Numerical Integration of the N_f Virtual **Corrections to Triboson Production at** NNLO

in collaboration with Dario Kermanschah [2407.18051]

Matilde Vicini **ETH** zürich

Loop the Loop 14th November 2024

Why numerical methods?

 $q\bar{q} \rightarrow V_1 V_2 V_3$

Analytic integration methods may struggle.

Matilde Vicini (ETH Zurich)

Loop the Loop

The analytical computation of the two-loop integrals is challenging in

3 external massive vector bosons

High multiplicity in the external legs, many kinematical scales

 V_{γ}

In this talk...

We tackled the simplest 2L (gauge invariant) contribution at the level of the cross section

$$\sigma_{\text{virt}}^{(2,N_f)} \sim \int \mathbf{d}\Phi_3 \frac{1}{F} 2 \operatorname{Re} \left[\sum_{h} \left(\underbrace{\mathbf{d}}_{h} \underbrace{$$

Loop the Loop

Matilde Vicini (ETH Zurich)

3 external massive vector boson

General Framework

To integrate numerically, we needed to remove:

infrared (IR) singularities

ultraviolet (UV) singularities

threshold singularities

Loop the Loop

Matilde Vicini (ETH Zurich)

General Framework

remove singularities

Loop the Loop

Matilde Vicini (ETH Zurich)

The IR counterterm

The IR form-factor counterterm expresses at the integrand level the integrated Catani-Seymour factorisation of IR divergences: $M^{(1)} - I^{(1)}M^{(0)} = \text{finite}$

To get rid of UV divergences at the local level, we also introduce UV counterterms, one for each UV singular diagram, e.g.:

Loop the Loop

Matilde Vicini (ETH Zurich) 14th November 2024

[2008.12293, Anastasiou, Haindl, Sterman, Yang, Zeng]

$$= -ig_{s}^{2}C_{F}\frac{\bar{v}(p_{2})\gamma^{\mu}(\not{k} - \not{p}_{2})\left[\widetilde{\mathcal{M}}^{(0)}\right](\not{p}_{1} + \not{k})\gamma_{\mu}u}{k^{2}(k + p_{1})^{2}(k - p_{2})^{2}}$$

$$-ig_s^2 C_F \frac{\bar{v}(p_2)\gamma^{\mu} \not{k} \left[\widetilde{\mathcal{M}}^{(0)}\right] \not{k}\gamma_{\mu} u(p_1)}{(k^2 - M_{\rm UV}^2)^3}$$

Alternative integrand for $\mathcal{M}^{(2,N_f)}$

First, we subtract the local counterterm represented by the difference of the tensor reduced integrand in l and the original integrand, to get

Matilde Vicini (ETH Zurich)

[2008.12293, Anastasiou, Haindl, Sterman, Yang, Zeng]

$$\int_{k}^{k} \frac{1}{l^{2}(l+k)^{2}} = \mathcal{M}^{(1)}(k) \frac{1}{l^{2}(l+k)^{2}}$$

Now $\mathcal{M}^{(2,N_f)}$ has same IR divergences as $\mathcal{M}^{(1)}$.

7

Subtracted amplitude in D=4

To integrate $\mathcal{M}_{\text{finite}}$ numerically in D=4 in the physical region we need to extract the discontinuities arising from threshold singularities.

Loop the Loop

Matilde Vicini (ETH Zurich)

$$\frac{1}{2 - M_{UV}^2} \int \mathscr{M}_{\text{finite}}^{(1)}(k)$$

Numerical integration in D=4

Several possibilities exist in the literature:

Feynman parameters

[0004013, Binoth, Heinrich]

[0703282, Anastasiou, Beerli, Daleo]

[0807.4129, Smirnov, Tentyukov]

[0703273, Lazopoulos, Melnikov, Petriello]

[1011.5493, Carter, Heinrich]

[1703.09692, Borowka, Heinrich, Jahn, Jones, Kerner, Schlenk,..]

[2302.08955, Borinsky, Munch, Tellander]

Loop the Loop

. . .

Matilde Vicini (ETH Zurich)

Loop momentum space

[9804454, Soper]

[0812.3686, Gong, Nagy, Soper]

[1010.4187, Becker, Reuschle, Weinzierl]

[1111.1733, Becker, Goetz, Reuschle, Schwan, Weinzierl]

[1211.0509, Becker, Weinzierl]

[1510.00187, Buchta, Chachamis, Draggiotis, Rodrigo]

[0912.3495, Kilian, Kleinschmidt]

[1912.09291, Capatti, Hirschi, Kermanschah, Pelloni, Ruijl]

[2110.06869, Kermanschah]

. . .

Numerical integration in D=4 Threshold subtraction

To remove threshold singularities in momentum space:

Expose threshold singularities

Regulate threshold singularities

Local threshold subtraction has several advantages with respect to numerical contour deformation including

No need for extra parameters that need to be fine-tuned

Flatter integrand, better numerical convergence

Loop the Loop

14th November 2024 Matilde Vicini (ETH Zurich)

[0912.3495, Kilian, Kleinschmidt] [2110.06869, Kermanschah] [2407.18051, Kermanschah, MV]

 integrate over dk_i^0
 construct local counterterms

Threshold singularities in loop momentum space

To expose all the threshold singularities in loop momentum space:

$$\int dk^4 \mathscr{M}_{\text{finite}}(k) = \int d^3 \vec{k} f^{3\text{d}} \left(\mathscr{M}_{\text{finite}}(k) \right) \sim \int d^3 \vec{k} \left\{ \frac{1}{E_1 + E_3 - p_1^0 - p_2^0} \frac{1}{E_0 + E_1 - p_1^0} \cdots + \cdots \right\} \qquad \begin{array}{c} E_i : \text{on-shearing of propagator} \\ \text{energy of propagator} \\ \int dk^0 \text{ via residue theorem} \end{array} \right.$$

$$\text{Loop tree duality (LTD)}$$

Bd representation of the integrand Cross-free-family representation (CFF)

[2211.09653, Capatti]

Loop the Loop

Matilde Vicini (ETH Zurich)

[0804.3170, Catani, Gleisberg, Krauss, Rodrigo, Winter] [1904.08389, Aguilera-Verdugo, Driencourt-Mangin, Plenter, Ramírez-Uribe, Rodrigo, Sborlini et al.,] [1906.06138, Capatti, Hirschi, Kermanschah, Ruijl] [2009.05509, Capatti, Hirschi, Kermanschah, Pelloni, Ruijl] . . .

11

Threshold singularities in loop momentum space

$$\int d^{3}\vec{k} f^{3d} \left(\mathcal{M}(k) \right) \sim \int d^{3}\vec{k} \left\{ \frac{1}{E_{1} + E_{3} - p_{1}^{0} - p_{2}^{0}} \frac{1}{E_{0} + E_{1} - p_{1}^{0}} \cdots + \cdots \right\}$$

Setting each denominator = 0 identifies a bounded region in k space, e.g.

if $(p_1 + p_2)$

 E_1

Loop the Loop

Matilde Vicini (ETH Zurich)

+
$$E_3 - p_1^0 - p_2^0 = 0$$

for some $\vec{k} = \vec{k}^*$
 $p_2)^2 > 0, (p_1^0 + p_2^0) >$

()

Numerical threshold subtraction

$$\begin{split} E_1 + E_3 - p_1^0 - p_2^0 &= 0 \\ \text{for some } \vec{k} &= \vec{k}^* \\ \text{if } (p_1 + p_2)^2 &> 0 \,, (p_1^0 + p_2^0) > 0 \end{split}$$

around the threshold singularity at $\vec{k} = \vec{k}^*$ the integrand behaves as: $\frac{\operatorname{\mathsf{Res}}_{\vec{k}=\vec{k}^*}[f^{3d}(\mathscr{M})]}{|\vec{k}|-k^*\pm i\varepsilon}, \qquad \operatorname{\operatorname{Res}}_{\vec{k}=\vec{k}^*}[f^{3d}(\mathscr{M})] \sim f^{3d}\left[\underbrace{\downarrow}_{E_2} \atop \downarrow \downarrow f^{3d}\left[\underbrace{\downarrow}_{E_2} \atop \downarrow \downarrow f^{3d}\left[\underbrace{\downarrow}_{E_2} \atop \downarrow f^{3d}\left[\underbrace{\downarrow}_{E_2}$

build a local threshold counterterm CT_*

$$\int d^{3}\vec{k} f^{3d}\left(\mathcal{M}(k)\right) = \int d^{3}\vec{k} \left\{ f^{3d}\left(\mathcal{M}(k)\right) - \frac{\operatorname{\mathsf{Res}}_{\vec{k}=\vec{k}^{*}}[f^{3d}(\mathcal{M})]}{|\vec{k}| - k^{*} \pm i\varepsilon} \chi(\vec{k},\vec{k}^{*}) \right\} + \int CT_{*},$$

box find $\int CT_*$, use Sokhotski–Plemelj theorem $\lim_{\epsilon \to 0} \frac{1}{x - a \pm i\epsilon} = PV \frac{1}{x - a} \mp i\pi\delta(x - a) \implies \int C$

Loop the Loop

Matilde Vicini (ETH Zurich)

 χ : suppression function when $|\vec{k}| \rightarrow \infty$

$$CT_* = \mp i\pi \int d^2\hat{k} \operatorname{Res}_*(\hat{k})$$

for smart choice of χ

[2110.06869, Kermanschah]

14th November 2024

14

Overlapping thresholds

[<u>2110.06869</u>, Kermanschah] [<u>2407.18051</u>, Kermanschah, MV]

$$\mathcal{I} = \int d^{3}\vec{k} \left(\frac{1}{S_{1}S_{2}} \cdots\right)$$

If $S_1 \cap S_2 \neq 0$:

For higher order poles the same $i\epsilon$ prescription needs to appear in the counterterms, so that the residues are summed correctly!

The origin of the coordinate system in loop momentum space needs to lie inside S_1 , S_2 simultaneously

Overlapping thresholds

Back to our example:

6 threshold surfaces

some intersections can lead to higher-order poles!

multi-channelling:

Loop the Loop

Matilde Vicini (ETH Zurich)

Separate the relevant intersecting regions via

$$1 = \frac{S_1^2 + S_2^2 + S_3^2}{S_1^2 + S_2^2 + S_3^2}$$
$$= \frac{S_3^2}{S_1^2 + S_2^2 + S_3^2} \mathcal{I} + \frac{S_2^2}{S_1^2 + S_2^2 + S_3^2} \mathcal{I} + \frac{S_1^2}{S_1^2 + S_2^2 + S_3^2} \mathcal{I} + \frac{S_1^2}{S_1^2 + S_2^2 + S_3^2} \mathcal{I}$$

Does threshold structure change with phase space points?

$$\int d^{3}\vec{k} f^{3d}\left(\mathscr{M}(k)\right) = \int d^{3}\vec{k} \left\{ f^{3d}\left(\mathscr{M}(k)\right) - \sum_{*} \frac{\mathsf{Res}_{\vec{k}=\vec{k}*}[f^{3d}(\mathscr{M})]}{|\vec{k}| - k^{*} \pm i\varepsilon} \chi(\vec{k},\vec{k}^{*}) \right\} + \sum_{*} \int CT_{*}$$

$$Re\mathscr{M}$$

$$Im\mathscr{M}$$

If we keep the Lorentz frame constant, does the intersection of threshold surfaces change?

Integration over phase space

phase space generation in this way:

Plot the threshold surfaces in the COM frame for two different phase space points: $\{p_1, p_2, q'_1, q'_2, q'_3\}$ $\{p_1, p_2, q_1, q_2, q_3\}$

The structure of the relevant intersections stays constant

For this specific example, threshold structure varies with q_1, q_2, q_3 sampled from the

This allows to...

Perform simultaneous Monte-Carlo integration $d\Phi_3 d^3 \vec{k} d^3 \vec{l}$ in:

$$\int \mathbf{d} \Phi_3 \frac{1}{F} 2 \operatorname{Re} \left[\sum_{h} \left(\underbrace{\mathbf{d} \mathbf{d} \mathbf{d}}_{h} + \underbrace{\mathbf{d} \mathbf{d}}_{h} \right) \right]_{+} \left(\underbrace{\mathbf{d} \mathbf{d} \mathbf{d}}_{h} + \underbrace{\mathbf{d} \mathbf{d}}_{h} \right) \right]_{+} \left[\underbrace{\mathbf{d} \mathbf{d} \mathbf{d}}_{h} + \underbrace{\mathbf{d} \mathbf{d}$$

Gauge-invariant finite corrections to the virtual cross section! Save computing time by sampling simultaneously phase space and loop measure.

Integrate IR/UV counterterms analytically

Just simple master integrals:

Results

NLO and NNLO-Nf virtual cross sections

					potential for optimization!
	Order	Result [pb]	Δ [%]	total time 🛩	Catani finita remaindar
$pp \rightarrow \gamma \gamma$	NLO	5.2851 ± 0.0164 e-01	0.3	10 min	NLO in BLHA NNLO-Nf in \overline{MS}
	NNLO-Nf	-6.1475 ± 0.0349 e-02	0.6	1 h 30 min	
$pp \rightarrow \gamma^* \gamma^*$	NLO	4.3172 ± 0.0089 e-01	0.2	2 min	NLO cross checked interferences with OpenLoops
	NNLO-NÍ	-3.6943 ± 0.0322 e-02	0.9	40 min	
$p_d p_d \rightarrow ZZ$	NLO	7.0067 ± 0.0159 e-01	0.2	4 min	
	NNLO-Nf	-5.9363 ± 0.0520 e-02	0.9	1 h 30 min	
$pp \rightarrow \gamma \gamma \gamma$	NLO	1.4874 ± 0.0140 e-04	0.9	2 h 30 min	in agreement with FivePoint
	NNLO-Nf	-2.5460 ± 0.0237 e-05	0.9	1 day	Amplitudes-cpp Abreu, De Laurentis,
$pp \rightarrow \gamma^* \gamma^* \gamma^*$	NLO	1.4692 ± 0.0144 e-04	1.0	2h 45 min	[2305.17056]
	NNLO-Nf	-1.4301 ± 0.0137 e-05	1.0	4 days	
$p_d p_d \rightarrow Z \gamma_1^* \gamma_2^*$	NLO	2.4600 ± 0.0210 e-04	0.9	1 day 12 h	× 3! new!
	NNLO-Nf	-2.5301 ± 0.0229 e-05	0.9	1 month	

same pipeline & same computer with 24 cores DK, Matilde Vicini [2407.18051] numerical integration over loop & phase space summed over helicities and convoluted with PDFs

Towards the full NNLO result

Other fermion loop contributions

The IR (and UV) counterterms are already available.

Two-loop type threshold conditions can be solved numerically.

More challenging: longer evaluation time!

Loop the Loop

Matilde Vicini (ETH Zurich) 14th November 2024

[2403.13712, Anastasiou, Karlen, Sterman, Venkata] [2008.12293, Anastasiou, Haindl, Sterman, Yang, Zeng]

Summary and Outlook

production

Flexible and robust framework suited for automation, based on

local infrared (IR) counterterms built in order to exploit universal IR factorisation

threshold subtraction

Showed new result for NNLO virtual cross section for 3 massive vector boson

