of � and
�k. Nevertheless, the answer turns out to be simple, be-
cause it can be expressed as a combination of elementary
terms, as µ0

P
k(±nk)Ik, exploiting the geometric infor-

mation carried by the intersection number of �k and (the
surface bounded by) �, i.e. nk = Link(�k, �), known as
Gauss’ linking number. See Figure 1, for an illustration.
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integrand, by exact forms, or the contour, by boundary
terms. This gives rise to the de Rham theory of coho-
mology, and its generalizations, as its twisted version,
which allows the inclusion of singular di↵erential forms.
Thus, within cohomology theories, the analytic proper-
ties of functions are tight to the algebraic properties of
the elements appearing in the corresponding integral rep-
resentations (forms and contours), which, in turn, are
determined by the geometry (holes and singularities) of
their existence domains.

The linearity of integral calculus makes it not sur-
prising that (regulated bounded) integrals form a vector
space structure. The intersection theory of twisted de
Rham cohomology [1–21] o↵ers the proper mathemati-
cal framework to characterize it and to establish linear
and quadratic relations involving the integrals. These
relations emerge from the intersection numbers of either
integration contours or di↵erential forms, (respectively
known as twisted cycles and twisted cocycles). Contours
and forms belong to two distinct vector spaces, respec-
tively known as homology and cohomology groups, natu-
rally generated by bases of independent elements. They
are isomorphic, and their dimension depends on the geo-
metrical properties of the variety associated with the in-
tegration measure: zeroes and critical points of the mea-
sure determine the algebraic and analytic properties of
the integrals.

The cohomology groups associated with the class of in-
tegrals we deal with in this study are finite dimensional
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Also, the rotational symmetry makes the magnitude B φ-independent, while the translation

symmetry in z direction makes it z-independent. Altogether,

B(s,φ, z) = B(s only) φ̂. (3)

Given this symmetry-restricted from of the magnetic field, we may find its radius de-

pendence from the Ampere’s law. Let the Ampere’s loop L be a circle in the plane ⊥ to the

wire and centered on the wire,

wire

Ampere’s loop

(4)

For this loop, dℓ⃗ = s dφ φ̂, hence

∮

B · dℓ⃗ =

∮

B(s)× s× dφ = 2πs× B(s). (5)

On the other hand, the current through the loop is simply the net current I in the wire, thus

2πs×B(s) = µ0 × I =⇒ B(s) =
µ0 × I

2πs
. (6)

Now consider a wire of finite thickness. For simplicity, let the wire have round cross-

section of radius a and uniform current density

J =
I

πa2
ẑ . (7)

In this case, the same considerations as for the thin wire tells us that the magnetic field is

in the φ̂ direction while its magnitude depends only on the radial coordinate s. Moreover,
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presence of a circuit carrying an electric current I, the
circulation of the induced magnetic field along the bound-
ary of an oriented surface is just µ0(±n)I, where µ0 is the
magnetic permeability of empty space, and n is the total
number of times the wire crosses the surface, whereas the
sign depends on the alignment of the normal to the sur-
face and of the direction of the current flow. In presence
of several closed circuits �k, each carrying a current Ik,
computing the circulation of the induced magnetic field
along a closed path � that wounds them, may look like a
complicated problem, depending on the shapes of � and
�k. Nevertheless, the answer turns out to be simple, be-
cause it can be expressed as a combination of elementary
terms, as µ0

P
k(±nk)Ik, exploiting the geometric infor-

mation carried by the intersection number of �k and (the
surface bounded by) �, i.e. nk = Link(�k, �), known as
Gauss’ linking number. See Figure 1, for an illustration.
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Computing integrals is routine in any scientific ambit:
expectation values in Quantum Mechanics, Feynman in-
tegrals in Quantum Field Theory, Partition Functions in
Statistical Mechanics, and higher momenta in Statistics
are just a few paradigmatic examples out of a plethora
of cases. Stokes’ theorem represents a first step toward a
unifying vision of integrals evaluation as a whole: when
it is possible to look at them as representing fluxes of
closed di↵erential forms through surfaces, it tells us that
such integrals are invariant upon deforming either the
integrand, by exact forms, or the contour, by boundary
terms. This gives rise to the de Rham theory of coho-
mology, and its generalizations, as its twisted version,
which allows the inclusion of singular di↵erential forms.
Thus, within cohomology theories, the analytic proper-
ties of functions are tight to the algebraic properties of
the elements appearing in the corresponding integral rep-
resentations (forms and contours), which, in turn, are
determined by the geometry (holes and singularities) of
their existence domains.

The linearity of integral calculus makes it not sur-
prising that (regulated bounded) integrals form a vector
space structure. The intersection theory of twisted de
Rham cohomology [1–21] o↵ers the proper mathemati-
cal framework to characterize it and to establish linear
and quadratic relations involving the integrals. These
relations emerge from the intersection numbers of either
integration contours or di↵erential forms, (respectively
known as twisted cycles and twisted cocycles). Contours
and forms belong to two distinct vector spaces, respec-
tively known as homology and cohomology groups, natu-
rally generated by bases of independent elements. They
are isomorphic, and their dimension depends on the geo-
metrical properties of the variety associated with the in-
tegration measure: zeroes and critical points of the mea-
sure determine the algebraic and analytic properties of
the integrals.

The cohomology groups associated with the class of in-
tegrals we deal with in this study are finite dimensional
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surface bounded by) �, i.e. nk = Link(�k, �), known as
Gauss’ linking number. See Figure 1, for an illustration.
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Computing integrals is routine in any scientific ambit:
expectation values in Quantum Mechanics, Feynman in-
tegrals in Quantum Field Theory, Partition Functions in
Statistical Mechanics, and higher momenta in Statistics
are just a few paradigmatic examples out of a plethora
of cases. Stokes’ theorem represents a first step toward a
unifying vision of integrals evaluation as a whole: when
it is possible to look at them as representing fluxes of
closed di↵erential forms through surfaces, it tells us that
such integrals are invariant upon deforming either the
integrand, by exact forms, or the contour, by boundary
terms. This gives rise to the de Rham theory of coho-
mology, and its generalizations, as its twisted version,
which allows the inclusion of singular di↵erential forms.
Thus, within cohomology theories, the analytic proper-
ties of functions are tight to the algebraic properties of
the elements appearing in the corresponding integral rep-
resentations (forms and contours), which, in turn, are
determined by the geometry (holes and singularities) of
their existence domains.

The linearity of integral calculus makes it not sur-
prising that (regulated bounded) integrals form a vector
space structure. The intersection theory of twisted de
Rham cohomology [1–21] o↵ers the proper mathemati-
cal framework to characterize it and to establish linear
and quadratic relations involving the integrals. These
relations emerge from the intersection numbers of either
integration contours or di↵erential forms, (respectively
known as twisted cycles and twisted cocycles). Contours
and forms belong to two distinct vector spaces, respec-
tively known as homology and cohomology groups, natu-
rally generated by bases of independent elements. They
are isomorphic, and their dimension depends on the geo-
metrical properties of the variety associated with the in-
tegration measure: zeroes and critical points of the mea-
sure determine the algebraic and analytic properties of
the integrals.

The cohomology groups associated with the class of in-
tegrals we deal with in this study are finite dimensional
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We conclude this section by observing that the use of the �-basis [], the solution by ansatz of the mod-
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Addressing a common math problem might be useful to make progress in different disciplines

the geometric Langlands program [6]. It is natural to think that the Langlands
program in number theory can also be analyzed by means of a corresponding
version of gauge theory.

We stressed that we want to use number theory in conventional physics.
It is possible, however, that all physical quantities are quantized (there exists
elementary length, etc). Then it is natural to believe that the theories over
integers have direct physical meaning.

To explain what we have in mind when speaking about “physics over a ring”
we start with the following:

Definition. Physics is a part of mathematics devoted to the calculation of inte-
grals of the form

∫
g(x)ef(x)dx. Different branches of physics are distinguished

by the range of the variable x and by the names used for f(x), g(x) and for
the integral. For example, in classical statistical physics x runs over a symplec-
tic manifold, f(x) is called the Hamiltonian function and the integral has the
meaning of a partition function or of a correlation function. In a d-dimensional
quantum field theory x runs over the space of functions on a d-dimensional
manifold (the space of fields) and f(x) is interpreted as an action functional.

Of course this is a joke, physics is not a part of mathematics. However,
it is true that the main mathematical problem of physics is the calculation of
integrals of the form

∫
g(x)ef(x) dx. If we work over an arbitrary ring K the

exponential function and the notion of the integral are not defined. We will
show that nevertheless one can give a suitable definition of an integral of the
form

∫
g(x)ef(x) dx.

Let us start with some simple remarks about integrals over Rn assuming that
g and f are formal power series in the variable λ with coefficients belonging to
the ring of polynomials on Rn (in other words f, g ∈ R[x1, ..., xn][[λ]]). We note
that this choice is different from R[[λ]][x1, ..., xn] and it is more convenient for
technical reasons. If f can be represented as f0 + λV where f0 is a negative
quadratic form, then the integral

∫
g(x)ef(x) dx can be calculated in the frame-

work of perturbation theory with respect to the formal parameter λ. We will
fix f and consider the integral as a functional I(g) taking values in R[[λ]]. It is
easy to derive from the relation

∫
∂a(h(x)e

f(x))dx = 0

that the functional I(g) vanishes in the case when g has the form

g = ∂ah+ (∂af)h.

One can show that this statement is sufficient to calculate I(g) up to a constant
factor. This is roughly equivalent to the observation that integration by parts
is sufficient in this case to determine the integral as a power series with respect
to λ. Later we will derive the uniqueness of I(g) from some general consider-
ations; however, one should notice that one can give an easy elementary proof
by induction with respect to degree of the polynomial g.

2
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It is possible, however, that all physical quantities are quantized (there exists
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integers have direct physical meaning.
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manifold (the space of fields) and f(x) is interpreted as an action functional.

Of course this is a joke, physics is not a part of mathematics. However,
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factor. This is roughly equivalent to the observation that integration by parts
is sufficient in this case to determine the integral as a power series with respect
to λ. Later we will derive the uniqueness of I(g) from some general consider-
ations; however, one should notice that one can give an easy elementary proof
by induction with respect to degree of the polynomial g.
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it is true that the main mathematical problem of physics is the calculation of
integrals of the form

∫
g(x)ef(x) dx. If we work over an arbitrary ring K the

exponential function and the notion of the integral are not defined. We will
show that nevertheless one can give a suitable definition of an integral of the
form

∫
g(x)ef(x) dx.

Let us start with some simple remarks about integrals over Rn assuming that
g and f are formal power series in the variable λ with coefficients belonging to
the ring of polynomials on Rn (in other words f, g ∈ R[x1, ..., xn][[λ]]). We note
that this choice is different from R[[λ]][x1, ..., xn] and it is more convenient for
technical reasons. If f can be represented as f0 + λV where f0 is a negative
quadratic form, then the integral

∫
g(x)ef(x) dx can be calculated in the frame-

work of perturbation theory with respect to the formal parameter λ. We will
fix f and consider the integral as a functional I(g) taking values in R[[λ]]. It is
easy to derive from the relation

∫
∂a(h(x)e

f(x))dx = 0

that the functional I(g) vanishes in the case when g has the form

g = ∂ah+ (∂af)h.

One can show that this statement is sufficient to calculate I(g) up to a constant
factor. This is roughly equivalent to the observation that integration by parts
is sufficient in this case to determine the integral as a power series with respect
to λ. Later we will derive the uniqueness of I(g) from some general consider-
ations; however, one should notice that one can give an easy elementary proof
by induction with respect to degree of the polynomial g.
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the geometric Langlands program [6]. It is natural to think that the Langlands
program in number theory can also be analyzed by means of a corresponding
version of gauge theory.

We stressed that we want to use number theory in conventional physics.
It is possible, however, that all physical quantities are quantized (there exists
elementary length, etc). Then it is natural to believe that the theories over
integers have direct physical meaning.

To explain what we have in mind when speaking about “physics over a ring”
we start with the following:

Definition. Physics is a part of mathematics devoted to the calculation of inte-
grals of the form

∫
g(x)ef(x)dx. Different branches of physics are distinguished

by the range of the variable x and by the names used for f(x), g(x) and for
the integral. For example, in classical statistical physics x runs over a symplec-
tic manifold, f(x) is called the Hamiltonian function and the integral has the
meaning of a partition function or of a correlation function. In a d-dimensional
quantum field theory x runs over the space of functions on a d-dimensional
manifold (the space of fields) and f(x) is interpreted as an action functional.

Of course this is a joke, physics is not a part of mathematics. However,
it is true that the main mathematical problem of physics is the calculation of
integrals of the form

∫
g(x)ef(x) dx. If we work over an arbitrary ring K the

exponential function and the notion of the integral are not defined. We will
show that nevertheless one can give a suitable definition of an integral of the
form

∫
g(x)ef(x) dx.

Let us start with some simple remarks about integrals over Rn assuming that
g and f are formal power series in the variable λ with coefficients belonging to
the ring of polynomials on Rn (in other words f, g ∈ R[x1, ..., xn][[λ]]). We note
that this choice is different from R[[λ]][x1, ..., xn] and it is more convenient for
technical reasons. If f can be represented as f0 + λV where f0 is a negative
quadratic form, then the integral

∫
g(x)ef(x) dx can be calculated in the frame-

work of perturbation theory with respect to the formal parameter λ. We will
fix f and consider the integral as a functional I(g) taking values in R[[λ]]. It is
easy to derive from the relation

∫
∂a(h(x)e

f(x))dx = 0

that the functional I(g) vanishes in the case when g has the form

g = ∂ah+ (∂af)h.

One can show that this statement is sufficient to calculate I(g) up to a constant
factor. This is roughly equivalent to the observation that integration by parts
is sufficient in this case to determine the integral as a power series with respect
to λ. Later we will derive the uniqueness of I(g) from some general consider-
ations; however, one should notice that one can give an easy elementary proof
by induction with respect to degree of the polynomial g.
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The unreasonable effectiveness of  mathematics
E. Wigner
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of this work is what Wigner called "the 
unreasonable effectiveness of mathemat-
ics". Wigner was referring to the mys-
terious phenomenon in which areas of 
pure mathematics, originally constructed 
without regard to application. are sud-
denly discovered to be exactly what is 
required to describe the structure of the 
physical world . Thus , Riemann's general 
formulation of the geometry of curved 
spaces was essential to Einstein 's under-
standing of gravity; Heisenberg found 
that the symbolic arrays which in quan-
tum mechanics represent observable 
quantities we re the matrices that had 
been invented decades earlier ; and now 
recondite aspects of the distribution of 
prime numbers might well provide the 
link between quantum mechanics and 
newtonian chaos. 

Such connections raise many ques-
tions. Is mathematical truth inve nted by 
mathematicians. or does it already exist 
in the world , to be discovered when our 
minds become sophisticated enough? If 
discovered, where is it beforehand? 
What is its relation to the matter whose 
behaviour it describes so we ll ? Is there 
any inapplicable mathematics? 

Barrow does not answer these ques-
tions, but gives a careful and perceptive 
account of their background and the 
philosophies they have stimulated . He 
starts , appropriately enough, with an 
anthropological and historical analysis of 
counting and calculation , focusing on the 
tricky question of whether such skills are 
innate, and would inevitably develop in 
any human society , or whether they 
arose 'accidentally' in one (or several) 
societies, and diffused to the others. The 
latter is, he thinks, more plausible. Cen-
tral here are the inventions (discover-
ies?) of place values and of zero, by the 
Babylonians and Hindus 5,000 years 
ago , leading via the mediaeval Arabs to 
the decimal syste m we use today. 

Because mathematics is the most pre-
cise embodiment of systematic thought, 
it was natural to try to prove that it has a 
solid foundati on in logic and is perfectly 
consistent. The story of these attempts 
has often been told. How Frege, Russell 
and Whitehead tried to 'derive ' 
mathematics from logic almost a century 
ago, and how this attempt was compli-
cated by the irritating paradoxes of self-
referential sets ('If the barber shaves 
everyone who does not shave himself. 
wha shaves the barber?') . How Hilbert 
took up the challenge by trying to prove 
the consistency of mathematics from 
within, by formalizing its symbols and 
deductive steps. !low "all the noonday 
brightness of this confident picture of the 
fo rmalists' little mathematical wo1ld was 
suddenly extinguished" by Godel's proof 
in 1931 that the set-theory paradoxes 
make it impossible for a sufficiently 
complicated system to be proved consis-
NATURE · VOL 360 · 26 NOVEMBER 1992 

tent from within. These ideas are central 
to modern notions of randomness as the 
inability to compress informatio n, and 
may have implicati ons for our a ttempts 
(in my view doomed) to find a compact 
encoding of the physical universe as a 
' theory of everything'. Barrow's account 
of these matters is lucid and engaging. 

After pointing out that " formalism is 
lacking in two crucial respects" (it does 
not explain the usefulness of mathe-
matics and its relation to the minds of 
mathematicians), Barrow turns to inven-
tionism. This "amounts to the claim that 
mathematics is a branch of 
psycho logy". It makes "mathe matical 
truth dependent upon time and his-
tory" , and "one cannot help but fee l that 
humanity is not really clever enough to 
have 'invented' mathematics" . 

A chapter is devoted to Brouwer's 
programme of intuitionism. whe re the 
natural numbers are regarded as unargu-
ably "given ' , and the aim is to build the 
rest of mathematics "by step-by-step 
deductions using a finite number of 
steps" . This bro ught him into collision 
with Hilbert , who believed that such a 
philosophy, which disallowed infinite 
processes such as arguing by reductio ad 
absurdum, would fatally impoverish and 
weaken mathematics. Hilbert's attempt 
to enforce political correctness and to 
expel Brouwer from the editorial board 
of Marhematische Annalen provoked 
an absurd and bitter controversy that 
Einstein called the "war of the frogs 
and mice". 

Finally , Barrow explores the Platonic 
position that mathematical abstractions 
ex ist "in a rea lm of non-spati al, non-
mental , timeless entities" . He concludes, 
albeit somewhat uneasily: "Our ability to 
create and apprehend mathematical 
structures in the world is merely a con-
seque nce of our own oneness with the 
wo rld" . 

I admit to finding some of Barrow's 
arguments hard to follow not because of 
their content but because of his habit of 
using very long sentences unado rned by 
punctuation whose verbs are hard to find 
and whose meanings therefore hard to 
unravel. Worse, some sentences are in-
complete, and there are many spelling 
mistakes. Quota tions abound . Some are 
witty and apposite, but why propagate 
Spiro Agnew's abysmal "An intellectual 
is a man who doesn' t know how to park 
a bike ''? 

These arc, however, minor criticisms , 
and I warmly recommend Barrow's 
brave attempt to gather up the many 
loose threads of this elusive subject- a 
subject so central to our scie ntific culture 
- and to grasp the whole of it. 0 

Michael Berry is in the Department of 
Physics, University of Bristol, Bristol BSB 
1TL UK. 

AUTUMN BOOKS 

Einstein as 
lover 
Joseph Schwartz 

Albert Einstein and Mileva Marie: The 
Love Letters. Edited and with an intro-
duction by Jurgen Renn and Robert 
Schulmann. Translated by Shawn 
Smith. Princeton University Press: 
1992. Pp. 107. $14.95, £12.50. 

TillS elegantly published volume of let-
te rs between the young Einstein and the 
young Marie is a spin-off from the first 
two volumes of a planned 35 volumes 
containing some 43,000 documents lying 
in the Einstein archive. A lovely intro-
duction by Ji.irgen Renn and Ro bert 
Schulmann , coeditors of the project, 
draws our attention to the unique 
personality of Marie and her central 
contribution to the Einstein success 
sto ry. The meticulo us scholarship of the 
notes is wonderful , particularly the inclu-
sio n of the dates of virtually a ll the 
characters in this first act of the Einstein 
drama. And the letters themselves are a 
treat , a window into the early dev-
elopment of the man who became the 
most ce lebrated scientist in history. But 
what, when all is said and done , does 
this correspondence te ll us? 

The Einstein we see here is bubblingly 
optimistic, reassuring, high-spirited , con-
fident about life . For the first time we 
have an Einstein with sexuality: "Oh my! 
That Jo hnnie boy!/So crazy with desire/ 
Whil e thinking of his Dollie/His pillow 
catches fire " (letters 19); "How beautiful 
it was the last time you let me press your 
dea r little person against me in that most 
natural way" (le tter 33) . Albert is happy 
in his sexual relationship with Marie and 
the letters show it . 

There is a not entirely happy story 
here , however, about two lovers, one 
who thrives, the other who gets in-
creasingly submerged by life . We meet 
them both as students of physics. She , a 
late entrant from the distant provinces of 
undeveloped Serbi a, is three-and-a-half 
yea rs his senior. He is youthful, exuber-
ant. No obstacle is too great. She , while 
available for emotional and sexual in-
vo lvement , is unhappy, feeling that her 
provincial backgro und has irreversibly 
limited her chance in physics. While 
E instein is absorbing with great fascina-
ti on the nuts and bolts of doing physics, 
Marie is distant , o bserving wistfully the 
spectacle of he r university lecture rs: 
"human beings are so clever and 
have accomplished so much as I 
have observed once again here in the 
case of the Heidelberg professors" 
(letter 1) . 

As we journey with these lovers over a 
377 
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Univariate Intersection Number
1. Regularized Forms

Logarithmic twisted cocycles 'L can have simple poles only at zi’s. To construct '
c
L with

compact support, we must find a cocycle in the sme cohomology class, which vanishes in a

small tubular neighborhood around each zi.

Let’s divide the space X = CP1
\ [

k
i=1{z = zi}, into regions:

where Vi and Ui are discs centered in zi with small radii 0 < ✏V < ✏U . For convenience, let

us define the annulus Di = Ui \ Vi.

We introduce the regulating function

hi = hi(z, z̄) ⌘

8
><

>:

0, on Ui

0 < hi < 1, on Di = Ui \ Vi

1, on Vi

(1.1)

and define

'
c
L ⌘ 'L �

X

zi2P!

r!(hi i) (1.2)

For notation ease, we omit the sum over the poles of !, and restore it at the end. Observe

that,

r!(hi i) = (d+ !)(hi i) =  i(dhi) + hi(d i) + hi! i =  i(dhi) + hir! i (1.3)

Therefore,

'
c
L ⌘ 'L � ( i(dhi) + hir! i) (1.4)

I↵

r! i = 'L , for z ! zi, namely on Ui \ {zi} (1.5)

then

'
c
L ⌘

8
><

>:

0, on Vi

'L � ( i(dhi) + hi'L) , on Di = Ui \ Vi

'L , on X \ Ui

(1.6)

hence '
c
L has compact support, because 'c

L = 0 on [
k
i=1Vi.

Let us consider the following two identities:

1. Since '
c
L = 'L , on X \ Ui,

Z

X\Ui

'
c
L ^ 'R = 0 (1.7)
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2. Useful identity
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The following corollary follows immediately from Proposition 3.1.2.

Corollary 3.1.3 For any positive integer n,

�(n) = (n� 1)!

We can use Proposition 3.1.2 to define analytic continuation for the �(s) where <(s)  0.
Specifically, we observe that the right hand side of �(s) = �(s+1)

s is analytic when <(s) > �1
with a simple pole at s = 0 with residue 1. If we repeat this extension, we can continue
extending �(s) to the whole complex plane with simple poles when s is a non-positive integer.

There is another way to define analytic continuation of the Gamma function, which is to
use contour integration. In the following proposition, we introduce this method.

Proposition 3.1.4 (Analytic Continuation of the Gamma Function) Let the contour C be

the Hankel Curve shown below.

Then the gamma function �(s) can be represented as the following integral where the

branch cut is real non-negative axis x � 0:

�(s) =
1

e2⇡is � 1

I

C

ts�1e�tdt.

Due to the branch cut and the denominator of e2⇡is � 1, this representation is defined for

complex numbers s where s /2 R�0 [ Z<0.

Proof. Since C is a contour on the complex plane, we integrate over t = x+ iy and consider
3 parts of the Hankel Curve C as

I

C

ts�1e�tdt, =

Z

purple line
ts�1e�tdt+

Z

red circle
ts�1e�tdt+

Z

blue line
ts�1e�tdt.

The purple line is a line segment for x from R to ✏ (on the positive imaginary side) with an
arbitrarily small positive number ✏. Therefore, we write the integral as

Z

purple line
ts�1e�tdt =

Z ✏

R

xs�1e�xdx.
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[red circle][purple line] [blu line]

For the red curve, write t in polar coordinates, that is, t = ✏ei✓ with ✓ 2 (0, 2⇡), and so
dt
d✓ = i✏ei✓. Hence,

Z

red circle
ts�1e�tdt =

Z 2⇡

0

�
✏ei✓

�s�1
e�✏ei✓i✏ei✓d✓.

The blue line is a line segment for x from ✏ to R (on the negative imaginary side). Since it
is a contour after wrapping around the origin, the phase angle is now 2⇡i. Therefore, writing
t = xe2⇡i, we have

Z

blue line
ts�1e�tdt =
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✏

�
xe2⇡i

�s�1
e�xe2⇡i

dx.
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dx
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0
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=
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�(s).

In conclusion, I

C

ts�1e�tdt =
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e2⇡is � 1

�
�(s), (3.1.1)

which gives us our desired result of

�(s) =
1

e2⇡is � 1

I

C

ts�1e�tdt.

⇤
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is a contour after wrapping around the origin, the phase angle is now 2⇡i. Therefore, writing
t = xe2⇡i, we have

Z

blue line
ts�1e�tdt =

Z R

✏

�
xe2⇡i

�s�1
e�xe2⇡i

dx.

Hence, we have

lim
R!1,✏!0

I

C

ts�1e�tdt

= lim
R!1,✏!0

✓Z ✏

R

xs�1e�xdx+

Z 2⇡

0

�
✏ei✓

�s�1
e�✏ei✓i✏ei✓d✓ +

Z R

✏

�
xe2⇡i

�s�1
e�xe2⇡i

dx

◆

= lim
R!1,✏!0

✓
�
Z R

✏

xs�1e�xdx+ i✏

Z 2⇡

0

�
✏ei✓

�s�1
e�✏ei✓ei✓d✓ + e2⇡i(s�1)

Z R

✏

xs�1e�xdx

◆

= lim
R!1

✓
�
Z R

0

xs�1e�xdx+ 0 + e2⇡ise�2⇡i

Z R

0

xs�1e�xdx

◆

= lim
R!1

✓
�
Z R

0

xs�1e�xdx+ e2⇡ise�2⇡i

Z R

0

xs�1e�xdx

◆

= lim
R!1

✓
�
Z R

0

xs�1e�xdx+ e2⇡is(1)

Z R

0

xs�1e�xdx

◆

= lim
R!1

✓�
�1 + e2⇡is

� Z R

0

xs�1e�xdx

◆

=
�
e2⇡is � 1

� Z 1

0

xs�1e�xdx

=
�
e2⇡is � 1

�
�(s).

In conclusion, I

C

ts�1e�tdt =
�
e2⇡is � 1

�
�(s), (3.1.1)

which gives us our desired result of

�(s) =
1

e2⇡is � 1

I

C

ts�1e�tdt.

⇤
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Section 4

Inverse KLT Kernel as Intersection Numbers of Twisted Cycles

Intersection theory for twisted cycles was introduced by Kita and Yoshida in 1992 [16],
who later developed it further in a series of papers [17–19]. Since then, intersection numbers have
been evaluated for a large family of di↵erent types of hypergeometric functions [80, 94–102], including
Selberg-type integrals [2, 81, 85, 86, 103, 104]. For our purposes, intersection numbers of twisted cycles
play a central role in the KLT relations by computing entries of the inverse of the KLT kernel. It is
therefore important to understand how to evaluate them in the setting of string intergrals. In this
section we discuss a combinatorial way for computing intersection numbers of twisted cycles and prove
its equivalence to the diagrammatic rules for calculating m↵0(�|�) given in [1].

Let us first review the key aspects of the intersection numbers of twisted cycles. Let H lf
m
(X,L!) be

the m-th locally finite twisted homology group on a non-compact m-dimensional manifold X = Cm \D,
where the divisor D is the singular locus of a multi-valued function u(z) =

Q
k

i=1 fi(z)
↵i . The twist

1-form ! = d log u(z) defines an integrable connection r! = d + ! ^ . The twisted homology has
coe�cients in L!, the local system of solutions to the di↵erential equation d⇠ = ! ^ ⇠. Twisted cycles
are then elements of H lf

m
(X,L!). Working under the assumption that the exponents ↵i 2 R \Z of u(z)

are su�ciently generic, one can define an isomorphism

H
lf
m
(X,L!)

reg���! Hm(X,L!), (4.1)

which is the inverse of the natural map from Hm(X,L!) to H
lf
m
(X,L!). We refer to the map (4.1)

as regularization [14]. We will give plenty of explicit examples of regularized twisted cycles in the
following sections.

Similarly, we have a dualm-th locally finite twisted homology groupH
lf
m
(X,L_

!
) with the coe�cients

in the local system L_
!
defined with d⇠ = �! ^ ⇠. Kita and Yoshida showed [16] that there exists a

non-degenerate pairing,
Hm(X,L!)⇥H

lf
m
(X,L_

!
)

•��! C,

known as the intersection form. Together with the regularization map (4.1), it defines the intersection
number of two twisted cycles,

C = � ⌦ u�(z) 2 H
lf
m
(X,L!) and C_ = �

_ ⌦ u
�1
�_ (z) 2 H

lf
m
(X,L�!)

as
regC • C_ =

X

z2� \ �_

Intz(�, �
_)u�(z)u

�1
�_ (z). (4.2)

Here, Intz(�, �_) is the topological intersection number of two topological cycles � and �
_ at point z.

The sum proceeds over all intersections between the two cycles. When they intersect non-tangentially—
which will be the case throughout this work—the topological intersection number Int is equal to +1 or
�1 depending on their relative orientation, as follows:

��_

= +1 or

�_�

= �1. (4.3)
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4.1 Regularization of Twisted Cycles

The cycles relevant for string amplitudes (3.9) are non-compact. Since the definition of the
intersection number requires at least one of the twisted cycles to be compact, we need to employ
a regularization. In this section we discuss an explicit construction of such a map, based on the
Pochhammer contour and its higher-dimensional generalizations, see, e.g., [14, 15, 41].

Let us review how the standard Pochhammer contour is constructed. We start by considering the
integral:

I :=

Z 1

0
z
s(1� z)t '(z), (4.4)

where s, t /2 Z and '(z) is any single-valued 1-form. As defined, the integral converges only for
su�ciently positive values of s and t. In order to make the it convergent for all values of these
parameters, one can employ an alternative contour of integration �, known as the Pochhammer contour:

� :=
z=0 z=1

P
C0

C0
0

C1

C0
1

This contour winds around the two branch points z = 0, 1 once in both directions. We picture the
branch cuts as extending from z = 0, 1 downwards to �i1. Let us track how this contour is related to
the one used in (4.4). Starting from the point P and moving right, we first obtain the contribution
equal to I. After winding around z = 1 in a positive direction along C1, one picks up a phase factor
e
2⇡it, so that the next stretch towards z = 0 equals to �e

2⇡it
I, where the minus comes from a di↵erent

orientation that (4.4). Next, winding around z = 0 gives an additional factor of e2⇡is from C0, so that
the following contribution becomes e2⇡i(s+t)

I. Winding around z = 1, this time in a negative direction
C

0
1, takes the phase factor back to e

2⇡it, so that the final contribution is e
2⇡it

I. After performing
another turn around z = 0 in a negative direction given by C

0
0, we land at the point P on the original

branch. Summing up the contributions, we have:

I

�

z
s(1� z)t '(z) =

⇣
1� e

2⇡it + e
2⇡i(s+t) � e

2⇡is
⌘Z 1

0
z
s(1� z)t '(z),

or equivalently

Z 1

0
z
s(1� z)t '(z) =

I

�0
z
s(1� z)t '(z) with �

0 :=
�

(e2⇡is � 1) (e2⇡it � 1)
.

Let us split the contour �
0 into three parts: regions near the two branch points z = 0, 1, and the

interval
������!
(", 1� "). In order to be precise, we will use a small parameter " as the radius of the circular

contours. The contributions near the branch point at z = 0 give:

C0 + C
0
0

(e2⇡is � 1) (e2⇡it � 1)
=

�
e
2⇡it � 1

�
S(", 0)

(e2⇡is � 1) (e2⇡it � 1)
=

S(", 0)

e2⇡is � 1
,

where by S(a, z) we denote a positively oriented circular contour with centre at z and starting at a
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point a. Similarly, around z = 1 we find the contribution

C1 + C
0
1

(e2⇡is � 1) (e2⇡it � 1)
=

�
1� e

2⇡is
�
S(1� ", 1)

(e2⇡is � 1) (e2⇡it � 1)
= �S(1� ", 1)

e2⇡it � 1
.

Finally, the contours along the real axis simply give
������!
(", 1� "). Putting everything together, we find

the regularization of the original cycle
���!
(0, 1) to be:

reg
���!
(0, 1) := �

0

=
S(", 0)

e2⇡is � 1
+
������!
(", 1� ")� S(1� ", 1)

e2⇡it � 1

=
z=0 z=1

. (4.5)

Here, we have introduced a graphical notation to denote the regularized cycle. It is understood that the
circular parts of the contour come multiplied with the additional factors 1/(e2⇡is�1) and �1/(e2⇡it�1)
that are not represented explicitly. We will make a repeated use of this regularization in the following
sections. Note that we have been implicitly working with a twisted cycle

���!
(0, 1)⌦ z

s(1� z)t relevant for
string amplitude calculations.

Generalizations to higher-dimensional cycles can be made by performing a similar regularization
[14]. Since locally we can describe a manifold X as a direct product of lower-dimensional spaces, we can
employ the regularization (4.5) near the singularities on these product spaces. In the case of X = M0,n

with n � 5, however, there is an additional di�culty coming from the fact that the singular locus of
u(z) is not normally crossing. For example, in the case of n = 5 the function u(z) defining the local
system L! is singular at

{z2 = 0} [ {z2 � 1 = 0} [ {z2 � z3 = 0} [ {z3 = 0} [ {z3 � 1 = 0},

which has degenerate points at (z2, z3) = (0, 0), (1, 1), and also (1,1). The way forward is to consider
a blowup of this space [23–27], denoted by fM0,5 = ⇡

�1(M0,5), where all triple singular points get
resolved. In Figure 4.1 we have illustrated the real section of M0,5, denoted by M0,5(R), where the
twisted cycles live before the blowup, as well as its image, fM0,5(R). Note that in this representation
we brought the point at infinity to a finite position for convenience. The resulting space is divided into
twelve chambers separated by the singular lines. Each of the lines has an associated label corresponding
to the exponent of the given zero in u(z), or equivalently a phase factor that one picks up upon crossing
the branch line. For example, the line defined by {z2 � 1 = 0} is labelled with (24), since it corresponds
to the factor (z2 � 1)s24 in u(z).

Blowup has been performed in the neighbourhood of the points (0, 0), (1, 1), and (1,1), resulting
in three new locally-defined curves labelled by (123), (234), and (235). For example, near (z2, z3) = (0, 0)
the blowup introduced a line (123) corresponding to the factor z2s12(z2 � z3)s23z3s13 , whose exponents
sum up to s12 + s23 + s13 = s123. Points labelled with the same symbol on these new curves are
identified, and so are the segments between them. Each of the vertices can be uniquely specified as
intersection of two lines, for instance the point (z2, z3) = (0, 1) is written as (12) \ (34).

Each of the twelve chambers after the blowup forms a polygon known as the associahedron, K4.11

11Historically, skeleton of the associahedron first appeared the doctoral thesis of Tamari in 1951 [105]. In 1963, Stashe↵
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1
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�
1� e

2⇡is
�
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= �S(1� ", 1)

e2⇡it � 1
.
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������!
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the regularization of the original cycle
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(0, 1) to be:
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���!
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(", 1� ")� S(1� ", 1)

e2⇡it � 1
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circular parts of the contour come multiplied with the additional factors 1/(e2⇡is�1) and �1/(e2⇡it�1)
that are not represented explicitly. We will make a repeated use of this regularization in the following
sections. Note that we have been implicitly working with a twisted cycle
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s(1� z)t relevant for
string amplitude calculations.

Generalizations to higher-dimensional cycles can be made by performing a similar regularization
[14]. Since locally we can describe a manifold X as a direct product of lower-dimensional spaces, we can
employ the regularization (4.5) near the singularities on these product spaces. In the case of X = M0,n

with n � 5, however, there is an additional di�culty coming from the fact that the singular locus of
u(z) is not normally crossing. For example, in the case of n = 5 the function u(z) defining the local
system L! is singular at

{z2 = 0} [ {z2 � 1 = 0} [ {z2 � z3 = 0} [ {z3 = 0} [ {z3 � 1 = 0},

which has degenerate points at (z2, z3) = (0, 0), (1, 1), and also (1,1). The way forward is to consider
a blowup of this space [23–27], denoted by fM0,5 = ⇡

�1(M0,5), where all triple singular points get
resolved. In Figure 4.1 we have illustrated the real section of M0,5, denoted by M0,5(R), where the
twisted cycles live before the blowup, as well as its image, fM0,5(R). Note that in this representation
we brought the point at infinity to a finite position for convenience. The resulting space is divided into
twelve chambers separated by the singular lines. Each of the lines has an associated label corresponding
to the exponent of the given zero in u(z), or equivalently a phase factor that one picks up upon crossing
the branch line. For example, the line defined by {z2 � 1 = 0} is labelled with (24), since it corresponds
to the factor (z2 � 1)s24 in u(z).

Blowup has been performed in the neighbourhood of the points (0, 0), (1, 1), and (1,1), resulting
in three new locally-defined curves labelled by (123), (234), and (235). For example, near (z2, z3) = (0, 0)
the blowup introduced a line (123) corresponding to the factor z2s12(z2 � z3)s23z3s13 , whose exponents
sum up to s12 + s23 + s13 = s123. Points labelled with the same symbol on these new curves are
identified, and so are the segments between them. Each of the vertices can be uniquely specified as
intersection of two lines, for instance the point (z2, z3) = (0, 1) is written as (12) \ (34).

Each of the twelve chambers after the blowup forms a polygon known as the associahedron, K4.11
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point a. Similarly, around z = 1 we find the contribution

C1 + C
0
1

(e2⇡is � 1) (e2⇡it � 1)
=

�
1� e

2⇡is
�
S(1� ", 1)

(e2⇡is � 1) (e2⇡it � 1)
= �S(1� ", 1)

e2⇡it � 1
.

Finally, the contours along the real axis simply give
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Generalizations to higher-dimensional cycles can be made by performing a similar regularization
[14]. Since locally we can describe a manifold X as a direct product of lower-dimensional spaces, we can
employ the regularization (4.5) near the singularities on these product spaces. In the case of X = M0,n

with n � 5, however, there is an additional di�culty coming from the fact that the singular locus of
u(z) is not normally crossing. For example, in the case of n = 5 the function u(z) defining the local
system L! is singular at

{z2 = 0} [ {z2 � 1 = 0} [ {z2 � z3 = 0} [ {z3 = 0} [ {z3 � 1 = 0},

which has degenerate points at (z2, z3) = (0, 0), (1, 1), and also (1,1). The way forward is to consider
a blowup of this space [23–27], denoted by fM0,5 = ⇡

�1(M0,5), where all triple singular points get
resolved. In Figure 4.1 we have illustrated the real section of M0,5, denoted by M0,5(R), where the
twisted cycles live before the blowup, as well as its image, fM0,5(R). Note that in this representation
we brought the point at infinity to a finite position for convenience. The resulting space is divided into
twelve chambers separated by the singular lines. Each of the lines has an associated label corresponding
to the exponent of the given zero in u(z), or equivalently a phase factor that one picks up upon crossing
the branch line. For example, the line defined by {z2 � 1 = 0} is labelled with (24), since it corresponds
to the factor (z2 � 1)s24 in u(z).

Blowup has been performed in the neighbourhood of the points (0, 0), (1, 1), and (1,1), resulting
in three new locally-defined curves labelled by (123), (234), and (235). For example, near (z2, z3) = (0, 0)
the blowup introduced a line (123) corresponding to the factor z2s12(z2 � z3)s23z3s13 , whose exponents
sum up to s12 + s23 + s13 = s123. Points labelled with the same symbol on these new curves are
identified, and so are the segments between them. Each of the vertices can be uniquely specified as
intersection of two lines, for instance the point (z2, z3) = (0, 1) is written as (12) \ (34).

Each of the twelve chambers after the blowup forms a polygon known as the associahedron, K4.11

11Historically, skeleton of the associahedron first appeared the doctoral thesis of Tamari in 1951 [105]. In 1963, Stashe↵
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called the minimal blowup [2, 27]. It is known that real part of each chamber of fM0,n is isomorphic to
an associahedron Kn�1, see, e.g., [28, 114]. We will give properties of associahedra for general n in
Section 4.4, after studying examples of intersection numbers for n = 4, 5, which will illustrate how they
are connected to adjacency relations between di↵erent associahedra. Generalized Pochhammer contour
for Kn�1 is defined analogously to (4.6) and (4.7). We can now give a precise definition of the pairing
between twisted cycles, which gives rise to the entries of H.

Definition 4.1. Non-degenerate pairing between two twisted cycles is given by

hC(�),C(�)i := reg eC(�) • eC(�),

where eC(�) and eC(�) are two, not necessarily distinct, twisted cycles defined as a blowup of (3.9). For
simplicity we will use the same notation for n = 4, even though in this case there is no need for a
blowup.

4.2 Four-point Examples

We start evaluation of intersection numbers with the simplest example of n = 4, which will
illustrate most of the core ideas at play. We first consider the case of the self-intersection number of
the twisted cycle C(1234). In order to avoid degeneracy on the interval (", 1� "), let us make a small
deformation of one of the cycles into a sine-like curve, on top of the regularization (4.5) for the other
cycle:

hC(1234),C(1234)i =
⇣
reg

���!
(0, 1)⌦ z

s(1� z)t
⌘
•
⇣���!
(0, 1)sin ⌦ z

s(1� z)t
⌘

=
z=0

z=1

���!
(0, 1)sin

reg
���!
(0, 1)

= � 1

e2⇡is � 1
� 1� 1

e2⇡it � 1
. (4.8)

There are three intersection points: near z = 0, at z = 1/2, and near z = 1. The first contribution
gives 1/(e2⇡is � 1) from the definition (4.5) times �1 arising from the topological intersection number
(4.3) for this relative orientation of the cycles. Similarly, the second factor is simply �1 due to the
relative orientation at the intersection point at z = 1/2. The final factor is �1/(e2⇡it � 1) times +1
due to the orientation.

Intersection numbers are independent of the deformation of the second twisted cycle [16]. For
instance, we can calculate it with one of the cycles deformed into a small upside-down sine curve to
obtain:

hC(1234),C(1234)i =
⇣
reg

���!
(0, 1)⌦ z

s(1� z)t
⌘
•
⇣���!
(0, 1)�sin ⌦ z

s(1� z)t
⌘

=
z=0

z=1

���!
(0, 1)�sin

reg
���!
(0, 1)

= � e
2⇡is

e2⇡is � 1
+ 1� e

2⇡it

e2⇡it � 1
. (4.9)

This time, the two end-point intersection numbers have picked up monodromy factors. Near z = 0
we have 1/(e2⇡is � 1) from the definition of (4.5) times the phase factor e

2⇡is times �1 due to the
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called the minimal blowup [2, 27]. It is known that real part of each chamber of fM0,n is isomorphic to
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where eC(�) and eC(�) are two, not necessarily distinct, twisted cycles defined as a blowup of (3.9). For
simplicity we will use the same notation for n = 4, even though in this case there is no need for a
blowup.

4.2 Four-point Examples

We start evaluation of intersection numbers with the simplest example of n = 4, which will
illustrate most of the core ideas at play. We first consider the case of the self-intersection number of
the twisted cycle C(1234). In order to avoid degeneracy on the interval (", 1� "), let us make a small
deformation of one of the cycles into a sine-like curve, on top of the regularization (4.5) for the other
cycle:

hC(1234),C(1234)i =
⇣
reg

���!
(0, 1)⌦ z

s(1� z)t
⌘
•
⇣���!
(0, 1)sin ⌦ z

s(1� z)t
⌘

=
z=0

z=1

���!
(0, 1)sin

reg
���!
(0, 1)

= � 1

e2⇡is � 1
� 1� 1

e2⇡it � 1
. (4.8)

There are three intersection points: near z = 0, at z = 1/2, and near z = 1. The first contribution
gives 1/(e2⇡is � 1) from the definition (4.5) times �1 arising from the topological intersection number
(4.3) for this relative orientation of the cycles. Similarly, the second factor is simply �1 due to the
relative orientation at the intersection point at z = 1/2. The final factor is �1/(e2⇡it � 1) times +1
due to the orientation.

Intersection numbers are independent of the deformation of the second twisted cycle [16]. For
instance, we can calculate it with one of the cycles deformed into a small upside-down sine curve to
obtain:

hC(1234),C(1234)i =
⇣
reg

���!
(0, 1)⌦ z

s(1� z)t
⌘
•
⇣���!
(0, 1)�sin ⌦ z

s(1� z)t
⌘

=
z=0

z=1

���!
(0, 1)�sin

reg
���!
(0, 1)

= � e
2⇡is

e2⇡is � 1
+ 1� e

2⇡it

e2⇡it � 1
. (4.9)

This time, the two end-point intersection numbers have picked up monodromy factors. Near z = 0
we have 1/(e2⇡is � 1) from the definition of (4.5) times the phase factor e

2⇡is times �1 due to the
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orientation. Similar reasoning gives the contribution from the neighbourhood of z = 1. The mid-
point intersection has changed orientation and hence give the contribution +1. Another choice is a
deformation into an arc curve:

hC(1234),C(1234)i =
⇣
reg

���!
(0, 1)⌦ z

s(1� z)t
⌘
•
⇣���!
(0, 1)arc ⌦ z

s(1� z)t
⌘

=
z=0 z=1

���!
(0, 1)arc

reg
���!
(0, 1)

= � 1

e2⇡is � 1
� e

2⇡it

e2⇡it � 1
, (4.10)

which receives contributions from only two intersection points, which we have analyzed before separately.
Finally, we have the deformation:

hC(1234),C(1234)i =
⇣
reg

���!
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s(1� z)t
⌘
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⇣���!
(0, 1)�arc ⌦ z

s(1� z)t
⌘

=
z=0 z=1

���!
(0, 1)�arc

reg
���!
(0, 1)

= � e
2⇡is

e2⇡is � 1
� 1

e2⇡it � 1
. (4.11)

It is straightforward to show that all the above calculations (4.8), (4.9), (4.10), and (4.11) give the
same answer:

hC(1234),C(1234)i = i

2

✓
1

tan⇡s
+

1

tan⇡t

◆
. (4.12)

Let us now turn to studying intersection numbers of two distinct twisted cycles. Intersecting
C(1234) with C(2134) one obtains:

hC(1234),C(2134)i =
⇣
reg

���!
(0, 1)⌦ z

s(1� z)t
⌘
•
⇣�����!
(�1, 0)⌦ (�z)s(1� z)t

⌘

=
z=0

reg
���!
(0, 1)

�����!
(�1, 0)

=
e
⇡is

e2⇡is � 1
=

i

2

✓
� 1

sin⇡s

◆
. (4.13)

This time, there is only one intersection point near z = 0 giving 1/(e2⇡is � 1) times the monodromy
factor e⇡is. The topological intersection number gives +1. In the remaining case of intersecting twisted
cycles C(1234) and C(1324) we have:

hC(1234),C(1324)i =
⇣
reg

���!
(0, 1)⌦ z

s(1� z)t
⌘
•
⇣����!
(1,1)⌦ (z)s(z � 1)t

⌘

=
z=1

reg
���!
(0, 1)

����!
(1,1)

=
e
⇡it

e2⇡it � 1
=

i

2

✓
� 1

sin⇡t

◆
, (4.14)

– 27 –

orientation. Similar reasoning gives the contribution from the neighbourhood of z = 1. The mid-
point intersection has changed orientation and hence give the contribution +1. Another choice is a
deformation into an arc curve:

hC(1234),C(1234)i =
⇣
reg

���!
(0, 1)⌦ z

s(1� z)t
⌘
•
⇣���!
(0, 1)arc ⌦ z

s(1� z)t
⌘

=
z=0 z=1

���!
(0, 1)arc

reg
���!
(0, 1)

= � 1

e2⇡is � 1
� e

2⇡it

e2⇡it � 1
, (4.10)

which receives contributions from only two intersection points, which we have analyzed before separately.
Finally, we have the deformation:

hC(1234),C(1234)i =
⇣
reg

���!
(0, 1)⌦ z

s(1� z)t
⌘
•
⇣���!
(0, 1)�arc ⌦ z

s(1� z)t
⌘

=
z=0 z=1

���!
(0, 1)�arc

reg
���!
(0, 1)

= � e
2⇡is

e2⇡is � 1
� 1

e2⇡it � 1
. (4.11)

It is straightforward to show that all the above calculations (4.8), (4.9), (4.10), and (4.11) give the
same answer:

hC(1234),C(1234)i = i

2

✓
1

tan⇡s
+

1

tan⇡t

◆
. (4.12)

Let us now turn to studying intersection numbers of two distinct twisted cycles. Intersecting
C(1234) with C(2134) one obtains:

hC(1234),C(2134)i =
⇣
reg

���!
(0, 1)⌦ z

s(1� z)t
⌘
•
⇣�����!
(�1, 0)⌦ (�z)s(1� z)t

⌘

=
z=0

reg
���!
(0, 1)

�����!
(�1, 0)

=
e
⇡is

e2⇡is � 1
=

i

2

✓
� 1

sin⇡s

◆
. (4.13)

This time, there is only one intersection point near z = 0 giving 1/(e2⇡is � 1) times the monodromy
factor e⇡is. The topological intersection number gives +1. In the remaining case of intersecting twisted
cycles C(1234) and C(1324) we have:

hC(1234),C(1324)i =
⇣
reg

���!
(0, 1)⌦ z

s(1� z)t
⌘
•
⇣����!
(1,1)⌦ (z)s(z � 1)t

⌘

=
z=1

reg
���!
(0, 1)

����!
(1,1)

=
e
⇡it

e2⇡it � 1
=

i

2

✓
� 1

sin⇡t

◆
, (4.14)

– 27 –

orientation. Similar reasoning gives the contribution from the neighbourhood of z = 1. The mid-
point intersection has changed orientation and hence give the contribution +1. Another choice is a
deformation into an arc curve:

hC(1234),C(1234)i =
⇣
reg

���!
(0, 1)⌦ z

s(1� z)t
⌘
•
⇣���!
(0, 1)arc ⌦ z

s(1� z)t
⌘

=
z=0 z=1

���!
(0, 1)arc

reg
���!
(0, 1)

= � 1

e2⇡is � 1
� e

2⇡it

e2⇡it � 1
, (4.10)

which receives contributions from only two intersection points, which we have analyzed before separately.
Finally, we have the deformation:

hC(1234),C(1234)i =
⇣
reg

���!
(0, 1)⌦ z

s(1� z)t
⌘
•
⇣���!
(0, 1)�arc ⌦ z

s(1� z)t
⌘

=
z=0 z=1

���!
(0, 1)�arc

reg
���!
(0, 1)

= � e
2⇡is

e2⇡is � 1
� 1

e2⇡it � 1
. (4.11)

It is straightforward to show that all the above calculations (4.8), (4.9), (4.10), and (4.11) give the
same answer:

hC(1234),C(1234)i = i

2

✓
1

tan⇡s
+

1

tan⇡t

◆
. (4.12)

Let us now turn to studying intersection numbers of two distinct twisted cycles. Intersecting
C(1234) with C(2134) one obtains:

hC(1234),C(2134)i =
⇣
reg

���!
(0, 1)⌦ z

s(1� z)t
⌘
•
⇣�����!
(�1, 0)⌦ (�z)s(1� z)t

⌘

=
z=0

reg
���!
(0, 1)

�����!
(�1, 0)

=
e
⇡is

e2⇡is � 1
=

i

2

✓
� 1

sin⇡s

◆
. (4.13)

This time, there is only one intersection point near z = 0 giving 1/(e2⇡is � 1) times the monodromy
factor e⇡is. The topological intersection number gives +1. In the remaining case of intersecting twisted
cycles C(1234) and C(1324) we have:

hC(1234),C(1324)i =
⇣
reg

���!
(0, 1)⌦ z

s(1� z)t
⌘
•
⇣����!
(1,1)⌦ (z)s(z � 1)t

⌘

=
z=1

reg
���!
(0, 1)

����!
(1,1)

=
e
⇡it

e2⇡it � 1
=

i

2

✓
� 1

sin⇡t

◆
, (4.14)

– 27 –

[pic: by Huynh (2017)]

Despite the fact that most of the literature on intersection numbers of twisted cycles has been
focused on studying the pairing with the dual homology defined with L_ = L�!, one can also apply
these ideas to the case complex conjugate case L_ = L! which is more relevant to physics. Hanamura
and Yoshida [84] considered an isomorphism L�!

⇠= L! which can be canonically defined if all ↵i are
real and su�ciently generic. Then, for two twisted cycles given by

C = � ⌦ u�(z) 2 H
lf
m
(X,L!) and C_ = �

_ ⌦ u�_(z) 2 H
lf
m
(X,L!)

the intersection number is defined as:

regC • C_ =
X

z2� \ �_

Intz(�, �
_)u�(z)u�_(z) / |u(z)|2,

which is analogous to (4.2). Indeed, when the exponents ↵i are real, both definitions agree with
each other. For this reason, for considerations of intersection numbers of twisted cycles it will not be
important to make distinction between the two cases L�! and L!, and hence we will denote twisted
cycles belonging to both twisted homologies with same symbols. We will also not distinguish between
C and C_, as they are given by the same definition (3.9).

Let us focus on the twisted cycles relevant to open string scattering amplitudes. Recall that the
multi-valued function defining the local system L! is given by the Koba–Nielsen factor:

u(z) =
Y

i<j

(zi � zj)
↵

0
sij .

Here, the Mandelstam invariants sij = ki · kj in the exponents are chosen in such a way that none of
the invariants sij... = (ki + kj + . . .)2/2 is an integer. In the following we will set ↵0 = 1 for clarity of
notation. The manifold X is the moduli space of genus-zero Riemann surfaces with n punctures, M0,n.
Twisted cycles C(�) on this space were defined in (3.9) with the standard loading operator SL, which
chooses the branch of the Koba–Nielsen factor for a given permutation � in a canonical way. Using
this definition, in the case of n = 4 we have:

C(1234) = {0 < z2 < 1}⌦ z
s12
2 (1� z2)

s23 =
���!
(0, 1)⌦ z

s(1� z)t,

where we denote the only manifold coordinate as z = z2 and the exponents with the usual notation
s = s12 and t = s23. In the case of n = 5 the basis has two elements:

C(12345) = {0 < z2 < z3 < 1}⌦ z
s12
2 (1� z2)

s24(z3 � z2)
s23z

s34
3 (1� z3)

s34 ,

C(13245) = {0 < z3 < z2 < 1}⌦ z
s12
2 (1� z2)

s24(z2 � z3)
s23z

s34
3 (1� z3)

s34 .

One can also define other bases of twisted cycles C(�). They have a straightforward definition analogous
to (3.9). For instance, in the next section we will make us of the four-point twisted cycles:

C(2134) =
�����!
(�1, 0)⌦ (�z)s(1� z)t and C(1324) =

����!
(1,1)⌦ z

s(z � 1)t.

Before evaluating intersection numbers let us give an explicit construction of the regularization map
(4.1) for twisted cycles C(�), as well as discuss how they are a↵ected by the blowup procedure [27].
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Intersection Numbers for Logarithmic n-forms
Matsumoto (1998), Mizera (2017)

3.3 Intersection numbers for m-log forms

Intersection numbers for multivariate logarithmic forms were considered in [6]. Alternative
formulas for a more direct calculations were later presented in [21]. In particular

h'L,'Ri =
X

(z⇤1 ,...,z
⇤
n)

det�1

2

64

@!1
@z1

. . . @!1
@zn... . . . ...

@!n
@z1

. . . @!n
@zn

3

75 b'L b'R

�����
(z1,...,zn)=(z⇤1 ,...z

⇤
n)

(3.67)

where the sum is extend over the critical points, namely the solutions of the system of
equations:

!i = 0, i = 1, . . . n. (3.68)

The intersection number h'L|'Ri introduced above obeys an important property, which is
relevant for the decomposition of Feynman integrals, namely the invariance under differential
forms redefinition within the same equivalence classes,

h'L|'Ri = h'0
L|'

0
Ri , (3.69)

where

'0
L = 'L +r!⇠L , (3.70)

'0
R = 'R +r�!⇠R . (3.71)

As observed in ref. [16], one can properly choose ⇠L and ⇠R, to build differential forms
'0
L and '0

R that contain only simple poles, hence simplifying the evaluation of the recursive
algorithm for the computation of multivariate intesection number, which can benefit of the
evaluation of intersection numbers for dlog forms at each step of the iteration.

We will use the invariance of the intersection number under redefinition of differential
forms within the same equivalence classes to propose a novel strategy for the decomposion
of Feynman integrals.

4 Feynman Integral Decomposition

As proposed in refs. [1–3, 15, 16], the use of multivariate intersection numbers yields a direct
decomposition of a given Feynman integral I in terms of an a priori chosen set of MIs Ji,
with i = 1, . . . , ⌫.
The decomposition given by eq. (2.13) is on the form

I =
⌫X

i=1

ciJi (4.1)

with the determination of the coefficients ci being the goal of this section. We identify three

possible strategies which can be adopted in order to achieve this task. They all employ
the master projection formula eq. (2.17), which is applied to differential forms constucted
differently in the the three cases. We name them the straight decomposition, the bottom-up
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ĥ
(2)
i = ê

(2)
i (i = 1, 2)

c1 is the same as found in Cut1,3,4,5

r�⌦(n)
~ 
(n) = ~'

(n)
R (2.89)

@znhei
(n�1)

| = ⌦(n)
ij hei

(n�1)
| (2.90)

r�⌦(n) 
(n)
imim�1

= ĥ
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Efficiently implemented also via Companion Matrix credit Salvatori
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Twisted Riemann Periods Relations (TRPR)

Riemann Twisted Period Relations

Completeness for forms

Completeness for contours

⌫ = number of independent forms (twisted cocycles)

⌫ = number of independent integration contours (twisted cycles)

(coming from the zeroes of B)

⌫ = number of independent master integrals

h'| =
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h'|eji (C
�1)ij hei| (2.50)
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Cij ⌘ hei|eji (2.52)

⌫X

i,j=1

|Cj ] (H
�1)ij [Ci| = Ih (2.53)

Hij ⌘ [Ci|Cj ] (2.54)
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TRPR for Gauss Hypergeometric Function
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φ] e Γ(P\  Ω\ logD))/ C ω, φj e Γ(P\  Ωι(\ogD))/ C (  ω ) , l < j < n  l ,

where <p; and φj are the images of φ ; by the natural projections from Γ(P ,
Ω (logZ))). Our first main theorem gives explicitly the bilinear form, which turns
out to be symmetric and will be called the intersection form:

'V+ l7

2πi

<<Pn Ψ~k> = 0 if I ;   A: I > 2 .

Our second main theorem states the relation between the three pairings: the
intersection form for twisted cohomologies, that for twisted homologies, and the
pairing of twisted homologies and twisted cohomologies, i.e. integrals. Let

be any bases of twisted cycles (the notation is slightly different from that in
[KYI]) and

ξf e Γ(P\  Ωι(logD))/ C ω, j = l , . . . , n  l ,

ηJelϊP1, ΩHlogDV/ C i ω), j= l,...,n~ 1,

be any bases of twisted cocycles; let Ik and Ich be the intersection matrices:

The intersection matrix 7Λ can be explicitly computed [KYI]; take for instance
bases γ* and δj ' = φ~ as follows: let us assume for simplicity that the x/ s are all
real and are arranged as x0 < xx < < xn, and u0 a branch of the multi valued
function u = H(t — x,) i defined on the lower half ί plane. We define special cy 
cles by

rt = <Pj> ?i+i) ® uo + ̂ prjSj®u0  Cj+i_1sj+1®u0,

ϊi = (Pjf QJ+ι) ® w^1   J . 1 S; ® Wo"1 +  ; t ! i 5 ; + 1 ®  u~\  Cj = exp 2τrzαy,
cj λ 6 ;+ l  1

where Sk is a positively oriented circle with center xk and with starting point pk

8 2 KOJI CHO AND KEIJI MATSUMOTO

θcφ =  Σ θkiηk
c.

k

The intersection numbers for twisted cycles are computed as follows:

f
δ~k a

= Σθajfηa + Vvha + Vvfa = Σθajf η~,
a Jδ~k a Jδ'k

a Jδ'k

that is

ih = 'βp .

The (/c, j) components θkj of Θ are computed as follows:

f C =  /  θcφ Λ?; =  / Σ θkiηk
c A ξa

= Σθkif(η
v
k+µk+Vvfk)Λξa

k J

that is

p+ =  hβ
Eliminating Θ from the two equalities above, we get the relation.

§4. Examples

EXAMPLE 1. Quadric relations for the G auss hypergeometric functions.
For

n = 3, xQ = xA = °°, xλ = 0, x2 = 1, x3 = 1/ x (0 < x < 1),

aλ = a, a2 = γ   a, a3 =   β, a0 = β   γ,

put

u = taa   tv~aa   xtr\
=  ί__dl dt_\  _ dt _ / _d[ dt_\  _   xdt

Ψι~\ t χι t   xj ~ til   t)' ψ3 ~ \ t   x3 t xj ~ 1  xV

Ti> h e H^U, Lv) and ft", γ3 ^ H^U, L), (see Figure), then we have
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Cho, Matsumoto (1995)
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P+ =
J uφx j uφΛ I \  uιφx \  u ι

I uφ3 I uφ3 \  ί u~ ιφ3 j u~ ι

_(d12/ d1d2 0 \  ./ l/α +  lΛr α)
\  0 d30/ d3dJ' ck πi\  0

By the help of the well known formulae

/  uφ1 = B(a, γ   a)F(a, β, γ\ x),

ΓuΨl=   (   ΐ)r~a'Bχι~rBiβ  7 + 1 ,  0 +  1)
J\ / τ.

the identity

P+tΓltP~  =  ί
Γ 1h Γ Ich*

leads quadratic identities for hypergeometric functions in [SY]: the (1,2) 
component yields the formula presented in Introduction

 α , 1  J 8 , 2  7 ; * )

7, i8+  1   7, 2   7 ; j? ) F ( 7  a , 7 ~ & r ; *) ,

and the (1, l) component yields

F (α , i8, γ;x)F(  a,   β,   7;*)   1

7 ( 7 +

EXAMPLE 2. Quadric relations for Lauricella's hypergeometric function.
Lauricella's hypergeometric function FD of m variable is defined by

where

z = (zv...,zm), β= ( 0 l t . . . , 0 J ;

the series admits the integral representation
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or qk see F igure.

P,

F igure

Then the intersection matrix for these special bases turns out to be

 dX2/ dxd2 1/ d, 0 —
c2/ d2 ~ d23/ d2d3 • • •

o

o
o

o
o

o

\
0
0

0
0 ••••  0 c* i/ d, ,  i   dn_ltn/ dn_xdn

where dj =  c ; — 1, dj fc =  c ;cΛ — 1. I t is easy to see th at

ldxd2...n d^d  ̂ dγclzd n̂ — dxc .̂n_xdn

1^3• »» ^ 1 2 ^ 3  Λ ^12^3^4 • « **' ^12^3 n~l^n

 d^n dud4...n d123d4...n — d123c4...n_1dn

dγdn dί2dn d123dn — d^_ydn

where cyA... =  c; cfc , dyA... =  cycA — 1. Let us arrange the integrals (periods)
as follows:

Here the integral I ξ+ (resp. I ry~) of a twisted cocycle f+ (resp. η~) over a

twisted cycle γ+ ^ HX{U9 L v) (resp. δ~ ^ HX(Uy D) is defined as follows: for a
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F(a, b; c; z) := 2F1(a, b; c; z)=
∞
∑

n=0

(a,n)(b,n)

(c, n)(1, n)
zn, (1.1)

where a, b, c ∈ C and c /∈ −N0 := {0,−1,−2, . . .}. In (1.1), (a,0) = 1 for a ̸= 0
and the rising factorial notation

(a,n) = a(a + 1) . . . (a + n − 1) = Γ (a + n)

Γ (a)
, n ! 1,

is used. It is important to note the symmetry propertyF(a, b; c; z) = F(b, a; c; z).
Moreover, F(a, b; c; z) is analytic in the cut plane C\{[1,∞)}, and, in particular,
it is analytic in the unit disc ∆ = {z ∈ C: |z| < 1}. By classical theory [5,17],
the behavior of the function at z = 1 depends on the parameters: if a + b < c
the function is bounded in the closed disk |z| < 1, whereas for a + b ! c the
function is unbounded. In the unbounded case, refined estimates for the behavior
of the function were recently given in [3]. Many classes of special functions are
particular or limiting cases of the hypergeometric function [1,5].
The motivation for this paper comes from the fact that elliptic integrals are

special cases of the hypergeometric function, a topic studied recently in [2,7,12].
The complete elliptic integrals K and E of the first and second kind, respectively,
are defined for r ∈ (0,1) by
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We also use the notation K′ and E ′, for their complements defined by K′(r) =
K(r ′) and E ′(r) = E(r ′), r2 + r ′2 = 1. One of the main properties of these in-
tegrals is the important identity due to Legendre to the effect that

EK′ + E ′K −KK′ = π

2
,

and generalizations of this identity were explored in [2,7,12].
Elliott [11] (see also [5, Theorem 3.2.8]) proved the following identity:
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where a, b, c ∈ C and c /∈ −N0 := {0,−1,−2, . . .}. In (1.1), (a,0) = 1 for a ̸= 0
and the rising factorial notation

(a,n) = a(a + 1) . . . (a + n − 1) = Γ (a + n)

Γ (a)
, n ! 1,

is used. It is important to note the symmetry propertyF(a, b; c; z) = F(b, a; c; z).
Moreover, F(a, b; c; z) is analytic in the cut plane C\{[1,∞)}, and, in particular,
it is analytic in the unit disc ∆ = {z ∈ C: |z| < 1}. By classical theory [5,17],
the behavior of the function at z = 1 depends on the parameters: if a + b < c
the function is bounded in the closed disk |z| < 1, whereas for a + b ! c the
function is unbounded. In the unbounded case, refined estimates for the behavior
of the function were recently given in [3]. Many classes of special functions are
particular or limiting cases of the hypergeometric function [1,5].
The motivation for this paper comes from the fact that elliptic integrals are

special cases of the hypergeometric function, a topic studied recently in [2,7,12].
The complete elliptic integrals K and E of the first and second kind, respectively,
are defined for r ∈ (0,1) by
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We also use the notation K′ and E ′, for their complements defined by K′(r) =
K(r ′) and E ′(r) = E(r ′), r2 + r ′2 = 1. One of the main properties of these in-
tegrals is the important identity due to Legendre to the effect that

EK′ + E ′K −KK′ = π

2
,

and generalizations of this identity were explored in [2,7,12].
Elliott [11] (see also [5, Theorem 3.2.8]) proved the following identity:
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the function is bounded in the closed disk |z| < 1, whereas for a + b ! c the
function is unbounded. In the unbounded case, refined estimates for the behavior
of the function were recently given in [3]. Many classes of special functions are
particular or limiting cases of the hypergeometric function [1,5].
The motivation for this paper comes from the fact that elliptic integrals are

special cases of the hypergeometric function, a topic studied recently in [2,7,12].
The complete elliptic integrals K and E of the first and second kind, respectively,
are defined for r ∈ (0,1) by

K(r) = π

2
F

(

1
2
,
1
2
;1; r2

)

=
π/2
∫

0

dφ
√

1− r2 sin2 φ

and

E(r) = π

2
F

(

−1
2
,
1
2
;1; r2

)

=
π/2
∫

0

√

1− r2 sin2 φ dφ.

We also use the notation K′ and E ′, for their complements defined by K′(r) =
K(r ′) and E ′(r) = E(r ′), r2 + r ′2 = 1. One of the main properties of these in-
tegrals is the important identity due to Legendre to the effect that
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and generalizations of this identity were explored in [2,7,12].
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is used. It is important to note the symmetry propertyF(a, b; c; z) = F(b, a; c; z).
Moreover, F(a, b; c; z) is analytic in the cut plane C\{[1,∞)}, and, in particular,
it is analytic in the unit disc ∆ = {z ∈ C: |z| < 1}. By classical theory [5,17],
the behavior of the function at z = 1 depends on the parameters: if a + b < c
the function is bounded in the closed disk |z| < 1, whereas for a + b ! c the
function is unbounded. In the unbounded case, refined estimates for the behavior
of the function were recently given in [3]. Many classes of special functions are
particular or limiting cases of the hypergeometric function [1,5].
The motivation for this paper comes from the fact that elliptic integrals are
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K(r ′) and E ′(r) = E(r ′), r2 + r ′2 = 1. One of the main properties of these in-
tegrals is the important identity due to Legendre to the effect that
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and the rising factorial notation

(a,n) = a(a + 1) . . . (a + n − 1) = Γ (a + n)

Γ (a)
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is used. It is important to note the symmetry propertyF(a, b; c; z) = F(b, a; c; z).
Moreover, F(a, b; c; z) is analytic in the cut plane C\{[1,∞)}, and, in particular,
it is analytic in the unit disc ∆ = {z ∈ C: |z| < 1}. By classical theory [5,17],
the behavior of the function at z = 1 depends on the parameters: if a + b < c
the function is bounded in the closed disk |z| < 1, whereas for a + b ! c the
function is unbounded. In the unbounded case, refined estimates for the behavior
of the function were recently given in [3]. Many classes of special functions are
particular or limiting cases of the hypergeometric function [1,5].
The motivation for this paper comes from the fact that elliptic integrals are

special cases of the hypergeometric function, a topic studied recently in [2,7,12].
The complete elliptic integrals K and E of the first and second kind, respectively,
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We also use the notation K′ and E ′, for their complements defined by K′(r) =
K(r ′) and E ′(r) = E(r ′), r2 + r ′2 = 1. One of the main properties of these in-
tegrals is the important identity due to Legendre to the effect that

EK′ + E ′K −KK′ = π

2
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and generalizations of this identity were explored in [2,7,12].
Elliott [11] (see also [5, Theorem 3.2.8]) proved the following identity:
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where a, b, c ∈ C and c /∈ −N0 := {0,−1,−2, . . .}. In (1.1), (a,0) = 1 for a ̸= 0
and the rising factorial notation

(a,n) = a(a + 1) . . . (a + n − 1) = Γ (a + n)

Γ (a)
, n ! 1,

is used. It is important to note the symmetry propertyF(a, b; c; z) = F(b, a; c; z).
Moreover, F(a, b; c; z) is analytic in the cut plane C\{[1,∞)}, and, in particular,
it is analytic in the unit disc ∆ = {z ∈ C: |z| < 1}. By classical theory [5,17],
the behavior of the function at z = 1 depends on the parameters: if a + b < c
the function is bounded in the closed disk |z| < 1, whereas for a + b ! c the
function is unbounded. In the unbounded case, refined estimates for the behavior
of the function were recently given in [3]. Many classes of special functions are
particular or limiting cases of the hypergeometric function [1,5].
The motivation for this paper comes from the fact that elliptic integrals are

special cases of the hypergeometric function, a topic studied recently in [2,7,12].
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We also use the notation K′ and E ′, for their complements defined by K′(r) =
K(r ′) and E ′(r) = E(r ′), r2 + r ′2 = 1. One of the main properties of these in-
tegrals is the important identity due to Legendre to the effect that

EK′ + E ′K −KK′ = π

2
,

and generalizations of this identity were explored in [2,7,12].
Elliott [11] (see also [5, Theorem 3.2.8]) proved the following identity:
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where a, b, c ∈ C and c /∈ −N0 := {0,−1,−2, . . .}. In (1.1), (a,0) = 1 for a ̸= 0
and the rising factorial notation

(a,n) = a(a + 1) . . . (a + n − 1) = Γ (a + n)

Γ (a)
, n ! 1,

is used. It is important to note the symmetry propertyF(a, b; c; z) = F(b, a; c; z).
Moreover, F(a, b; c; z) is analytic in the cut plane C\{[1,∞)}, and, in particular,
it is analytic in the unit disc ∆ = {z ∈ C: |z| < 1}. By classical theory [5,17],
the behavior of the function at z = 1 depends on the parameters: if a + b < c
the function is bounded in the closed disk |z| < 1, whereas for a + b ! c the
function is unbounded. In the unbounded case, refined estimates for the behavior
of the function were recently given in [3]. Many classes of special functions are
particular or limiting cases of the hypergeometric function [1,5].
The motivation for this paper comes from the fact that elliptic integrals are

special cases of the hypergeometric function, a topic studied recently in [2,7,12].
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We also use the notation K′ and E ′, for their complements defined by K′(r) =
K(r ′) and E ′(r) = E(r ′), r2 + r ′2 = 1. One of the main properties of these in-
tegrals is the important identity due to Legendre to the effect that

EK′ + E ′K −KK′ = π

2
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and generalizations of this identity were explored in [2,7,12].
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where a, b, c ∈ C and c /∈ −N0 := {0,−1,−2, . . .}. In (1.1), (a,0) = 1 for a ̸= 0
and the rising factorial notation
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, n ! 1,

is used. It is important to note the symmetry propertyF(a, b; c; z) = F(b, a; c; z).
Moreover, F(a, b; c; z) is analytic in the cut plane C\{[1,∞)}, and, in particular,
it is analytic in the unit disc ∆ = {z ∈ C: |z| < 1}. By classical theory [5,17],
the behavior of the function at z = 1 depends on the parameters: if a + b < c
the function is bounded in the closed disk |z| < 1, whereas for a + b ! c the
function is unbounded. In the unbounded case, refined estimates for the behavior
of the function were recently given in [3]. Many classes of special functions are
particular or limiting cases of the hypergeometric function [1,5].
The motivation for this paper comes from the fact that elliptic integrals are
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Moreover, F(a, b; c; z) is analytic in the cut plane C\{[1,∞)}, and, in particular,
it is analytic in the unit disc ∆ = {z ∈ C: |z| < 1}. By classical theory [5,17],
the behavior of the function at z = 1 depends on the parameters: if a + b < c
the function is bounded in the closed disk |z| < 1, whereas for a + b ! c the
function is unbounded. In the unbounded case, refined estimates for the behavior
of the function were recently given in [3]. Many classes of special functions are
particular or limiting cases of the hypergeometric function [1,5].
The motivation for this paper comes from the fact that elliptic integrals are
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K(r ′) and E ′(r) = E(r ′), r2 + r ′2 = 1. One of the main properties of these in-
tegrals is the important identity due to Legendre to the effect that
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and generalizations of this identity were explored in [2,7,12].
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where a, b, c ∈ C and c /∈ −N0 := {0,−1,−2, . . .}. In (1.1), (a,0) = 1 for a ̸= 0
and the rising factorial notation
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is used. It is important to note the symmetry propertyF(a, b; c; z) = F(b, a; c; z).
Moreover, F(a, b; c; z) is analytic in the cut plane C\{[1,∞)}, and, in particular,
it is analytic in the unit disc ∆ = {z ∈ C: |z| < 1}. By classical theory [5,17],
the behavior of the function at z = 1 depends on the parameters: if a + b < c
the function is bounded in the closed disk |z| < 1, whereas for a + b ! c the
function is unbounded. In the unbounded case, refined estimates for the behavior
of the function were recently given in [3]. Many classes of special functions are
particular or limiting cases of the hypergeometric function [1,5].
The motivation for this paper comes from the fact that elliptic integrals are
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We also use the notation K′ and E ′, for their complements defined by K′(r) =
K(r ′) and E ′(r) = E(r ′), r2 + r ′2 = 1. One of the main properties of these in-
tegrals is the important identity due to Legendre to the effect that
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(c, n)(1, n)
zn, (1.1)

where a, b, c ∈ C and c /∈ −N0 := {0,−1,−2, . . .}. In (1.1), (a,0) = 1 for a ̸= 0
and the rising factorial notation

(a,n) = a(a + 1) . . . (a + n − 1) = Γ (a + n)

Γ (a)
, n ! 1,

is used. It is important to note the symmetry propertyF(a, b; c; z) = F(b, a; c; z).
Moreover, F(a, b; c; z) is analytic in the cut plane C\{[1,∞)}, and, in particular,
it is analytic in the unit disc ∆ = {z ∈ C: |z| < 1}. By classical theory [5,17],
the behavior of the function at z = 1 depends on the parameters: if a + b < c
the function is bounded in the closed disk |z| < 1, whereas for a + b ! c the
function is unbounded. In the unbounded case, refined estimates for the behavior
of the function were recently given in [3]. Many classes of special functions are
particular or limiting cases of the hypergeometric function [1,5].
The motivation for this paper comes from the fact that elliptic integrals are

special cases of the hypergeometric function, a topic studied recently in [2,7,12].
The complete elliptic integrals K and E of the first and second kind, respectively,
are defined for r ∈ (0,1) by

K(r) = π

2
F

(

1
2
,
1
2
;1; r2

)

=
π/2
∫

0

dφ
√

1− r2 sin2 φ

and

E(r) = π

2
F

(

−1
2
,
1
2
;1; r2

)

=
π/2
∫

0

√

1− r2 sin2 φ dφ.

We also use the notation K′ and E ′, for their complements defined by K′(r) =
K(r ′) and E ′(r) = E(r ′), r2 + r ′2 = 1. One of the main properties of these in-
tegrals is the important identity due to Legendre to the effect that

EK′ + E ′K −KK′ = π

2
,

and generalizations of this identity were explored in [2,7,12].
Elliott [11] (see also [5, Theorem 3.2.8]) proved the following identity:

F
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Elliot’s Identity and Hypergeometric Functions

DERIVATION OF ELLIOTT’S IDENTITY FROM A
TWISTED PERIOD RELATION

KEIJI MATSUMOTO

1. Integral representations

Elliott’s identity is given in [BNPV] as

F (
1

2
+ λ,−1

2
− ν, 1 + λ+ µ; r)F (

1

2
− λ,

1

2
+ ν, 1 + µ+ ν; 1− r)

+F (
1

2
+ λ,

1

2
− ν, 1 + λ+ µ; r)F (−1

2
− λ,

1

2
+ ν, 1 + µ+ ν; 1− r)

−F (
1

2
+ λ,

1

2
− ν, 1 + λ+ µ; r)F (

1

2
− λ,

1

2
+ ν, 1 + µ+ ν; 1− r)

=
Γ (1 + λ+ µ)Γ (1 + µ+ ν)

Γ (λ+ µ+ ν + 3
2)Γ (µ+ 1

2)
. (1)

Note that

F (
1

2
+ λ,−1

2
− ν, 1 + λ+ µ; r)

=
Γ (λ+ µ+ 1)

Γ (λ+ 1
2)Γ (µ+ 1

2)

∫ 1

0

tλ−1/2(1− t)µ−1/2(1− rt)ν+1/2dt,

F (
1

2
+ λ,

1

2
− ν, 1 + λ+ µ; r)

=
Γ (λ+ µ+ 1)

Γ (λ+ 1
2)Γ (µ+ 1

2)

∫ 1

0

tλ−1/2(1− t)µ−1/2(1− rt)ν−1/2dt,

1
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− F

(

1
2

+ λ,
1
2

− ν;1+ λ + µ; r

)

F

(

1
2

− λ,
1
2

+ ν;1+ ν + µ;1− r

)

= Γ (1+ λ + µ)Γ (1+ ν + µ)

Γ
(

λ + µ + ν + 3
2
)

Γ
( 1
2 + µ

) , r ∈ (0,1).

Clearly, the choice λ = µ = ν = 0 gives the Legendre relation. In [2, Corol-
lary 3.13 (5)], a new generalization of the Legendre relation was obtained in the
form

L(a,1− a, c, r) = Γ 2(c)

Γ (c + a − 1)Γ (c − a + 1) , r ∈ (0,1), (1.2)

which was shown to be valid for a ∈ (0,1) and c > 0. Here

L(a, b, c, r) = u(r)v(1− r) + u(1− r)v(r) − v(r)v(1− r),

r ∈ (0,1), (1.3)
with a, b, c > 0, u(r) = F(a − 1, b; c; r) and v(r) = F(a, b; c; r). Unfortunately,
the generalization (1.2) does not include Elliott’s identity as a special case.
However, it should be mentioned that the relation (1.2) agrees with Elliott’s
identity at least for the case λ = ν = 1/2 − a and µ = c + a − 3/2. The aim
of this paper is to fill this gap by proving a general result which includes the result
(1.2) as well as the result of Elliott. Our main results are partly motivated by the
following conjecture from [2, Conjecture 3.16]:

Conjecture 1.1. For a, b ∈ (0,1), a + b ! 1 (" 1), L(a, b, c, r) is concave
(convex) as a function of r on (0,1).

Several properties of L(a, b, c, r) are discussed in [7,12]. Very recently, the
Elliott identity and some related results were discussed in [4]. Conjecture 1.1 does
not cover the Elliott relation in full form, and hence, it will be also of interest to
study the analog of this conjecture through a more general function that includes
the above mentioned result of Elliott. Because of this reason we introduce the
following function.

Definition 1.2. For a, b, c, d ∈ C, with c, d /∈ −N0, let u(z) = F(d − a − 1, d −
b;d; z), v1(z) = F(c − a, c − b; c; z), u1(z) = F(c − a − 1, c − b; c; z), v(z) =
F(d − a, d − b;d; z), and

S(a, b, c, d, z) = u1(z)v(1− z) + u(1− z)v1(z) − v1(z)v(1− z),

z ∈ ∆\{0}. (1.4)

Unless otherwise stated, throughout this paper S(z) denotes the function S(a,
b, c, d, z) defined by (1.4). Further, we call S the Elliott function (see Corol-
lary 1.8). Clearly,

S(a, b, c, c, z) = L(c − a, c − b, c, z)
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F (
1

2
− λ,

1

2
+ ν, 1 + µ+ ν; 1− r)

=
Γ (µ+ν+1)

Γ (−λ+ 1
2)Γ (λ+µ+ν+ 1

2)

∫ 1

0

s−λ−1/2(1−s)λ+µ+ν−1/2(1−(1−r)s)−ν−1/2ds,

=
Γ (µ+ν+1)

Γ (−λ+ 1
2)Γ (λ+µ+ν+ 1

2)

∫ 0

−∞
(−t)−λ−1/2(1−t)−µ−1/2(1−rt)−ν−1/2dt,

F (−1

2
− λ,

1

2
+ ν, 1 + µ+ ν; 1− r)

=
Γ (µ+ν+1)

Γ (−λ− 1
2)Γ (λ+µ+ν+ 3

2)

∫ 1

0

s−λ−3/2(1−s)λ+µ+ν+1/2(1−(1−r)s)−ν−1/2ds,

=
Γ (µ+ ν + 1)

Γ (−λ− 1
2)Γ (λ+µ+ν+ 3

2)

∫ 0

−∞
(−t)−λ−3/2(1−t)−µ−1/2(1−rt)−ν−1/2dt,

where a variable change s = t/(t− 1) is used.

2. Setting of a local system

We set

u(t) = t1/2+λ(1− t)−1/2+µ(1− rt)1/2+ν ,

ϕ1 =
dt

t
, ϕ2 =

dt

t(1− rt)
=
(1
t
− 1

t− 1/r

)
dt,

ψ1 =
dt

1− t
=

−dt

t− 1
, ψ2 =

dt

t(1− t)
=
(1
t
− 1

t− 1

)
dt.

Then we have

1/u(t) = t−1/2−λ(1− t)1/2−µ(1− rt)−1/2−ν ,

and

F (
1

2
+ λ,−1

2
− ν, 1 + λ+ µ; r) =

Γ (λ+ µ+ 1)

Γ (λ+ 1
2)Γ (µ+ 1

2)

∫ 1

0

u(t)ϕ1,

F (
1

2
+ λ,

1

2
− ν, 1 + λ+ µ; r) =

Γ (λ+ µ+ 1)

Γ (λ+ 1
2)Γ (µ+ 1

2)

∫ 1

0
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and we have

tH−1
c =

1

2π
√
−1

(
1
2 + λ+ µ+ ν 0

−(12 + λ+ µ+ ν) 1
2 + λ

)
.

We take a basis of twisted homology group for u(t) and that for
1/u(t) by extending γ = (0, 1)⊗u(t) and δ = (−∞, 0)⊗1/u(t), respec-

tively. The intersection number of these twisted cycle is
1

−e2π
√
−1λ − 1

by [M, Theorem 3]. We use
tΠ−ωH

−1
c Πω = tHh.

in [M, Corollary 1]. Consider the (1, 1)-entry of the transpose of this
identity:

tΠω
tH−1

c Π−ω = Hh.

Then it yields

(∫ 1

0

u(t)ϕ1,

∫ 1

0

u(t)ϕ2

)
tH−1

c

⎛

⎜⎝

∫ 0

−∞
1

u(t)
ψ1

∫ 0

−∞
1

u(t)
ψ2

⎞

⎟⎠ =
−1

e2π
√
−1λ + 1

. (4)

3. Transformation of a twisted period relation into
Elliott’s identity

Rewrite the integrals in the equality (4) in terms of hypergeometric
series by (2) and (3). Then its exp and Gamma factors reduce to

Γ (λ+ 1
2)Γ (µ+ 1

2)

Γ (λ+ µ+ 1)
·
Γ (−λ+ 1

2)Γ (λ+ µ+ ν + 3
2)√

−1eπ
√
−1λΓ (µ+ ν + 1)

=
Γ (λ+ 1

2)Γ (1− (λ+ 1
2))√

−1eπ
√
−1λ

·
Γ (λ+ µ+ ν + 3

2)Γ (µ+ 1
2)

Γ (λ+ µ+ 1)Γ (µ+ ν + 1)

=
π

sin(π(λ+ 1
2))

· 1√
−1eπ

√
−1λ

·
Γ (λ+ µ+ ν + 3

2)Γ (µ+ 1
2)

Γ (λ+ µ+ 1)Γ (µ+ ν + 1)

=
−2π

√
−1

e2π
√
−1λ + 1

·
Γ (λ+ µ+ ν + 3

2)Γ (µ+ 1
2)

Γ (λ+ µ+ 1)Γ (µ+ ν + 1)
,

the product of tH−1
c and the 2× 2-matrix in (3) reduces to

1

2π
√
−1

(
1
2+λ+µ+ν 0

−(12+λ+µ+ν) 1
2+λ

)( 1
1/2+λ+µ+ν 0

0 1
1/2+λ

)

=
1

2π
√
−1

(
1 0
−1 1

)
.
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Hence the equality (4) is transformed into
(
F (

1

2
+ λ,−1

2
− ν, 1 + λ+ µ; r), F (

1

2
+ λ,

1

2
− ν, 1 + λ+ µ; r)

)

·
(

1 0
−1 1

)
·
(

F (12 − λ, 12 + ν, 1 + µ+ ν; 1− r)
F (−1

2 − λ, 12 + ν, 1 + µ+ ν; 1− r)

)

=
Γ (λ+ µ+ 1)Γ (µ+ ν + 1)

Γ (λ+ µ+ ν + 3
2)Γ (µ+ 1

2)
,

which is equivalent to Elliott’s identity (1).
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Hence the equality (4) is transformed into
(
F (

1

2
+ λ,−1

2
− ν, 1 + λ+ µ; r), F (

1

2
+ λ,

1

2
− ν, 1 + λ+ µ; r)

)

·
(

1 0
−1 1

)
·
(

F (12 − λ, 12 + ν, 1 + µ+ ν; 1− r)
F (−1

2 − λ, 12 + ν, 1 + µ+ ν; 1− r)

)

=
Γ (λ+ µ+ 1)Γ (µ+ ν + 1)

Γ (λ+ µ+ ν + 3
2)Γ (µ+ 1

2)
,

which is equivalent to Elliott’s identity (1).
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4 KEIJI MATSUMOTO

and we have

tH−1
c =

1

2π
√
−1

(
1
2 + λ+ µ+ ν 0

−(12 + λ+ µ+ ν) 1
2 + λ

)
.

We take a basis of twisted homology group for u(t) and that for
1/u(t) by extending γ = (0, 1)⊗u(t) and δ = (−∞, 0)⊗1/u(t), respec-

tively. The intersection number of these twisted cycle is
1

−e2π
√
−1λ − 1

by [M, Theorem 3]. We use
tΠ−ωH

−1
c Πω = tHh.

in [M, Corollary 1]. Consider the (1, 1)-entry of the transpose of this
identity:

tΠω
tH−1

c Π−ω = Hh.

Then it yields

(∫ 1

0

u(t)ϕ1,

∫ 1

0

u(t)ϕ2

)
tH−1

c

⎛

⎜⎝

∫ 0

−∞
1

u(t)
ψ1

∫ 0

−∞
1

u(t)
ψ2

⎞

⎟⎠ =
−1

e2π
√
−1λ + 1

. (4)

3. Transformation of a twisted period relation into
Elliott’s identity

Rewrite the integrals in the equality (4) in terms of hypergeometric
series by (2) and (3). Then its exp and Gamma factors reduce to

Γ (λ+ 1
2)Γ (µ+ 1

2)

Γ (λ+ µ+ 1)
·
Γ (−λ+ 1

2)Γ (λ+ µ+ ν + 3
2)√

−1eπ
√
−1λΓ (µ+ ν + 1)

=
Γ (λ+ 1

2)Γ (1− (λ+ 1
2))√

−1eπ
√
−1λ

·
Γ (λ+ µ+ ν + 3

2)Γ (µ+ 1
2)

Γ (λ+ µ+ 1)Γ (µ+ ν + 1)

=
π

sin(π(λ+ 1
2))

· 1√
−1eπ

√
−1λ

·
Γ (λ+ µ+ ν + 3

2)Γ (µ+ 1
2)

Γ (λ+ µ+ 1)Γ (µ+ ν + 1)

=
−2π

√
−1

e2π
√
−1λ + 1

·
Γ (λ+ µ+ ν + 3

2)Γ (µ+ 1
2)

Γ (λ+ µ+ 1)Γ (µ+ ν + 1)
,

the product of tH−1
c and the 2× 2-matrix in (3) reduces to

1

2π
√
−1

(
1
2+λ+µ+ν 0

−(12+λ+µ+ν) 1
2+λ

)( 1
1/2+λ+µ+ν 0

0 1
1/2+λ

)

=
1

2π
√
−1

(
1 0
−1 1

)
.
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Proof

u(t) = t1/2+λ(1− t)−1/2+µ(1− rt)1/2+ν ,

ϕ1 =
dt

t
, ϕ2 =

dt

t(1− rt)
=
(1
t
− 1

t− 1/r

)
dt,

ψ1 =
dt

1− t
=

−dt

t− 1
, ψ2 =

dt

t(1− t)
=
(1
t
− 1

t− 1

)
dt.

tΠω
tH−1

c Π−ω = Hh.

(∫ 1

0

u(t)ϕ1,

∫ 1

0

u(t)ϕ2

)
tH−1

c

⎛

⎜⎝

∫ 0

−∞
1

u(t)
ψ1

∫ 0

−∞
1

u(t)
ψ2

⎞

⎟⎠ =
−1

e2π
√
−1λ + 1

.

(
F (

1

2
+ λ,−1

2
− ν, 1 + λ+ µ; r), F (

1

2
+ λ,

1

2
− ν, 1 + λ+ µ; r)

)

( ) (
1 1

)

(

2
−
2
−

2 2
−

·
(

1 0
−1 1

)
·
(

F (12 − λ, 12 + ν, 1 + µ+ ν; 1− r)
F (−1

2 − λ, 12 + ν, 1 + µ+ ν; 1− r)

)

) by extending γ = (0, 1)⊗u(t) and δ = (−∞, 0)⊗1/u(t), respec-
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QUADRATIC RELATIONS BETWEEN BESSEL MOMENTS 3

Besides, we shall prove that the dual of the Betti realization of Mk is isomorphic to the middle
twisted homology of Symk Kl2, which is defined as the image

Hmid
1 (Gm, Sym

k Kl2) = im
⇥
Hrd

1 (Gm, Sym
k Kl2) �! Hmod

1 (Gm, Sym
k Kl2)

⇤

of rapid decay homology under the natural map to moderate growth homology. Elements of these
homology groups are represented by linear combinations of twisted chains c⌦ e, where c is a path
and e is a horizontal section of Symk Kl2 that decays rapidly (resp. has moderate growth) on a
neighborhood of c. These conditions ensure that de Rham (resp. compactly supported de Rham)
cohomology classes can be integrated along them, thus giving rise to a period pairing

Pmid
k : Hmid

1 (Gm, Sym
k Kl2)⌦H1

dR,mid(Gm, Sym
k Kl2) �! C.

This middle homology comes with a natural Q-structure and, likewise to middle de Rham cohomol-
ogy, a perfect intersection pairing Bmid

k realizing (1.3). In Section 4, by exploring the asymptotic
behaviors of products of modified Bessel functions, we exhibit rapid decay homology classes ↵i

for 0 6 i 6 k0 whose images in middle homology are non-zero for i > 1.
Relying on the general results from the companion paper [9], in particular the compatibility

of the Betti and de Rham intersection pairings with the period pairing, we prove the following
theorem. For simplicity, we only state it here when k is not a multiple of 4, postponing the full
statements to Theorem 3.24, Proposition 4.6, Theorem 4.7, Corollary 5.7, and Theorem 5.3.

Theorem 1.4. Assume k is not a multiple of 4.

(1) With respect to the basis {!i}16i6k0 , the matrix of the de Rham intersection pairing Smid
k

is a lower-right triangular matrix with (i, j) anti-diagonal entries

8
>><

>>:

(�2)k
0 k0!

k!!
if k is odd,

(�1)k
0+1

2k0(j � i)
· (k � 1)!!

(k0 + 1)!
if k is even.

(2) The middle homology classes {↵i}16i6k0 form a basis and the matrix of the Betti inter-

section pairing Bmid
k is given by

Bmid
k =

✓
(�1)k�i (k � i)!(k � j)!

k!

Bk�i�j+1

(k � i� j + 1)!

◆

16i,j6k0
,

where Bn denotes the n-th Bernoulli number.

(3) With respect to the bases {↵i}16i6k0 and {!j}16j6k0 , the matrix of the period pairing Pmid
k

consists of the Bessel moments

Pmid
k =

✓
(�1)k�i 2k+1�2j(⇡i)i

Z 1

0
I0(t)

iK0(t)
k�it2j�1 dt

◆

16i,j6k0
.

(4) The following quadratic relations hold:

Pmid
k · (Smid

k )�1 · tPmid
k = (�2⇡i)k+1 Bmid

k .

Quadratic relations of the shape PBR
k · DBR

k · tPBR
k = BBR

k were conjectured by Broadhurst and
Roberts in [5]. As we explain in Section 5.c, their matrices PBR

k and BBR
k coincide with ours up to

different normalizations, but we were unfortunately unable to prove that, again up to normaliza-
tion, the inverse of Smid

k satisfies the recursive formulas defining their matrix DBR
k . Nevertheless,

we checked numerically that both matrices agree for k 6 22, which is the limit for reasonable
computation time with Maple.

Grothendieck’s period conjecture predicts that the transcendence degree of the field of periods
of Mk agrees with the dimension of its motivic Galois group. Since the Betti intersection pairing
is motivic, this is a subgroup of the general orthogonal group GOk0 if k is odd and of the general
symplectic group GSpk0 (resp. GSpk0�1) if k is even and not a multiple of 4 (resp. if k is a multiple

Twisted Riemann Period Relation

(

−

) (

− −

=
Γ (λ+ µ+ 1)Γ (µ+ ν + 1)

Γ (λ+ µ+ ν + 3
2)Γ (µ+ 1

2)
,

String-Theory Amplitudes: KLT relations = TRPR Mizera (2016/17)

Section 1

Introduction

Recent years have seen a vast improvement in our understanding of quantum field theories through
the study of scattering amplitudes [3]. Such advancements were often made possible by considering a
generalization of ordinary field theories into string theories. The main advantage of this approach is
that strings—as extended objects—provide a way of smoothing out interactions between the scattering
states. More precisely, the moduli space of a string worldsheet continuously connects its di↵erent
factorization channels. As a result, a sum over discrete objects—such as Feynman [4] or on-shell [5]
diagrams—in field theory is replaced by an integral over a continuous worldsheet in string theory. In
the infinite tension limit, where strings become point-like, this integral localizes to disconnected corners
of the moduli space, which give rise to the field theory amplitudes. In this way, thinking of field theory
amplitudes as a limit of the string theory ones provides a way of unifying all factorization channels
under a single object.

The prime example of usefulness of string theory in the study of field theory amplitudes are the
Kawai–Lewellen–Tye (KLT) relations discovered in 1985 [6]. They give a way of writing the amplitudes
for scattering of closed strings entirely in terms of a quadratic combination of open string amplitudes.
In the field theory limit, where closed strings reduce to gravitons—particle excitations of General
Relativity—and open strings reduce to gluons—excitations of the Yang–Mills theory—KLT relations
give a connection between graviton and gluon scattering amplitudes. Such a relationship not only hints
at a fundamental interplay between the two types of theories, but also provides enormous simplifications
for practical calculations, both in string and field theory.

KLT relations have been most thoroughly studied in the field theory limit. In its modern form
found by Cachazo, He, and Yuan (CHY) they read [7]:

AGR =
X

�,�

AYM(�) m�1(�|�) AYM(�). (1.1)

Here, AGR is an n-point graviton amplitude, while AYM(�) is an n-point gluon partial amplitude with
ordering �. The sum proceeds over two sets of (n� 3)! permutations � and � forming a basis for the
Yang–Mills amplitudes. The object m(�|�) is a double-partial amplitude of a bi-adjoint scalar theory
[7, 8]. It is convenient to think of the relation (1.1) as a matrix product of a transposed vector, inverse
of a matrix, and another vector, where rows and columns are labelled by permutations.

It was not always clear that coe�cients of the KLT expansion can be written in the form (1.1) as
the inverse of a matrix. In their original work, Kawai, Lewellen, and Tye used contour deformation
arguments to arrive at these coe�cients as coming from monodromy factors around vertex operators on
the boundary of a worldsheet [6]. They evaluated explicit form of the quadratic relations for low-point
examples. A closed-form expression for the KLT relations to arbitrary number of particles in field
theory was later given in Appendix A of [9] by Bern, Dixon, Perelstein, and Rozowsky. Properties of
this expansion were systematically studied and proven in a series of papers [10–13] by Bjerrum-Bohr,
Damgaard, Feng, Søndergaard, and Vanhove, who also generalized the allowed bases of permutations
to a larger set. They introduced the matrix S[�|�] called a KLT kernel, which allows to write the KLT
relations as a matrix product. Finally, Cachazo, He, and Yuan recognized [7] that the KLT kernel can
be understood as the inverse matrix of bi-adjoint scalar amplitudes, i.e., S[�|�] = m

�1(�|�), ultimately
leading to the form given in (1.1). This also allowed to construct the kernel from the most general sets
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of permutations labelling the columns and rows of m(�|�), so that coe�cients of the KLT expansion
are not necessarily polynomials in the kinematic invariants.

At this point one could ask: Where do KLT relations come from? It turns out that a fruitful
path to consider is to go back to the string theory case, where these relations were first conceived. It
was proposed by the author [1] that the full string theory KLT relations can be rewritten in a form
analogous to (1.1) as follows:

Aclosed =
X

�,�

Aopen(�) m�1
↵0 (�|�) Aopen(�). (1.2)

Here, Aclosed and Aopen(�) are the n-point closed and open string amplitudes respectively. The role
of the string theory KLT kernel is played by the inverse of a matrix m↵0(�|�), which is constructed
out of the bi-adjoint scalar amplitudes with ↵

0 corrections. Recall that ↵
0 is a parameter inversely

proportional to the string tension, such that ↵
0 ! 0 corresponds to the field theory limit. In this

way, (1.2) is a direct analogue of (1.1), where every piece of the puzzle receives string corrections. By
evaluating explicit examples of m↵0(�|�), which from now on we will refer to as the inverse KLT kernel,
we found that they have a surprisingly simple structure, giving rise to compact expressions in terms of
trigonometric functions. Moreover, they can be calculated using Feynman-like diagrammatic rules [1],
hinting at an underlying combinatorial underpinnings. In this work we show that string theory KLT
relations in the form (1.2) are in fact a result of a deep connection between string theory amplitudes,
algebraic topology, and combinatorics.

Practically at the same time as the initial work on the KLT relations, on the other side of the
globe, mathematicians Aomoto, Cho, Kita, Matsumoto, Mimachi, Yoshida, and collaborators were
developing a seemingly unrelated theory of hypergeometric functions [14, 15]. It eventually led to the
formulation of twisted de Rham theory, which is a generalization of the conventional de Rham theory
to integrals of multi-valued functions [14]. Let us first intuitively explain its key ingredients, leaving
precise definitions for later sections. A twisted homology group Hm(X,L!) on some manifold X is a
space of twisted cycles, which are regions of X together with an additional information about branches
of a multi-valued function. Similarly, a twisted cohomology group H

m(X,r!) is a space of twisted
cocycles, which are di↵erential forms on X satisfying certain conditions. A pairing between a twisted
cycle and a cocycle is then simply an integral of a di↵erential form over a given region of X which is
sensitive to the branch structure of the integrand. Twist measures multi-valuedness of the integrand.

One can also define a natural set of a dual twisted homology Hm(X,L_
!
) and a dual twisted

cohomology H
m(X,r_

!
). For the purpose of this work, the duality is roughly speaking given by

complex conjugation. One can define a pairing between these two dual spaces too, giving rise to
another integral of a multi-valued function. Having defined two di↵erent pairs of twisted homologies
and cohomologies, we would like to calculate invariants between them as well. As it turns out, it is
possible to pair two twisted cycles belong to a twisted homology and its dual. The resulting object is
called an intersection number of twisted cycles [16–20]. It is computed from the information of how
these cycles intersect one another in X, as well as their associated branch structure. Similarly, one can
also define an intersection number of twisted cocycles [21]. What is more, in 1994 Cho and Matsumoto
found identities—known as the twisted period relations—between pairings computed from di↵erent
twisted homologies and cohomologies described above [21].

In this work we show that Kawai–Lewellen–Tye relations are a consequence of twisted period
relations. In order to do so, we first formulate string theory tree-level amplitudes in the language of
twisted de Rham theory. Open string partial amplitudes Aopen(�) are given as pairings between twisted
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