

Comological Correlators as Twisted Integrals

\n7 Object of interest: Wavefunction for cosmological fluctuations

\nFlat-space wavefunction

\n
$$
\left(\hat{\Omega}_{n}^{(t)}\right)
$$
\nFlat-space Wavefunction

\n
$$
S = \int d^{4}x \left[-\frac{1}{2}(34)^{2} - \sum_{p_{2}}\frac{a_{p}}{p_{1}}4^{p}\right] \xrightarrow{\text{Berninosa, Postnikov in,}} \hat{\Omega}_{n}^{(t)} \text{ is computed using Feynman diagrams}
$$
\n
$$
\hat{\Omega}_{n}^{(t)} = \text{Computed using Feynman diagrams}
$$
\n
$$
\hat{\Omega}_{n}^{(t)} = \frac{|\vec{k}_{1} \dots |\vec{k}_{n}| \cdot |\vec{k}_{n}| \cdot |\vec{k}_{n}| \cdot |\vec{k}_{n}| \cdot |\vec{k}_{n}| \cdot |\vec{k}_{n}|}{|\vec{k}_{1} \dots |\vec{k}_{n}| \cdot |\vec{k}_{n}| \cdot
$$

Combinatorial def^{ny} of $\hat{\Omega}_n^{\omega}$: (Arkani-Hamed, Benincasa, Postnikov¹7)

-> Form complete tubings - maximal set of non-overlapping graph

To each τ_i , the associated hyperplane polynomial S:: $\tau_i \rightarrow S_i = \sum_{v \in V_i} X_v + \sum_{e \in E_i} Y_e$.

-> For example, the 3-site graph: $\hat{\Omega}_{3}^{(0)} = (\bigcirc - \bigcirc - \bigcirc) + (\bigcirc - \bigcirc - \bigcirc)$ = $\frac{1}{(x_1+x_2+x_3)(x_1+y_1)(x_2+y_1+y_2)(x_3+y_3)}\left(\frac{1}{x_1+x_2+y_2}+\frac{1}{x_2+x_3+y_1}\right)$ = $\frac{1}{S_1 S_2 S_3 S_4} \left(\frac{1}{S_5} + \frac{1}{S_6} \right)$.

Comological Wavefunction:

\n
$$
\Rightarrow
$$
 Setup: Theory of conformally coupled scalars with (non-conformal)
\npolynomial' interactions in a power-law FRW background:\n
$$
S = \int d^{3}x d\eta \sqrt{-g} \left[-\frac{1}{2} (3\phi)^{2} - \frac{1}{12} R \dot{\phi}^{2} - \sum_{p>2} \frac{a_{p}}{p!} \dot{\phi}^{p} \right]
$$
\nwhere the metric is $d\dot{s}^{2} = \dot{a}^{2}(\eta) \left[-d\eta^{2} + d\vec{x}^{2} \right]$.

· We assume that the scale factor takes the form of ^a power law:

e assume that the scale factor rates in equation
\n
$$
\alpha(\eta) = \left(\frac{\eta}{\eta_0}\right)^{-(1+\epsilon)} \begin{cases} \epsilon = 0 \quad (\text{de Sitter}) \\ \epsilon = -1 \quad (\text{Minkowski}) \\ \epsilon = -2 \quad (\text{Radiation domination}) \\ \epsilon = -3 \quad (\text{Matter domination}) \end{cases}
$$

From that space to FRW spacetimes:
\n
$$
\Rightarrow FRW
$$
 Wavefunction coefficients \longrightarrow Integrateanified that-space wavef''
\n
$$
\frac{V_n^{(i)} = \int u \Psi_n^{(i)} \qquad \text{(twisted FRW integrals)}
$$
\nwhere $\Psi_n^{(i)} = \frac{\partial u}{\partial x} (x_1 + x_1, y_2) d^n x_1$ (FRW from),
\n
$$
u = \prod_{i=1}^n (x_1)^{\varepsilon} = \prod_{i=1}^n T_i^{\varepsilon} \qquad \text{(twist)}. \Rightarrow
$$
\n
$$
\Rightarrow
$$
 Denote shifted linear factors in $\Psi_n^{(i)}$ by:
\n
$$
B_i(x_1x, y) = S_i(x + x, y), \text{ s.t., } \Psi_n^{(i)} = d^n x \sum_{i=1}^n \prod_{i=2}^n \frac{1}{B_i}.
$$

 $Example:$ the 3-site tree-level FRW wavefunction coefficient $\frac{\psi_3^{(0)}}{2}$

The 3-site free-level FI

\n
$$
\Psi_3^{(0)} = \int_0^\infty (x_1x_2x_3)^{\frac{2}{5}} \Psi_3^{(0)}
$$
\n
$$
\Psi_3^{(0)} = \frac{d^3x}{B_1B_2B_3B_4} \left(\frac{1}{B_5} + \frac{1}{B_5} + \frac{1}{B
$$

where
$$
\Psi_3^{(0)} = \frac{d^3x}{B_1B_2B_3B_4} \left(\frac{1}{B_5} + \frac{1}{B_6}\right)
$$

with the linear factors B: defined by:
\n
$$
B_1 = X_1 + x_1 + 3
$$
\n
$$
B_2 = X_2 + x_2 + 3 + 3
$$
\n
$$
B_3 = X_2 + x_3 + 3
$$
\n
$$
B_4 = X_1 + X_2 + X_3 + x_1 + x_2 + x_3
$$
\n
$$
B_5 = X_1 + X_2 + x_1 + x_2 + 3
$$
\n
$$
B_6 = X_2 + X_3 + x_2 + x_3 + 3
$$
\nEach twisted integral is associated to a hyperplane arrangement

Recent progress

-------- progress
-> Twisted integrals enormously rich in structure mathematics integrals enormously vich in structure - mat
governed by the theory of <u>twisted cohomology</u>.

$$
\rightarrow
$$
 The twisted integrals $\Psi_n^{(t)}$ form a finite-dimensional vector space, spanned by a basis of master integrals.

$$
4.4
$$
\n
$$
4.4
$$

$$
\# of independent master integrals = \# of bounded regions defined
$$
\n
$$
by divisors of the integrand (x)
$$

(Aomoto'75, Mastrolia , Mizera (19)

QUESTION: Are there physical and geometrical arguments that govern this characterization of the physical subspace of integrals onto which the DEG closes ? ANSWER : Yes , based on unitarity cuts and the geometry of the associated hyperplane arrangement ! (SD, A.Pokraka ; 2411 .XXXXX

Relative twisted cohomology and cuts \rightarrow The twisted cohomology of $Y_n^{(U)}$: $H^{n}(M \backslash B; \nabla)$:= covariantly closed n-forms on $M \backslash B$ $-$ (*) covanantly closed n-forms on IVIND
covanantly exact n-forms on MYB $\frac{1}{1-\frac{1$ $\{B_i = 0\}$ $classifies$ all non-trivial differential n-forms on $M\backslash\overline{B}$ U
-> The dual cohomology to (*) is the relative twisted cohomology : $\H^{n}:=\H^{n}\bigl(M,\mathbb{B},\vec{\forall}\bigr)\subseteq\bigoplus\limits_{p=0}^{n}\bigoplus\limits_{|\pi|=p}\mathcal{S}_{\mathcal{J}}\left(\H^{n-p}\left(M_{\mathcal{J}}\,;\vec{\forall}\bigl_{\pi}\right)\right)$ multi-index $M \cap \mathbb{B}_J$ is the space associated to the cut $(B_{J} = \cap_{j \in J} \{B_{j} = 0\})$.

Dual cohomology = direct sum of twisted cohomology of each cut.

Result: Physical subspace is spanned by all FRN forms that have non-overlapping residues with
$$
\Psi_n^{(i)}
$$
:

\n $H_{PNS} \subset Span \{ \text{alog}_{\mathcal{J}} \circ \overline{\Omega}_{\mathcal{J}} \}_{\mathcal{J}} \text{ s.t. } Res_{\mathcal{J}} [\Psi_n^{(i)}] \neq 0$

\n**Task ahead:** Given a graph contributing to $\Psi_n^{(i)}$,

\norganize a basis of forms that have compatible sepuerial residues with the physical FRN form $\Psi_n^{(i)}$.

Task ahead: Given a organize a basis of forms that have compatible sequential ahead: Given a graph contributing to y
anize a basis of forms that have compatib
residues with the physical FRW form $\Psi_n^{(l)}$.

A pedagogical example : the 3-site chain \rightarrow \Rightarrow Hyperplane polynomials B_i :
 $B_i = \bigoplus \bullet \bullet = \mathbf{x}_i + \mathbf{x}_i + \mathbf{y}_i$, E_{t} , X_{t} $e:$ the 3-site chain
als B_i :
y, $B_{\tau=4}$ = $e^{2\pi i x}$ + 2 + x₃+X₁+X₂+X₃ $B_2 = -\Theta - z_2 + x_2 + y_1 + y_2, B_5 = \Theta - z_2$ $1 + x^2 + x^2$ + $x_2 + y_2$ $B_3 =$ \rightarrow $B_6 =$ \rightarrow $\alpha_2 + \gamma_2 + \gamma_1 + \gamma_2$, $B_6 =$ \rightarrow \rightarrow $\alpha_2 + \beta_3 + \gamma_2$, $B_6 =$ \rightarrow \rightarrow $\alpha_2 + \gamma_3 + \gamma_2$ $x_3 + x_2 + x_3 + y_1$. FRW form : $x_2 + x_2 + 3_1 + 3_2$, $B_5 =$
 $x_3 + x_3 + 3_2$, $B_6 =$
 $\frac{x_3 + x_3 + 3_2}{x_3 - x_3 - x_2}$, $B_6 =$
 $\frac{B_6B_2B_3B_4}{x_3 - x_3 - x_2}$ $differential from on M/B w/M=C³/\{x_1x_2x_3\}=0.$ u
-> Now, interested in M after taking a sequential residue Res_J: M_{J} := $M \cap B_{J}$ where $B_{J} = \cap_{j \in J} B_{j}$

⇒ Linear relation:

\n
$$
\boxed{B_{2} + B_{4} = B_{5} + B_{6}}
$$
\n
$$
\boxed{\uparrow}
$$
\n
$$
\boxed{B_{2} + B_{4} = B_{5} + B_{6}}
$$
\n
$$
\boxed{\uparrow}
$$
\n
$$
\boxed{B_{2} + B_{4} = B_{5} + B_{6}}
$$
\n
$$
\boxed{B_{2} + B_{6}}
$$
\n
$$
\boxed{B_{2} + B_{6}}
$$
\n
$$
\boxed{B_{3} + B_{6}}
$$
\n
$$
\boxed{B_{4} + B_{5} + B_{6}}
$$
\n
$$
\boxed{B_{5} + B_{6}}
$$
\n
$$
\boxed{B_{6} + B_{6}}
$$
\n
$$
\boxed{B_{7} + B_{8} + B_{6}}
$$
\n
$$
\boxed{B_{8} + B_{6}}
$$
\n
$$
\boxed{B_{9} + B_{10}}
$$
\nThese are 2-dim" topological spaces).

Observation: Of all the 1-cuts, only
$$
M_4
$$
 has a bounded
chamber \Rightarrow only 1-cut with non-trivial cohomology.

$$
-3 \t2-cuts/Double residues: {6 \t2 = 15 possible 2-cuts:\n{M12, M13, M51, M23, M62, M63, M41, M61, M42, M43, M53, M45, M65}\nM46, M56}\nM46, M56}\n+3-cuts/Triple residues: (6) = 20-4 = 16 possible 3-cuts: 6\nM123, M412, M612, M413, M53, M613, M561, M561, 6\nM423, M412, M612, M413, M553, M613, M451, M561, M562, M453}\n+8 + 16 = 25 bounded chambers: 25 RRW forms/
$$
\n
$$
mass \t-1
$$

STEP 2: Classify all non-trivial cut cohomologies into all non-trivial cut cohomologies into
physical, unphysical and <u>degenerate/mixed</u> cuts.

· Physical cuts have non-trivial sequential residues on $\mathfrak{L}_3^{(0)}$: where $J \in \{1\}$, $\{4, 1\}$, $\{6, 1\}$, $\{4, 3\}$, $\{5, 3\}$, $\{4, 5\}$, $\{4, 6\}$, $\{1, 2, 1\}$

。 Unphysical cuts have trivial sequential residues on $\Psi_3^{(\mathsf{o})}$: $Res_{7} [4_{\text{{o}}}^{3}] =$

(Benincase , McLeod, , 0 (Steinmann-relations) Vergu' 20; Benincasa, Bobadilla '22)

where $J \in \left\{ \{4,2\}$, $\left\{ 5,6\right\}$, $\left\{ 4,1,2\right\}$, $\left\{ 5,6\right\}$, 1}, {4,2,3}, {5,6 $, 3\}$.

#B: J corresponds to ^a sequence that always saturates either side of the linear relation : Ba Bo B2 B5 & * & ^⑨ & & => B2⁺ Br ⁼ By + Bo t t · may or may not annihilate : Rese^s /] ⁼ ^I contributes only one physical form.

while
$$
Res_{S,6,2} [\Psi_3^{(0)}] = 0
$$
. \rightarrow becomes blue.
Left with 16 physical forms for DEG system.

$$
\rightarrow
$$
 This two-step classification lands on the physical
\nsubspace of FRW forms for any n-site l-loop graph $\Psi_n^{(l)}$ or
\nneeds knowledge of non-trivial cut cohomologies
\ntagger
\ngystem of linear relations

7 Universal graphical rules that systematize this algorithm via residue or cut tubings:

Sal graphical rules that system of
$$
h
$$
 in 2^{n} variable or 2^{n} while $ReS_{BA} \Psi_{3}^{(0)} = \left(\begin{array}{c} 2^{n-1} & -2^{n-1} \\ 2^{n-1} & -2^{n-1} \\ 2^{n-1} & -2^{n-1} \end{array} \right)$

· Correspond to all ways $Res_{\mathbb{B}_4} \Psi_3^{(0)} = \begin{cases} 0 & \text{if } 0 \leq x \leq 1, \ \infty & \text{if } 0 \leq x \leq 1, \ \infty & \text{if } 0 \leq x \leq 1, \ \infty & \text{if } 0 \leq x \leq 1, \ \infty & \text{if } 0 \leq x \leq 1, \ \infty & \text{if } 0 \leq x \leq 1, \ \infty & \text{if } 0 \leq x \leq 1, \ \infty & \text{if } 0 \leq x \leq 1, \ \infty & \text{if } 0 \leq x \leq 1,$

· Correspond to all I-dim"cut cohomologies , counting degen . cut once .

The uni-dimensional cohomology condition(s) : i) Cut-tubing(s) must enclose all sites of a graph $\Psi_n^{(l)}$ (2) (Not allowed) ii) Inside each cut-tubing, leave a vertex unenclosed.

consistent with the uni-dimensional cohomology condition.

The degenerate at condition: Identify cut-tubings that set all but one B; in Ig to zero.

3b) Evolve 2-cuts obtained in (2b):

-> New prediction: For 2-site L-loop coefficients $\psi_2^{(l)}$. $2(3.2^{l} \frac{1}{2}$ = 2(3.2 - 1)
#2-cuts Matches counting for sunset (L= #2-cuts
2) graph (Baumann, Goodnew, predicted by loop-level kinematic flow ! Lee '24; Hang '24)

Outlook & Discussions

- \rightarrow Cut/residue stratification of relative twisted cohomology + physics, geometry of hyperplane arrangements explains the origin of the physical DEQ subspace predicted recentl .
L.
- 7. Algorithm in terms of cut-tubings whose construction dictated by simple universal rules; holds for any $\psi_n^{(l)}$.

Future Directions

> Why does the characterization of the physical subspace favour only cuts corresponding to products of flat-space amplitudes An only ?

- > Does the flow of cut-tubings encode the connection matrix Aij in the DEG system - could it explain the physio-geometric origins of kinematic flow ? (Chen , Feng , Tao '24 ; > Does this analysis extend to recent progress Gasparotto, Mazloumi, Xu 124) beyond our toy model theory of conformally-coupled scalars?

۳