A first computation of three-loop master integrals for the production of two off-shell vector bosons with different masses

Dhimiter Canko

based on ongoing work in colaboration with Mattia Pozzoli

Alma Mater Studiorum Università di Bologna Istituto Nazionale Di Fisica Nucleare Sezione di Bologna

Loop-the-Loop, Online Workshop, 14/11/2024

Table of Contents

- Introduction
- Ø Notation and Kinematics
- Integral Families
- Ø Differential Equations
- Ø Pure Bases Construction
- Ø Analytic Solution
- Ø Semi-Analytic Solution using DiffExp
- Conclusions

Introduction

Future 14 TeV HL-LHC runs + Clear signatures left by vector boson productions (leptonic decays)

↓ Observables measured with an accuracy well below one percent ↓ Precision achieved theoretically only if three-loop corrections included!!!

Frontier in Three-Loop Feynman Integral Computations

- Current frontier stands at families with four external particles, where one of them is massive
 - Ladder-box, [S. Di Vita, P. Mastrolia, U. Schubert, V. Yundin, 2014]
 - Planars, [D.C., N. Syrrakos, 2020 & 2021 & 2023]
 - Some Non-Planars, [J.M. Henn, J. Lim, W. Bobadilla, 2023 & 2024]
 - More Non-Planars, [T. Gehrmann, J. Henn, P. Jakubčík, J. Lim, C. Mella, N. Syrrakos, L. Tancredi, W. Bobadilla, 2024] [See Jungwon Lim's talk]
- Recently extended to calculations consisting of two massive particles of the same mass
 - Two Ladder-boxes, [Ming-Ming Long, 2024]
- Amplitudes have been computed in the last years, using some of the results above
 - Planar V+jet production, [T. Gehrmann, P. Jakubčík, C. Mella, N. Syrrakos, L. Tancredi, 2023]
 - Leading-color N = 4 form factors for H+jet, [T. Gehrmann, J. Henn, P. Jakubčík, J. Lim, C. Mella, N. Syrrakos, L. Tancredi, W. Bobadilla, 2024] [See Jungwon Lim's talk]

Herein we extend the frontier to families with two external massive particles with unequal masses!!!

• These families studied contribute to planar three-loop QCD amplitudes of processes like

$$q\bar{q}'/gg
ightarrow V_1V_2
ightarrow (l_1\bar{l}_1')(l_2\bar{l}_2')$$
 with $V_1V_2 = \gamma^*\gamma^*, W^+W^-, ZZ, W^\pm Z, W^\pm\gamma^*, Z\gamma^*$

[See talks of Colomba Brancaccio and Simone Zoia for current two-loop frontier]

Notation and Kinematics

• Four-particle scattering + two different external masses \rightarrow 4 independent invariants \vec{s} (scales)

$$s_{12} = (p_1 + p_2)^2$$
, $s_{23} = (p_2 + p_3)^2$, $m_3^2 = p_3^2$, $m_4^2 = p_4^2$ and $p_1^2 = p_2^2 = 0$

• Physical region in Mandelstams contains the root $R = \sqrt{m_3^4 + (m_4^2 - s_{12})^2 - 2m_3^2(m_4^2 + s_{12})}$

$$m_3^2, m_4^2 > 0, \quad s_{12} > (m_3 + m_4)^2 \quad \text{and} \quad \frac{m_3^2 + m_4^2 - s_{12} - R}{2} \le s_{23} \le \frac{m_3^2 + m_4^2 - s_{12} + R}{2}$$

• R can be rationalized using the parametrization ($R=m_3^2 x(1-y)$) [J. Henn, K. Melnikov, V. Smirnov, 2014]

$$\frac{s_{12}}{m_3^2} = (1+x)(1+xy), \qquad \frac{s_{23}}{m_3^2} = -xz \qquad \text{and} \qquad \frac{m_4^2}{m_3^2} = x^2y$$

• Physical region in (x, y, z) parametrization takes the form

$$x > 0, \qquad 0 < y < 1, \qquad \text{and} \qquad y < z < 1$$

Integral Families Under Study

Our three-loop four-point Feynman Integral families are of the form

$$F_{\alpha_1,...,\alpha_{15}} = \int \frac{d^d k_1 d^d k_2 d^d k_3}{(i\pi)^{3d/2}} \frac{e^{3\gamma_E \varepsilon}}{D_1^{\alpha_1} \cdots D_{15}^{\alpha_{15}}} \quad \text{with} \quad D_j = \left(\sum_{i=1}^3 a_{ij} k_i + b_{ij} p_i\right)^2$$

where a_{ij} , $b_{ij} = 0, \pm 1$ and the last 5 propagators are auxiliary ones ($\alpha_i \leq 0$ for i = 11, ..., 15).

- All the planar FI families can be collected into two propagator super-families: F123 and F132.
- F123 is described by the following set of propagators

$$\begin{array}{ll} D_1 = k_1^2, & D_2 = (k_1 + p_1)^2, & D_3 = (k_1 + p_{12})^2, & D_4 = (k_1 + p_{123})^2, \\ D_5 = k_2^2, & D_6 = (k_2 + p_1)^2, & D_7 = (k_2 + p_{12})^2, & D_8 = (k_2 + p_{123})^2, \\ D_9 = k_3^2, & D_{10} = (k_3 + p_1)^2, & D_{11} = (k_3 + p_{12})^2, & D_{12} = (k_3 + p_{123})^2, \\ D_{13} = (k_1 - k_2)^2, & D_{14} = (k_1 - k_3)^2 & \text{and} & D_{15} = (k_2 - k_3)^2 \end{array}$$

• F132 propagators can be obtained from the F123 ones via the transformation $p_2 \leftrightarrow p_3$.

Not-Completely Reducible Families: RL1

Figure: Top sector of RL1

- Top-Sector Graph: *G*[*F*123, {1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1}]
- Number of master integrals (MIs): 27
- Alphabet in the variables $\{x, y, z\}$ consists of the following 12 letters

{x, y, z, 1 + x, 1 - y, 1 - z, 1 + xy, 1 + xz, z - y, xy + z, 1 + y(1 + x) - z, z - x(y + z + yz)}

Not-Completely Reducible Families: RL2

Figure: Top sector of RL2

- Top-Sector Graph: *G*[*F*132, {1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1}]
- Number of MIs: 25
- Alphabet in the variables $\{x, y, z\}$ consists of the following 13 letters

 $\{x, y, z, 1+x, 1-y, 1-z, 1+xy, 1+xz, z-y, xy+z, 1+y(1+x)-z, 1+y-z, 1+x(1+y-z)\}$

Irreducible Families: PL1

Figure: Top sector of PL1

- Top-Sector Graph: *G*[*F*123, {1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1}]
- Number of MIs: 150
- Alphabet in the variables $\{x, y, z\}$ consists of the following 13 letters

 $\{x, y, z, 1+x, 1-y, 1-z, 1+xy, 1+xz, z-y, xy+z, 1+y(1+x)-z, 1+y-z, 1+x(1+y-z)\}$

The Irreducible Families: PT4

Figure: Top sector of PT4

- Top-Sector Graph: *G*[*F*123, {1,0,1,1,1,1,0,0,0,1,1,0,1,1,1]]
- Number of MIs: 189
- Alphabet in the variables $\{x, y, z\}$ consists of the following 15 letters

{x, y, z,
$$1 + x$$
, $1 - y$, $1 - z$, $z - y$, $1 + y - z$, $1 + xy$, $1 + xz$, $z + xy$,
 $1 - z + y(1 + x)$, $1 + x(1 + y - z)$, $z - y(1 - z - xz)$, $z - x(y - z - yz)$ }

50 New Sectors with 132 Genuinely New Master Integrals

Differential Equations (DEs)

• Computation of MIs derivatives + Generation of IBPs [K. Chetyrkin, F. Tkachov, 1981] \rightarrow FFIntRed¹

$$\int \left(\prod_{i=1}^{l} \frac{d^{d}k_{i}}{(2\pi)^{d}}\right) \frac{\partial}{\partial k_{b}^{\mu}} \left(u^{\mu} \frac{\bar{z}_{1}^{i_{1}} \cdots \bar{z}_{n_{ir}}^{i_{n_{ir}}}}{\prod_{j} D_{j}^{a_{j}}}\right) = 0 \quad \text{with} \quad u^{\mu} = a^{i} p_{i}^{\mu} + b_{i} k_{i}^{\mu}$$

• IBPs solved over finite fields \rightarrow Reconstruct DEs [A. Kotikov, 1991] with FiniteFlow [T. Peraro, 2019]

$$\partial_{\xi} \vec{G} = B_{\xi}(\vec{s};\epsilon) \; \vec{G} \qquad ext{with} \qquad \xi \in \vec{s},$$

• What we reconstructed is not the above form but the following canonical one [J. Henn, 2013]

$$\partial_{\xi} \vec{l} = \epsilon \ \tilde{A}_{\xi}(\vec{s}) \ \vec{l} \longrightarrow d\vec{l} = \epsilon \ dA(\vec{s}) \ \vec{l}$$
 with $dA(\vec{s}) = \sum A_i \ d\log w_i$

• Pure bases constructed employing a bottom-up approach and working sector-by-sector firstly studying the behavior in the maximal cut (MC) \rightarrow the following methods were used

- Magnus exponential [M. Argeri, S. Di Vita, P. Mastrolia, E. Mirabella, J. Schlenk, U. Schubert, L. Tancredi, 2014] & [T. Gehrmann, A. von Manteuffel, L. Tancredi, E. Weihs, 2014]
- Building-blocks [Pascal Wasser, 2018]
- Candidates with integrands of d log form [J. Henn, B. Mistlberger, V. Smirnov, P. Wasser, 2020]

¹In-house package written by Tiziano Peraro for generation of Integration-by-Parts identities (IBPs).

Pure Bases Construction: Magnus Exponential

• Choose appropriate candidates (if $N_p \leq 7 \rightarrow \text{dot}$, else $\rightarrow \text{ISPs})^2$ that render MC DEs linear on ε

$$\partial_{\xi}\vec{G}^{\text{MC}} = (H_{0,\xi} + \varepsilon H_{1,\xi})\vec{G}^{\text{MC}}$$

• H₀ can be removed by rescaling MIs a matrix that satisfies the following DEs

$$\partial_{\xi} \tilde{T}^{\mathsf{MC}} = - \tilde{T}^{\mathsf{MC}} H_{0,\xi}$$

• New candidates defined as $\vec{I}^{MC} = \tilde{T}^{MC} \vec{G}^{MC}$ acquire canonical DEs in MC

$$\partial_{\xi} \vec{I}^{MC} = \varepsilon A_{\xi}^{MC} \vec{I}^{MC}$$
 with $A_{\xi}^{MC} = \tilde{T}^{MC} H_{1,\xi} (\tilde{T}^{MC})^{-1}$

• Are \vec{l} pure beyond MC? \rightarrow relax cut conditions \rightarrow may appear sub-sector entries linear on ε

$$\partial_{\xi}\vec{l} = \varepsilon A_{\xi}^{MC}\vec{l}^{MC} + (h_{0,\xi} + \varepsilon h_{1,\xi})\vec{l}^{LS}$$

• To set them in canonical form rotate the lower sector ε^0 contributions by integrating out $h_{0,\varepsilon}$

$$\vec{l} = \vec{l}^{MC} + \tilde{T}^{LS} \vec{l}^{LS}$$
 with $\partial_{\xi} \tilde{T}^{LS} = -h_{0,\xi}$

 $^{^{2}}$ Where with N_{p} we denote the number of propagators of the sector at hand

Pure Bases Construction: Building-Blocks + d log-form

• Building Blocks: combine leading singularities (LS) of one/two-loop pure candidates as building blocks for creating a three-loop candidate with constant LS, in a graphical/heuristic approach

• DLogBasis: use spinor-helicity formalism (Baikov representation) to bring the 4(d)-dimensional integrand of FI into *d* log form and find its LS, e.g. for one-loop massless box

$$\frac{d^4k}{k^2(k-p_1)^2(k-p_{12})^2(k+p_4)^2} \xrightarrow{\text{DLogBasis}} \frac{1}{s_{12}s_{23}} d\log \frac{k^2}{(k-p_*)^2} d\log \frac{(k-p_1)^2}{(k-p_*)^2} d\log \frac{(k-p_{12})^2}{(k-p_*)^2} d\log \frac{(k+p_4)^2}{(k-p_*)^2} d\log \frac{(k-p_1)^2}{(k-p_*)^2} d\log \frac{(k-p_1)^2}{(k-p_1)^2} d\log \frac{(k-p_1)^2}{(k-p_1)^2$$

Analytic Solution

• Solve the (x, y, z) canonical DEs in terms of MPLs directly in the physical region

$$\mathcal{G}_{1\dots n} \equiv \mathcal{G}(a_1,\dots,a_n;X) = \int_0^X \frac{dt}{t-a_1} \mathcal{G}(a_2,\dots,a_n;t) \quad \text{with} \quad \mathcal{G}(\vec{0}_n;X) = \frac{1}{n!} \log^n(X)$$

• For obtain a minimum number of MPLs \rightarrow use a different integration path for each superfamily

• F123:
$$(0,0,0) \xrightarrow{\gamma_1} (x,0,0) \xrightarrow{\gamma_2} (x,0,z) \xrightarrow{\gamma_3} (x,y,z)$$

 $\gamma'_1 \qquad \gamma'_2 \qquad \gamma'_2 \qquad \gamma'_2$

- F132: $(0,0,0) \xrightarrow{l_1} (0,0,z) \xrightarrow{l_2} (0,y,z) \xrightarrow{l_3} (x,y,z)$
- The two different paths result to MPLs with same arguments but different indices (backup slides)!
- Solution obtained up to order 6 in the ε expansion \rightarrow MPLs only up to weight 6 appear

$$\begin{split} \vec{I} &= \epsilon^0 \vec{b}_0 + \epsilon \left(\mathcal{G}_i A_i \vec{b}_0 + \vec{b}_1 \right) + \epsilon^2 \left(\mathcal{G}_{ij} A_{ij} \vec{b}_0 + \mathcal{G}_i A_i \vec{b}_1 + \vec{b}_2 \right) + \dots \\ &+ \epsilon^6 \left(\mathcal{G}_{ijklmn} A_{ijklmn} \vec{b}_0 + \mathcal{G}_{ijklm} A_{ijklm} \vec{b}_1 + \mathcal{G}_{ijkl} A_{ijkl} \vec{b}_2 + \mathcal{G}_{ijk} A_{ijk} \vec{b}_3 + \mathcal{G}_{ij} A_{ij} \vec{b}_4 + \mathcal{G}_i A_i \vec{b}_5 + \vec{b}_6 \right) \end{split}$$

where \vec{b}_i the boundary conditions at order ε^i , $A_{i...n} \equiv A_i \dots A_n$ and $A_i \equiv A_{w_i}$.

Boundary conditions

Regularity Conditions

AMFlow

+ PSLQ For computing boundaries we followed the procedure of [S. Badger, J. Kryś, R. Moodie, S. Zoia, 2023]:

- Computed MIs in 70 digits precision using AMFlow [X. Liu, Y. Ma, 2022] for the point (x, y, z) = (3/2, 1/5, 1/2).
- Computed the MPLs of the analytic solution in 70 digits precision using DiffExp [M. Hidding, 2020] at the same point.
- Known excepted transcendental constants at each order of the ε expansion \rightarrow performed PSLQ order by order.

Expansion	ε^{0}	ε^1	ε^2	ε^3	ε^4	ε^5	ε^{6}
Boundaries	1	iπ	π^2	$i\pi^3, \zeta_3$	$\pi^4, i\pi\zeta_3$	$i\pi^5,\pi^2\zeta_3,\zeta_5$	$\pi^6, i\pi^3\zeta_3, \zeta_3^2, i\pi\zeta_5$

Analytic Solution: Evaluation

Partial decomposition into Lyndon words using PolyLogTools [C. Duhr, F. Dulat, 2019]

Family	# MPLs	# W6
RL1	3619	1631
PL1	5416	2554
RT4	8290	3709
F123	8360	3739
RL2	10973	5219
ALL	19306	8951

Many MPLs of weight 6 (~ 1s per MPL) Much time spent for their evaluation Analytic solution inefficient in current form! Generalized Power Series (F. Moriello, 2019) [See Tommaso Armadillo's talk]

Semi-Analytic Solution using DiffExp

• Solve our DEs using generalized power series \rightarrow DiffExp \rightarrow results for 7 points (backup slides)³

RL1 (timings in s)							
$\{s_{12}, s_{23}, m_3^2, m_4^2\}$	159	143	141	145	143	138	144
$\{x, y, z\}$	42	17	36	59	17	42	19
RL2 (timings in s)							
$\{s_{12}, s_{23}, m_3^2, m_4^2\}$	160	148	140	148	144	140	142
$\{x, y, z\}$	47	19	42	67	22	47	20
PL1 (timings in s)							
$\{s_{12}, s_{23}, m_3^2, m_4^2\}$	2276	2012	1993	2029	2059	1932	1977
$\{x, y, z\}$	618	216	533	914	247	639	230
PT4 (timings in s)							
$\{s_{12}, s_{23}, m_3^2, m_4^2\}$	8522	8735	4301	5116	8133	4305	5243
$\{x, y, z\}$	1375	418	987	2603	361	1152	487

- Semi-analytic solution faster than the Analytic one, though not yet efficient!
- DEs on $\{x, y, z\}$ solved 4.5 times faster than them on $\{s_{12}, s_{23}, m_3^2, m_4^2\}$!

³Results obtained for 30 digits running one Mathematica Kernel in personal laptop (Apple M1 Pro, 8 cores, 16GB RAM)

Conclusions

CPetirce

+ JAKE-CLARK,TUMBLA

Results

• Canonical DEs for a ladder-box, a tennis-court and 2 reducible 3-loop 4-point families with 2 off-shell legs.

• DEs solved analytically (semi-analytically) for these families in terms of MPLs (generalized power series).

What's next

• Investigation of better "massaging" of analytic solution using Lyndon words or Symbol algebra.

- If semi-analytic solution in favor \rightarrow better sampling of physical phase space \rightarrow see [S. Abreu et all, 2020].
- Computation of the rest planar and non families.
- Calculation of amplitudes using these families.

Thank you very much for your attention!!!

Backup Slides: MPL indices per path

• Path γ_1 results to MPLs with argument x and indices

 $\{-1,0\}$

• Path γ_2 results to MPLs with argument z and indices

$$\left\{0,-\frac{1}{x},1,1+\frac{1}{x}\right\}$$

• Path γ_3 results to MPLs with argument y and indices

$$\left\{0, -\frac{1}{x}, -\frac{z}{x}, z, \frac{z}{x}\frac{1+x}{1-z}, 1, \frac{z-1}{1+x}, z-1, -\frac{1}{x}, z-1, \frac{-z}{-1+z+xz}\right\}$$

• Path γ'_1 results to MPLs with argument z and indices

 $\{0, 1\}$

• Path γ'_2 results to MPLs with argument y and indices

 $\{0, -1 + z, z\}$

• Path γ'_3 results to MPLs with argument x and indices

$$\left\{0, -\frac{1}{z}, -\frac{z}{y}, \frac{1}{z-1-y}, \frac{z-1-y}{y}, -1, -\frac{1}{y}\right\}$$

Backup Slides: Decomposition into Lyndon words

• Choose an symbolic ordering for the indices of the MPLs, e.g. in our case for the following five indices of RL2 MPLs with arguments x we choose

$$\left\{ 0 < \frac{1}{-1-y+z} < -\frac{z}{y} < -\frac{1}{y} < -1 \right\}$$

• Then all the MPLs whose indices are not sorted according to this ordering can be rewritten in terms of MPLs whose indices do so by using shuffle algebra, e.g.

$$\begin{aligned} \mathcal{G}\left(-\frac{z}{y},-\frac{1}{y},0,\frac{1}{z-1-y},x\right) &= \mathcal{G}\left(0,\frac{1}{z-1-y},x\right) \mathcal{G}\left(-\frac{z}{y},-\frac{1}{y},x\right) - \mathcal{G}\left(-\frac{z}{y},x\right) \mathcal{G}\left(0,-\frac{1}{y},\frac{1}{z-1-y},x\right) \\ &- \mathcal{G}\left(-\frac{z}{y},x\right) \mathcal{G}\left(0,\frac{1}{z-1-y},-\frac{1}{y},x\right) + \mathcal{G}\left(0,-\frac{1}{y},-\frac{z}{y},\frac{1}{z-1-y},x\right) \\ &+ \mathcal{G}\left(0,-\frac{1}{y},\frac{1}{z-1-y},-\frac{z}{y},x\right) + \mathcal{G}\left(0,\frac{1}{z-1-y},-\frac{1}{y},-\frac{z}{y},x\right) \end{aligned}$$

• By consistently applying this procedure we can reduce the number of MPLs.

 Decomposition into Lyndon words is implemented in PolyLogTools for up to 5 different indices and up to MPLs with weight 6. For more details on this see [D. Radford, 1979].

Backup Slides: DiffExp points

• Phase-space points⁴ used for the evaluations with DiffExp (30 digits precision)

Point	$\{s_{12}, s_{23}, m_3^2, m_4^2\}$
0	$\{rac{13}{4},-rac{3}{4},1,rac{9}{20}\}$
1	$\big\{\frac{40888134693}{44158},-\frac{38795165599}{216184},\frac{24638089237}{897988},\frac{48727831791}{159737}\big\}$
2	$\{\tfrac{92788526010}{118927}, -\tfrac{39883122197}{344552}, \tfrac{136801114569}{723634}, \tfrac{16321101911}{176799}\}$
3	$\{\tfrac{62287855553}{66469}, -\tfrac{86538861058}{273175}, \tfrac{47194257508}{929117}, \tfrac{183221915556}{715387}\}$
4	$\big\{\frac{33556102913}{36634},-\frac{51073960191}{123187},\frac{13674993650}{1359143},\frac{41523082884}{125771}\big\}$
5	$\big\{ \frac{28418180312}{51339}, -\frac{38010266231}{181362}, \frac{27158482990}{126509}, \frac{19338791272}{514135} \big\}$
6	$\big\{\frac{279866556140}{61187},-\frac{19953623257}{109975},\frac{7866155659}{632225},\frac{122962065237}{815030}\big\}$
7	$\{\frac{48080429344}{88767},-\frac{321222790411}{4410467},\frac{29824627549}{103071},\frac{15155449048}{679141}\}$

• The corresponding points for the variables $\{x, y, z\}$ are computed using the relations of slide 5 after taking a numerical value with precision 35 digits and rationalizing it with 30 digits precision.

⁴Point 0 corresponds to the initial point.