Two-loop QCD corrections to $pp \rightarrow t\bar{t}j$

Colomba Brancaccio

University of Turin

In collaboration with: Simon Badger, Matteo Becchetti, Heribertus Bayu Hartanto, Simone Zoia [arXiv:24xx.xxxx, arXiv:2404.12325, arXiv:2201.12188] (Thanks also to Gaia Fontana for the wonderful drawings)

Loop the Loop Results and its applications to Cavity and Particle Physics 12-14th November 2024, online workshop Performation Westrobie Performation Westrobie Performation Version Performatio

Towards YTwo-loop QCD corrections to $pp \rightarrow t\bar{t}j$

University of Turin

In collaboration with: Simon Badger, Matteo Becchetti, Heribertus Bayu Hartanto, Simone Zoia [arXiv:24xx.xxxx, arXiv:2404.12325, arXiv:2201.12188] (Thanks also to Gaia Fontana for the wonderful drawings)

Loop the Loop Essential and its applications to Cavity and Particle Physics 12-14th November 2024, online workshop Reserved and shop perved and shop perv

Introduction 000000	Scattering amplitudes workflow	Two-loop gg 000	$t ightarrow t ar{t} g$ amplitudes	Conclusions and outlook
Outline				
1. Intr	roduction		ightarrow What and wh	ıy?
2. Sca	ttering amplitudes workf	low	\rightarrow How?	
3. Tw	o-loop $gg ightarrow t ar{t} g$ amplitu	ıdes	ightarrow What are our	r results?
4. Cor	nclusions and outlook		\rightarrow What's next?)

Introduction •00000	Scattering amplitudes	workflow Two-loop $gg \rightarrow 000$	ttg amplitudes Conclusions and outlook o
Precisio	on physics		
Mon gen	te Carlo erators	Cross-section predictions	Data from colliders
σ	r = ∫ PDFs x A ² x d	IPS	Run 1+2+3 + HL-LHC
	 Current frontier NNLO/N³LO Amplitudes are key ingred for cross-section predictions) ients	 ⇒ Huge amount of data ⇒ Small uncertainties on experimental measurements (% <i>level accuracy</i>) ⇒ Observe rare processes

Relevance of the top quark

Unique properties of the top quark

- To-date heaviest fundamental particle
- Decays before forming hadrons
- Information about its spin state preserved in the decay product distributions

Role in the Standard Model

- Largest coupling to the Higgs boson
- Affects the EW vacuum stability

Colomba Brancaccio

Towards two-loop QCD corrections to $pp \rightarrow ttj$

Motivations for $t\bar{t}j$ production

- 50% of $t\bar{t}$ events produced at LHC are associated with a jet
- *tt̄j* normalised differential cross-section w.r.t. invariant mass of final state particles is highly sensitive to *m_t*

[[]Alioli, Fernandez, Fuster, Irles, Moch, Uwer '13]

Theory status

What do we know about $t\bar{t}j$?

- NLO QCD corrections [Dittmaier, Uwer, Weinzierl, '07]
- Full off-shell decays and interfaces with

parton shower [Melnikov and Schulze '10] [Alioli, Moch, Uwer '12] [Bevilacqua, Czakon, Hartanto, Kraus, Worek '15-'16]

• Mixed QCD and EW corrections

[Gütschow, Lindert, Schönherr '18]

- NNLO QCD corrections needed
 - \rightarrow initial steps toward this challenge

[Badger, Becchetti, Chaubey, Marzucca, Sarandrea '22] [Badger, Becchetti, Chaubey, Marzucca '23] [Badger, Becchetti, Giraudo, Zoia '24]

Current frontier: $2 \rightarrow 3$ two-loop scattering amplitudes

Massless external particles:

- $pp \rightarrow \gamma \gamma \gamma$ [Abreu, Page, Pascual, Sotnikov '20] [Chawdhry, Czakon, Mitov, Poncelet '21] [Abreu, De Laurentis, Ita, Klinkert, Page, Sotnikov '23]
- $pp \rightarrow \gamma \gamma j$ [Agarwal, Buccioni, von Manteuffel, Tancredi '21] [Chawdhry, Czakon, Mitov, Poncelet '21] [Badger, Brönnum-Hansen, Chicherin, [Gehrmann, Hartanto, Henn, Marcoli, Moodie, Peraro, Zoia '21]
- $pp \rightarrow \gamma j j$ [Badger, Czakon, Hartanto, Moodie, Peraro, Poncelet, Zoia '23]
- $pp \rightarrow jjjj$ [Abreu, Febres Cordero, Ita, Page, Sotnikov '21] [De Laurentis, Ita, Klinkert, Sotnikov '23] [Agarwal, Buccioni, Devoto, Gambuti, von Manteuffel, Tancredi '23] [De Laurentis, Ita, Sotnikov '23]

One massive external

particle: (full colour missing)

- $pp \rightarrow Wbb$ [Badger, Hartanto, Zoia '21] [Hartanto, Poncelet, Popescu, Zoia '22]
- $pp \rightarrow Wjj$ [Abreu, Febres Cordero, Ita, Klinkert, Page, Sotnikov '22]
- $pp \rightarrow Hbb$ [Badger, Hartanto, Krys, Zoia '21]
- $pp \rightarrow W\gamma j$ [Badger, Hartanto, Krys, Zoia '22]
- $pp \rightarrow W/Z + bb$ [Buonocore, Devoto, Kallweit, Mazzitelli, Rottoli, Savoini '22]

[Mazzitelli, Sotnikov, Wiesemann '24]

• $pp \rightarrow W\gamma\gamma^*$ [Badger, Hartanto, Wu, Zhang, Zoia '24]

subleading contribution numerically available

Colomba Brancaccio

Towards two-loop QCD corrections to pp
ightarrow ttj

Current frontier: $2 \rightarrow 3$ two-loop scattering amplitudes

Massless external particles:

- $pp \rightarrow \gamma \gamma \gamma$ [Abreu, Page, Pascual, Sotnikov '20] [Chawdhry, Czakon, Mitov, Poncelet '21] [Abreu, De Laurentis, Ita, Klinkert, Page, Sotnikov '23]
- $pp \rightarrow \gamma \gamma j$ [Agarwal, Buccioni, von Manteuffel, Tancredi '21] [Chawdhry, Czakon, Mitov, Poncelet '21] [Badger, Brönnum-Hansen, Chicherin, [Gehrmann, Hartano, Henn, Marcoli, Moodie, Peraro, Zoia '21]
- $pp \rightarrow \gamma jj$ [Badger, Czakon, Hartanto, Moodie, Peraro, Poncelet, Zoia '23]
- $pp \rightarrow jjjj$ [Abreu, Febres Cordero, Ita, Page, Sotnikov '21] [De Laurentis, Ita, Klinkert, Sotnikov '23] [Agarwal, Buccioni, Devoto, Gambuti, von Manteuffel, Tancredi '23] [De Laurentis, Ita, Sotnikov '23]

One massive external

particle: (full colour missing)

- $pp \rightarrow Wbb$ [Badger, Hartanto, Zoia '21] [Hartanto, Poncelet, Popescu, Zoia '22]
- $pp \rightarrow Wjj$ [Abreu, Febres Cordero, Ita, Klinkert, Page, Sotnikov '22]
- $pp \rightarrow Hbb$ [Badger, Hartanto, Krys, Zoia '21]
- $pp \rightarrow W\gamma j$ [Badger, Hartanto, Krys, Zoia '22]

More masses:

• $pp \rightarrow t\bar{t}H$ [Agarwal, Heinrich, Jones, Kerner, Klein, Lang, Magerya, Olsson, '24]

subleading contribution numerically available

Colomba Brancaccio

Towards two-loop QCD corrections to pp
ightarrow ttj

INTERNAL HASSES

Eccart

It IL COM

TU

eeer

See also Federico Coro's talk

Introduction	Scattering amplitudes workflow	Two-loop $gg ightarrow t ar{t} g$ amplitudes 000	Conclusions and outlook
000000	•0000000		O
Colour d	lecomposition		

• Consider all diagrams contributing to the process

$$\mathcal{A}^{(L)}(ec{x},\epsilon) = \sum \left(\mathsf{Feynman} \,\, \mathsf{diagrams}
ight)$$

Colour expansion → take the leading colour limit
 → reduce the complexity of the loop integrals

Example: @1L

Introduction	Scattering amplitudes workflow	Two-loop $gg ightarrow t ar{t} g$ amplitudes 000	Conclusions and outlook
000000	•0000000		O
Colour de	ecomposition		

• Consider all diagrams contributing to the process

$${\cal A}^{(L)}(ec{x},\epsilon) = \sum \left({\sf Feynman \ diagrams}
ight)$$

Colour expansion → take the leading colour limit
 → reduce the complexity of the loop integrals

Helicity amplitudes for massive fermions

• Helicity: projection of the spin along the direction of momentum

For massive particles, define the massless projection:

$$p^{lat,\mu}=p^{\mu}-rac{m^2}{2p\cdot n}n^{\mu}$$

with *n* an arbitrary light-like momentum. The **massive** fermion spinor is:

$$u_+(p,m)=rac{(p+m)|n
angle}{\langle p^{lat} \ n
angle}, \quad u_-(p,m)=rac{(p+m)|n]}{[p^{lat} \ n]}$$

• Helicity amplitudes encode spin correlation information \rightarrow inclusion of top-quark decay in narrow-width approximation

see [Kleiss, Stirling '85] [Arkani-Hamed, Huang, Huang '17] [Badger, Chaubey, Hartanto, Marzucca '21] [Badger, Becchetti, Chaubey, Marzucca, Sarandrea '22]

Colomba Brancaccio

Towards two-loop QCD corrections to $pp \rightarrow ttj$

Helicity amplitudes for massive fermions

• Helicity: projection of the spin along the direction of momentum

For massive particles, define the massless projection:

$$p^{\flat,\mu}=p^{\mu}-rac{m^2}{2p\cdot n}n^{\mu}$$

with *n* an arbitrary light-like momentum. The **massive** fermion spinor is:

$$u_{-}(p,m) = rac{\langle p^{\flat} n \rangle}{m} (u_{+}(p,m)|_{p^{\flat} \leftrightarrow n}),$$

• Helicity amplitudes encode spin correlation information \rightarrow inclusion of top-quark decay in narrow-width approximation

see [Kleiss, Stirling '85] [Arkani-Hamed, Huang, Huang '17] [Badger, Chaubey, Hartanto, Marzucca '21] [Badger, Becchetti, Chaubey, Marzucca, Sarandrea '22]

Colomba Brancaccio

Towards two-loop QCD corrections to $pp \rightarrow ttj$

Introduction 000000	Scattering amplitudes workflow	Two-loop $gg ightarrow t ar{t} g$ amplitudes 000	Conclusions and outlook

Reduction to MIs

• The amplitude is a linear combination of Feynman integrals:

$$A^{(L)}(\vec{x},\epsilon) = \sum_{i} c_i(\vec{x},\epsilon) I_i(\vec{x},\epsilon),$$

i.e.
$$I(\vec{x},\epsilon) = \int \frac{d^D k_1 d^D k_2}{k_1^2 (k_1 + p_1)^2 (k_1 + p_1 + p_2)^2 \dots}$$
 and $D = 4 - 2\epsilon$

• $I_i(\vec{x}, \epsilon)$ written as linear combination of MIs using: Integration by Parts Identities (IBPs) [Chetyrkin, Kataev, Tkachov, '80]

i.e.
$$\int d^D k_1 d^D k_2 \frac{\partial}{\partial k_1^{\mu}} \left(p_1^{\mu} \frac{1}{k_1^2 (k_1 + p_1)^2 (k_1 + p_1 + p_2)^2 \dots} \right) = 0$$

• IBPs generated with NeatIBP [Wu, Boehm, Ma, Xu, Zhang '23]

see Rourou Ma's talk

Colomba Brancaccio

Introduction 000000	Scattering amplitudes workflow	Two-loop $gg ightarrow t ar{t} g$ amplitudes 000	Conclusions and outlook O
Reduction	ı to MIs		

Introduction 000000	Scattering amplitudes workflow	Two-loop $gg ightarrow t \overline{t} g$ amplitudes	Conclusions and outlook O
Reduction	to MIs		

Introduction 000000	Scattering amplitudes workflow	Two-loop $gg ightarrow t ar{t} g$ amplitudes 000	Conclusions and outlook O
Reduction	to MIs		

Workflow summar	у	
$\mathcal{A}^{(2)}(\vec{x},\epsilon) = \sum_{i}^{j} \downarrow \text{ colour de } \downarrow \text{ colour de } \downarrow \text{ spinor-helio}$	(Level 21 Jeve) i composition	$A(hel; n_t, n_{\overline{t}}) \text{ helicity am-}$ plitudes encode spin cor- relations in the narrow width approximation
$egin{aligned} &\mathcal{A}_{LC}^{hel,(2)}(ec{x},\epsilon) = \sum \ &\downarrow ext{IBP r} \end{aligned}$	$\sum\limits_{i} c_i(ec{x},\epsilon) I_i(ec{x},\epsilon)$ eduction	
$A_{\rm LC}^{hel,(2)}(\vec{x},\epsilon) = \sum_{i}$	$\begin{array}{c c} d_i(\vec{x},\epsilon) & MI_i(\vec{x},\epsilon) & \xrightarrow{E}\\ & & & & \\ & & & \\ & & & $	Elliptic sector Becchetti, Giraudo, Zoia '24] Becchetti, Chaubey, Marzucca '23]
Colomba Brancaccio	Iowards two-loop QCD corrections to p	$p \rightarrow t t j$ 10/18

Scattering amplitudes workflow

Algebraic complexity

- Intermediate steps in scattering amplitude computations can produce very large expressions
- To manage complexity, use numerical methods and then restore analytic dependence
- Replace symbolic operations with numerical evaluations in a finite field (integers mod prime P)

[von Manteuffel, Schabinger '14] [Peraro '16]

• Numerical framework: FiniteFlow

[Peraro '19]

Introduction	Scattering amplitudes workflow	Two-loop $gg \rightarrow t\bar{t}g$ amplitudes	Conclusions and outlook
	00000000		

Analytic complexity: DEs for MIs

MIs satisfy the following differential equation:

$$\mathrm{d}\vec{f}(\vec{x},\epsilon) = \mathrm{d}A(\vec{x},\epsilon) \ \vec{f}(\vec{x},\epsilon) \ ,$$

where \vec{x} are the kinematic invariants \rightarrow **6 variables**

[1] Badger, Becchetti, Chaubey, Marzucca '23 [2] Badger, Becchetti, Giraudo, Zoia '24

Colomba Brancaccio

Towards two-loop QCD corrections to pp
ightarrow ttj

Analytic complexity: DEs for MIs

For **PBB**², MIs satisfy the following **differential equation**:

$$d\vec{f}(\vec{x},\epsilon) = \sum_{k=0}^{2} \epsilon^{k} \sum_{j} c_{kj} \omega_{j}(\vec{x}) \vec{f}(\vec{x},\epsilon)$$

where \vec{x} are the kinematic invariants \rightarrow 6 variables

DEs with nested square roots

DEs quadratic in ϵ \rightarrow solution in terms of elliptic functions

[1] Badger, Becchetti, Chaubey, Marzucca '23 [2] Badger, Becchetti, Giraudo, Zoia '24

Colomba Brancaccio

Towards two-loop QCD corrections to pp
ightarrow ttj

Introduction	Scattering amplitudes workflow	Two-loop $gg ightarrow t\overline{t}g$ amplitudes	Conclusions and outlook
	00000000		

Analytic complexity: pentagon functions

• Expand the MIs around $\epsilon = 0$:

$$f(\vec{x},\epsilon) = \sum_{k=0}^{4} \epsilon^{k} f^{k}(\vec{x})$$

- For each topology and each permutation
 - \rightarrow derive the DEs

 \rightarrow write the solution in terms of Chen iterated integrals

$$[W_{i_1}, ..., W_{i_k}]_{\vec{x_0}}(\vec{x}) = \int_{\gamma} [W_{i_1}, ..., W_{i_{k-1}}]_{\vec{x_0}} d\log(W_{i_k})$$

with $\vec{x_0}$ boundaries \rightarrow computed with AMFlow [Liu, Ma, '22]

Starting from weight 1 up to weight 4 → choose a set of algebraically independet f^k(x) called F^k_i(x)

see [Gehrmann, Henn, Lo Presti '18] [Chicherin, Sotnikov '20] [Chicherin, Sotnikov, Zoia '22] [Abreu, Chicherin, Ita, Page, Sotnikov, Tschernow, Zoia '24]

Colomba Brancaccio

Towards two-loop QCD corrections to pp
ightarrow ttj

Analytic complexity: a basis of special functions for ttj

- Choose the MIs such that the "problematic" functions appearing only at $\mathcal{O}(\epsilon^4)$

 \rightarrow only in the finite remainder

- Analytic cancellation of the poles
- Dramatic simplification of amplitude expressions
- The amplitude takes now the form

$$A_{\rm LC}^{hel,2L}(\epsilon,\vec{x}) = \sum_{i} \sum_{k=-4}^{0} \epsilon^{k} r_{ki}(\vec{x}) \mathsf{F}_{i}(\vec{x})$$

• $F_i(\vec{x})$ evaluated using generalised power series [Moriello '20] method as implemented in DiffExp [Hidding '21]

see also Tommaso Armadillo's talk

Colomba Brancaccio

Introduction	Scattering amplitudes workflow	Two-loop $gg \rightarrow t\bar{t}g$ amplitudes	Conclusions and outlool
		•00	

Notation and kinematics

Evaluated process:

$$g(p_4)g(p_5)
ightarrow t(p_1)\overline{t}(p_2)g(p_3),$$

where p_i are external momenta.

Kinematics:

$$p_1^2 = p_2^2 = m_t^2, \quad p_3^2 = p_4^2 = p_5^2 = 0, \quad d_{ij} = p_i \cdot p_j$$

All particles are on-shell and m_t is the top-quark mass

Spin Structure Basis for Helicity States:

$$A_{LC}^{(L)}(1_t^+, 2_{\bar{t}}^+, 3^{h_3}, 4^{h_4}, 5^{h_5}; n_t, n_{\bar{t}}) = m_t \Phi(3^{h_3}, 4^{h_4}, 5^{h_5})$$
$$\sum_{i=1}^4 \Theta_i(1, 2; n_t, n_{\bar{t}}) A_{LC}^{(L),[i]}(1_t^+, 2_{\bar{t}}^+, 3^{h_3}, 4^{h_4}, 5^{h_5})$$

see also [Badger, Becchetti, Chaubey, Marzucca, Sarandrea '22]

Colomba Brancaccio

Towards two-loop QCD corrections to $pp \rightarrow ttj$

Introduction	Scattering amplitudes workflow	Two-loop $gg \rightarrow t\bar{t}g$ amplitudes	Conclusions and outlook
		000	

Finite remainder reconstruction

• Mass-renormalised amplitude are gauge invariant

\rightarrow Gauge invariance check \checkmark

• Two-loop helicity amplitudes for $gg \to t \bar{t}g$ in terms of a basis of special functions

\rightarrow simplication of the amplitude:

helicity	max degrees MIs recon.	max degrees SF recon.
+++++	294	131
+++-+	384	269
++++-	395	264

• UV/IR poles identified analytically and finite remainder computed directly

ightarrow Pole check \checkmark

Colomba Brancaccio

Towards two-loop QCD corrections to $pp \rightarrow ttj$

Introduction 000000	Scattering amplitudes workflow	Two-loop $gg \rightarrow t\bar{t}g$ amplitudes 00 $ullet$	Conclusions and outlook O
D It .			

• Example: Numerical evaluations of $A_{LC}^{(2)}(++++; n_t n_{\bar{t}})$

- Decay direction fixed $(n_t = n_{\bar{t}} = p_3)$
- Finite remainder computed in 't Hooft-Veltman scheme

Phase-Space points	$A_{LC}^{(2)}(++++;n_tn_{\bar{t}})[\text{GeV}^{-2}]$
$d_{12} \rightarrow 0.1074, d_{23} \rightarrow 0.2719, d_{34} \rightarrow -0.1563,$	10.002060 2.1072061 ;
$d_{45} \rightarrow 0.5001, d_{15} \rightarrow -0.03196, mt^2 \rightarrow 0.02502$	19.020202 - 5.10789017
$d_{12} \rightarrow 0.3915, d_{23} \rightarrow 0.06997, d_{34} \rightarrow -0.06034,$	0.07061470 0.00640655 /
$d_{45} \rightarrow 0.5002, d_{15} \rightarrow -0.1293, mt^2 \rightarrow 0.02499$	0.07001470 - 0.000490557
$d_{12} \rightarrow 0.2167, d_{23} \rightarrow 0.02186, d_{34} \rightarrow -0.01149,$	20 210122 27 542150 ;
$d_{45} \rightarrow 0.5007, d_{15} \rightarrow -0.04709, mt^2 \rightarrow 0.02502$	-29.219122 - 27.3421307
$d_{12} \rightarrow 0.2986, d_{23} \rightarrow 0.1599, d_{34} \rightarrow -0.05978,$	0.07290521 + 0.96257506 ;
$d_{45} \rightarrow 0.4998, d_{15} \rightarrow -0.2899, mt^2 \rightarrow 0.02500$	-0.97280321 + 0.803373007
$d_{12} \to 0.2882, d_{23} \to 0.04770, d_{34} \to -0.1080,$	0 40407026 0 52165671 ;
$d_{45} \rightarrow 0.5000, d_{15} \rightarrow -0.1583, mt^2 \rightarrow 0.02502$	Preliminary

with $d_{ij} = p_i \cdot p_j$, normalised here w.r.t. $2 p_4 \cdot p_5$

Colomba Brancaccio

Towards two-loop QCD corrections to $pp \rightarrow ttj$

Introduction 000000	Scattering amplitudes workflow	Two-loop gg — 000	→ <i>t</i> t̄g amplitudes	Conclusions and outlook
TOPline	summary			
What an	ıd why?		What are o	ur results?
● Two-I ampli → bot	oop scattering tude for $pp ightarrow t ar{t} j$ ttleneck for $t ar{t} j$		• Analytic p direct det finite ren	oole check → ermination of the nainder !
precis predic	e theoretical tions 4 kev	auestions	• Numerica the two-l	al evaluation of loop amplitudes
How?	t Star		What's nex	<u>t?</u>

- Optimized IBP relations (NeatIBP)
- Finite fields framework
- Special function basis

- Deliver pheno viable results
- Explore analytical
 - reconstruction viability

Colomba Brancaccio

Towards two-loop QCD corrections to $pp \rightarrow ttj$

Introduction 000000	Scattering amplitudes workflow	Two-loop $gg ightarrow t ar{t} g$ amplitudes 000	Conclusions and outlook •
TOPline	e summary		
What a	nd why?	What are	our results?
• Two- ampli → bo	loop scattering itude for $pp ightarrow t\bar{t}j$ ttleneck for $t\bar{t}j$	 Analytic direct de finite re 	pole check \rightarrow etermination of the mainder
precis	se theoretical	Numeri	cal evaluation of
predi	ctions Thank	you!!! the two	-loop amplitudes
How?	1000	What's ne	<u>xt?</u>
 Optim 	nized IBP relations	Deliver	oheno viable
(Neat	IBP)	results	
• Finite	e fields framework	Explore	analytical
• Special function basis		reconst	ruction viability

Towards two-loop QCD corrections to $\it{pp}
ightarrow \it{ttj}$

Backup

Numerical evaluation of the MIs

- Comparison of the evaluation performance for the different topologies using DiffExp
- Numerical checks of the result against AMFLow
- Evaluation strategy still not optimised for phenomenological applications