in collaboration with **Dario Kermanschah [**[2407.18051](https://arxiv.org/abs/2407.18051)**]**

Matilde Vicini **ETH**zürich

Loop the Loop 14th November 2024

Numerical Integration of the N_f Virtual Corrections to Triboson Production at NNLO

Loop the Loop Matilde Vicini (ETH Zurich) 14th November 2024

 High multiplicity in the external legs, many kinematical scales

 V_{2}

Why numerical methods?

 $q\bar{q} \rightarrow V_1V_2V_3$

The analytical computation of the two-loop integrals is challenging in

Analytic integration methods may struggle.

3 external massive vector bosons

In this talk…

We tackled the simplest 2L (gauge invariant) contribution at the level of the cross section

$$
\sigma_{\text{virt}}^{(2,N_f)} \sim \int d\Phi_3 \frac{1}{F} 2 \operatorname{Re} \left[\sum_h \left(\begin{array}{c} \frac{1}{\Phi} \\ \frac{1}{\Phi} \end{array} \right) \right]
$$

3 external massive vector boson

To integrate numerically, we needed to remove:

infrared (IR) singularities

ultraviolet (UV) singularities

threshold singularities

Loop the Loop Matilde Vicini (ETH Zurich) 14th November 2024 4

General Framework

General Framework

Loop the Loop **Matilde Vicini (ETH Zurich)** 14th November 2024

remove singularities

The IR form-factor counterterm expresses at the integrand level the integrated Catani-Seymour factorisation of IR divergences: $M^{(1)} - I^{(1)}M^{(0)} = \text{finite}$

The IR counterterm

$$
+ \cdots \left(\frac{k}{k}\right)
$$

\n
$$
= -ig_s^2 C_F \frac{\bar{v}(p_2)\gamma^{\mu}(k - p_2) \left[\widetilde{\mathcal{M}}^{(0)}\right] (p_1 + k)\gamma_{\mu} u}{k^2 (k + p_1)^2 (k - p_2)^2}
$$

$$
-ig_s^2C_F\frac{\bar{v}(p_2)\gamma^{\mu}\rlap{\,/}k\left[\widetilde{\mathcal{M}}^{(0)}\right]\rlap{\,/}k\gamma_{\mu}u(p_1)}{(\kappa^2-M_{\mathrm{UV}}^2)^3}
$$

Loop the Loop **Matilde Vicini (ETH Zurich)** 14th November 2024

To get rid of UV divergences at the local level, we also introduce UV counterterms, one for each UV singular diagram, e.g.:

[2008.12293, Anastasiou, Haindl, Sterman, Yang, Zeng]

Loop the Loop Matilde Vicini (ETH Zurich) 14th November 2024

7

First, we subtract the local counterterm represented by the difference of the tensor reduced integrand in l and the original integrand, to get

$$
\lim_{k \to \infty} \frac{1}{k} \sum_{k=1}^{\infty} \frac{1}{k^2} \left(1 + \frac{1}{k^2} \right)^{k} = \mathcal{M}^{(1)}(k) \frac{1}{l^2(l+k)^2}
$$

Now $\mathscr{M}^{(2,N_f)}$ has same IR divergences as $\mathscr{M}^{(1)}$.

[2008.12293, Anastasiou, Haindl, Sterman, Yang, Zeng]

Alternative integrand for $\mathscr{M}^{(2,N_f)}$

To integrate $\mathscr{M}_{\text{finite}}$ numerically in D=4 i**n the physical region** we need to extract the discontinuities arising from threshold singularities.

Subtracted amplitude in D=4

$$
\frac{1}{(2-M_{UV}^2)^2} \int \mathcal{M}_{\text{finite}}^{(1)}(k)
$$

Numerical integration in D=4

Several possibilities exist in the literature:

[0004013, Binoth, Heinrich]

[0703282, Anastasiou, Beerli, Daleo]

[0807.4129, Smirnov, Tentyukov]

[0703273, Lazopoulos, Melnikov, Petriello]

[1011.5493, Carter, Heinrich]

[1703.09692, Borowka, Heinrich, Jahn, Jones, Kerner, Schlenk,..]

[2302.08955, Borinsky, Munch, Tellander]

Feynman parameters

…

Loop the Loop Matilde Vicini (ETH Zurich) 14th November 2024 9

Loop momentum space

[9804454, Soper]

…

[0812.3686, Gong, Nagy, Soper]

[1010.4187, Becker, Reuschle, Weinzierl]

[1111.1733, Becker, Goetz, Reuschle, Schwan, Weinzierl]

[1211.0509, Becker, Weinzierl]

[1510.00187, Buchta, Chachamis, Draggiotis, Rodrigo]

[0912.3495, Kilian, Kleinschmidt]

[1912.09291, Capatti, Hirschi, Kermanschah, Pelloni, Ruijl]

[2110.06869, Kermanschah]

[0912.3495, Kilian, Kleinschmidt] [[2407.18051](https://arxiv.org/abs/2407.18051), Kermanschah, MV]

Expose threshold **singularities**

Regulate threshold **singularities**

Local threshold subtraction has several advantages with respect to numerical contour deformation including

Numerical integration in D=4 Threshold subtraction

To remove threshold singularities in momentum space: [2110.06869, Kermanschah]

No need for extra parameters that need to be fine-tuned

Flatter integrand, better numerical convergence

Loop the Loop Matilde Vicini (ETH Zurich) 14th November 2024 10

Threshold singularities in loop momentum space

11

To expose all the threshold singularities in loop momentum space:

[0804.3170, Catani, Gleisberg, Krauss, Rodrigo, Winter] [2009.05509, Capatti, Hirschi, Kermanschah, Pelloni, Ruijl] [1906.06138, Capatti, Hirschi, Kermanschah, Ruijl] [1904.08389, Aguilera-Verdugo, Driencourt-Mangin, Plenter, Ramírez-Uribe, Rodrigo, Sborlini et al.,]

$$
\int dk^4 \mathcal{M}_{\text{finite}}(k) = \int d^3 \vec{k} f^{3d} \left(\mathcal{M}_{\text{finite}}(k) \right) \sim \int d^3 \vec{k} \left\{ \frac{1}{E_1 + E_3 - p_1^0 - p_2^0} \frac{1}{E_0 + E_1 - p_1^0} \cdots + \cdots \right\}
$$

\n
$$
\int dk^0
$$
 via residue
\ntheorem
\nLoop tree duality (LTD)

3d representation of the integrand

… [2211.09653, Capatti]

Loop the Loop **Matilde Vicini (ETH Zurich)** 14th November 2024

Cross-free-family representation (CFF)

+
$$
E_3 - p_1^0 - p_2^0 = 0
$$

for some $\vec{k} = \vec{k}^*$

$$
(p_2)^2 > 0, (p_1^0 + p_2^0) >
$$

$$
\int d^3\vec{k} \, f^{3\text{d}} \left(\mathcal{M}(k) \right) \sim \int d^3\vec{k} \left\{ \frac{1}{E_1 + E_3 - p_1^0 - p_2^0} \frac{1}{E_0 + E_1 - p_1^0} \cdots + \cdots \right\}
$$

Setting each denominator = 0 identifies a bounded region in k space, e.g.

 E_1

if $(p_1 + p_2)$

Loop the Loop **Matilde Vicini (ETH Zurich)** 14th November 2024

 $\overline{0}$

Threshold singularities in loop momentum space

[2110.06869, Kermanschah]

Numerical threshold subtraction

14

$$
\int d^3\vec{k} f^{3d}(\mathcal{M}(k)) = \int d^3\vec{k} \left\{ f^{3d}(\mathcal{M}(k)) - \frac{\text{Res}_{\vec{k} = \vec{k}^*} [f^{3d}(\mathcal{M})]}{|\vec{k}| - k^* \pm i\varepsilon} \chi(\vec{k}, \vec{k}^*) \right\} + \int CT_*,
$$

to find $\int CT_*$, use Sokhotski–Plemelj theorem lim $\epsilon \rightarrow 0$ 1 $x - a \pm i\epsilon$ $= PV$ 1 $\frac{1}{x-a} \mp i\pi\delta(x-a) \implies \int CT_* = \mp i\pi \int d^2\hat{k}$

Loop the Loop Matilde Vicini (ETH Zurich) 14th November 2024

$$
CT_* = \mp i\pi \int d^2\hat{k} \text{ Res}_*(\hat{k})
$$

for smart choice of *χ*

 $\left\{\begin{array}{c} \star \end{array}\right\} \leftarrow \int CT_*, \qquad \quad \chi: \text{suppression function when } |\vec{k}| \to \infty.$

$$
E_1 + E_3 - p_1^0 - p_2^0 = 0
$$

for some $\vec{k} = \vec{k}^*$
if $(p_1 + p_2)^2 > 0$, $(p_1^0 + p_2^0) > 0$

around the threshold singularity at $k=k^*$ the integrand behaves as: $\mathbf{Res}_{\vec{k}=\vec{k}^*}[f^{3d}(\mathcal{M})]$ $|k| - k^* \pm i\varepsilon$ $\left\{\text{Res}_{\vec{k}=\vec{k}^*}[f^{3d}(\mathcal{M})] \sim f^{3d} \right\}$

E build a local threshold counterterm CT_*

The origin of the coordinate system in loop momentum space needs to lie inside S_1 , S_2 simultaneously

Overlapping thresholds **S1 S1 S1 S1 S1** S₁

[2110.06869, Kermanschah] [\[2407.18051,](https://arxiv.org/abs/2407.18051) Kermanschah, MV]

$$
\mathcal{F} = \int d^3k \left(\frac{1}{S_1 S_2 \cdots} + \cdots \right)
$$

If $S_1 \cap S_2 ≠ 0$:

For higher order poles the same $i\epsilon$ prescription needs to appear in the counterterms, so that the residues are summed correctly!

animation by Dario Kermanschah

Back to our example:

▶ 6 threshold surfaces

some intersections can lead to higher-order poles!

Separate the relevant intersecting regions via

multi-channelling:

Loop the Loop Matilde Vicini (ETH Zurich) 14th November 2024 16

$$
1 = \frac{S_1^2 + S_2^2 + S_3^2}{S_1^2 + S_2^2 + S_3^2}
$$

= $\frac{S_3^2}{S_1^2 + S_2^2 + S_3^2}$ \mathcal{I} + $\frac{S_2^2}{S_1^2 + S_2^2 + S_3^2}$ \mathcal{I} + $\frac{S_1^2}{S_1^2 + S_2^2 + S_3^2}$ \mathcal{I}

Overlapping thresholds

Does threshold structure change with phase space points?

$$
\int d^{3}\vec{k} f^{3d} (\mathcal{M}(k)) = \int d^{3}\vec{k} \left\{ f^{3d} (\mathcal{M}(k)) - \sum_{\ast} \frac{\text{Res}_{\vec{k} = \vec{k}^*} [f^{3d} (\mathcal{M})]}{|\vec{k}| - k^* \pm i\varepsilon} \chi(\vec{k}, \vec{k}^*) \right\} + \sum_{\ast} \int CT_{\ast}
$$

If we keep the Lorentz frame constant, does the intersection of threshold surfaces change?

Loop the Loop Matilde Vicini (ETH Zurich) 14th November 2024 18

Integration over phase space

For this specific example, threshold structure varies with q_1, q_2, q_3 sampled from the phase space generation in this way:

> *ky kx* $\{p_1, p_2, q_1, q_2, q_3\}$

Loop the Loop **Matilde Vicini (ETH Zurich)** 14th November 2024

The structure of the relevant intersections stays constant

This allows to…

Perform simultaneous Monte-Carlo integration d $\Phi_{3}d^{3}\vec{k}d^{3}\vec{l}$ in:

Gauge-invariant finite corrections to the virtual cross section! Save computing time by sampling simultaneously phase space and loop measure.

Loop the Loop **Matilde Vicini (ETH Zurich)** 14th November 2024

$$
\int d\Phi_3 = 2 \text{Re} \left[\sum_h \left(\frac{\sum_{g} \sum_{k=1}^{h} \mathbf{1}_{g}}{2} + \frac{\sum_{g} \sum_{k=1}^{h} \mathbf{1}_{g}}{2} \right) \right]
$$

Integrate IR/UV counterterms analytically

Just simple master integrals:

Results

DK, Matilde Vicini [2407.18051] numerical integration over loop & phase space summed over helicities and convoluted with PDFs same pipeline & same computer with 24 cores

NLO and NNLO-Nf virtual cross sections

Towards the full NNLO result

Other fermion loop contributions

The IR (and UV) counterterms are already available.

Two-loop type threshold conditions can be solved numerically.

[2008.12293, Anastasiou, Haindl, Sterman, Yang, Zeng] [2403.13712, Anastasiou, Karlen, Sterman, Venkata]

More challenging: longer evaluation time!

Loop the Loop **Matilde Vicini (ETH Zurich)** 14th November 2024

Summary and Outlook

Showed new result for NNLO virtual cross section for 3 massive vector boson

-
-

production

Flexible and robust framework suited for automation, based on

 local infrared (IR) counterterms built in order to exploit universal IR factorisation

threshold subtraction

Loop the Loop **Matilde Vicini (ETH Zurich)** 14th November 2024