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Cosmological Correlators as Twisted Integrals
-> Object of interest : Wavefunction for cosmological fluctuations

seeds

Flat-space wavefunction > Wavefunction in power-law
(

FRW cosmology (4(4)

Flat-space Wavefunction : (Arkani-Hamed I

Benincasa
,
PostnikovIt;

> Setup : S = (d [-t(2- Benincasa'22)

- : computed using Feynman diagrammaticso
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Combinatorial def" of E (Arkani-Hamed ,
Benincasa

,
Postnikov17)

< Form complete tubings maximal set of non-overlapping graph
tubings 2; and sum over all possible complete tubings.

-> to each I ,
the associated hyperplane polynomial Sii

2 Si = Xu + Ye
V-Vi etEi

7 For example,
the 3-site graph :
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Cosmological Wavefunction :

-> Setup :Theory of conformally coupled scalars with (non-conformal)
polynomial interactions in a power-law FRW background :

S = Jody Fg(-(20)-tRP-pp J12

where the metric is ds = a (y) /-dr +a2].

· We assume that the scale factor takes the form of a power law :

E = 0 (de Sitter)

a(y) =(
- (+S E-0 (inflation)

2= - 1 (Minkowski)
E= - 2 (Radiation domination)
2 = -3 (Matter domination)



From flat-space to FRW spacetimes :

-> FRW Wavefunction coefficients > Integrate shifted flat-space wavef
In against a "twist" factor

=Gu (twisted FRW integrals)

where F=( +X , Ye)d (FRW form,

u= (x)= (twist) .

> Denote shifted linear factors in E by :

Bi(xiX ,3) = Sim+X
, Y)

,
St,=T



Example : the 3-site tree-level FRW wavefunction coefficient 4)

(
(0) a3xwhere Iz = BiBzBaba) is is

with the linear factors B: defined by :

B
,
= X

, +
x

, +y
, Be = X

, + X 2 +Xz + x
,
+x2 +x

By = Y2 + x2 +y
,
+Yz

,
By = X

,
+X2+ x ,

+x2+ Tz

Bz = Xz+ 23 +Yz Bo = X2 +Xy + xz+ x3 + Y
,.

Each twisted integral is associated to a hyperplane arrangement



Recent progress
-> Twisted integrals enormously rich in structure

- mathematics

governed by the theory of twisted cohomology.

-> The twisted integrals I' form a finite-dimensional rector space ,

spanned by a basis of master integrals.

-> y are shown to satisfy first-order differential equations
(Arkani-Hamed ,

Baumann,

drinJu9j = EAij Jug; Hillman
, Joyce,

Lee
,

Pimentel ' 23 ; SD ,
Pokraka'23;

He
, Jiang , Liv ,Yang ,Zhang'24,

-> Twisted cohomology predicts the size of the rector space :
· - - )

# of independent master integrals = # of bounded regions defined
by divisors of the integrand (2)

(Aomoto'75,

Mastrolia
,
Mizera (19)



-> Surprisingly ,
universal rules of kinematic flow pick out a

distinguished subset of master integrals <XI
(Arkani-Hamed ,

Baumann
,
Hillman

,

At tree-level : Joyce,
Lee

,
Pimentel'23)

n =2 n =3 n =<(chain) ·
n =1 (star)

& ·· --
-

&

x & 25 213 312

an
-1

& 16 64 64

At 1-loop : n=2 (bubble) n =3 (triangle) (He, Jiang , Liv ,Yang , Zhang'24,

⑧ ...
Baumann

, Goodhew,
Lee'24,

·

Benincasa
,
Brunello

,
Mandal,

Mastrolia
,
Vazo

, '24)
2 10 99

kn - 2(2 - 1) 10 50



QUESTION : Are there physical and geometrical arguments

that govern this characterization of the physical subspace

of integrals onto which the DEG closes ?

ANSWER : Yes
,
based on unitarity cuts and the geometry

of the associated hyperplane arrangement !

(SD ,
A .Pokraka ; 2411 . XXXXX



Relative twisted cohomology and cuts

-> The twisted cohomology of Th.

H2(M/B ;V) := covariantly closed n-forms on M B ()

covariantly exact n-forms on M B

where M:=Wi] , BUBi ,
Bi= (Bi= o]

classifies all non-trivial differential n-forms on MB

- The dual cohomology to (*) is the relative twisted cohomology :

M = Hr (m ,
B

, 5) [F + Sj (Hr-p(My ; v( +)
p=0 (5)=

py ↓
multi-index = Mr By is the space
denoting a cut associated to the cut

(Bj = 1 jes[Bj=03) ·

Dual cohomology= direct sum of twisted cohomology of eachcut.



Result : Physical subspace is spanned by all FRW forms
that have non-overlapping residues with ( :AHiphys <Span [dlog+ ns]

,

St
.

Res
,
(i) * 0

Task ahead : Given a graph contributing toI

organize a basis of forms that have compatible sequential
residues with the physical FRW formI



A pedagogical example : the 3-site chain

-> Hyperplane polynomials Bi :

B = . - = x
,
+X ,

+Y, Br=<
= · - = x

,
+

2
+z+X ,

+Xz+Xz

* *B= - = U2Xz+ Y+Y ,
By= - = x

,
+2 + X

,
+X2+ yz

Bz= · · = u+Xz +Y2 ,
Bo . . = 12+z + Xz+X3+y

,.

FRW form : FdeBBa)+ i

differential form on MB w/M = (3 [x ,2243) = 0.

-> Now
,

interested in M after taking a sequential residue Resy :

My := MrBy where By = -jetBj



> Linear relation : B+ Ba = Bj + Bo

↑
Ba

Bo
B2 B5

& * & =
⑨ & &

t t

STEP 1 : Classify all non-trivial cohomologies corresponding to
each cut.

-> I-cuts/Single residues - 6 possible l-cuts corresponding to 6 Bis
:

[M ,, Mr , My ,
Ma

,
Ms

,
Mo].

(These are 2-dim" topological spaces) .



Observation : Of all the l-cuts , only Me has a bounded

chamber E only 1-cut with non-trivial cohomology.

Ms = Mc=

&
No bounded chambers I-bounded chamber

=> trivial cohomology => one-dimensional

(M ,, M2 , Mz , Ms , Mo) cohomology (Mc)



-> 2-cuts Double residues : 6) = 15 possible 2-cuts :

[Miz , Miz , Msi , Maz , Maz , Mez , Mai , Mai , Maz , Maz , May , Mas,

Mas
,Mas]

↓ = 8

only these have non-trivial
cohomologies

-> 3-cuts/Triple residues : (6) = 20-4 = 16 possible 3-cuts : *
[Mrz

, Maz , Maz , Ma , Mari Maz , Masi , Magi, =16

Mazz , Mazz , Masz , Magz , Masz ,
Masz

, Maoz , Maso].

: 1 +8 + 16 = 25 bounded chambers -> 25 FRW forms/
master integrals.



STEP 2 : Classify all non-trivial cut cohomologies into
physical , unphysical and degenerate/mixed cuts.

· Physical cuts have non-trivial sequential residues onE

Rest [t] Fo

where Je[41] ,
14 , 13 ,

16, 13 , 14.33 , <5, 33 , 54 , 53 ,
15 ,03 , 412 ,

33,

46 .
1

, 23 , 24 ,
1
, 33

,
45,

1
, 33

, 46,

1
, 33 . 44 ,

5
, 13 . 95,

2
, 33 , 44 ,

6
, 33].

· Unphysical cuts have trivial sequential residues onE :

(Benincase ,
McLeod,

,

Rest [E] = 0 (Steinmann-relations) Vergu' 20 ;

Benincasa
,
Bobadilla22

where JE((4 , 23 , (5, 63 , 55 ,
1
,27 , 95,

0
, 13 , 24 ,

2
,33 , 95,

6
, 33].



#B: J corresponds to a sequence that always saturates

either side of the linear relation :

Ba
Bo

B2 B5
& * &

⑨ & & => B2+Br = By +Bo
t t

· Degenerate/mixed cuts may or may not annihilate:
Res (F] =-Resa02/] = Reses/] = I

I

4
,
5

,
2

13
,32",

contributes only one physical form.

while Ress
, ,
2/] = 0

. I becomes blue

Left with 16 physical forms for DEG system.



> This two-step classification lands on the physical

subspace of FRW forms for any n-site -loop graphI
- needs knowledge of non-trivial cut cohomologies

↑

system of linear relations

ohical rules that systematize this> Universal gra,
algorithm via residue or cut tubings :

Res
·

Correspond to all ways to factorize I into product(s) of flat amplitudesa
An only
·Correspond to all I-dim"cut cohomologies , counting degen .

cut once
.



Cut tubings - the 3-site tree example

I-out tubing

1) The scattering facet :-...

The uni-dimensional cohomology condition(s) :

i) cut-tubing(s) must enclose all sites of a graphI

· ⑨ & . . (Not allowed)

ii) Inside each cut-tubing ,
leave a vertex unenclosed.



2-cut tubings

2a) Evolution of the scattering facet :

Be
L
B

M S Bu
&

..
The good cut condition : Given a cut-tubing, identify all

linear relations I (in which it is the largest tubing) and

pair tubings that do not saturate either side of I-
Ba

Recall : B2 B5
Bo

& * & =
⑨ & &

t t



2b) We also have the following 2-cuts :

> ⑨ · Y *

< ⑤ *
⑨ ⑤

consistent with the uni-dimensional cohomology condition.



3-cut tubings

3a) Keep evolving the scattering facet :

Be
L
B

L Ba
M

Ba
S Bu

Bo
⑨..-Be -.

L ~
L Ba Ba

&. B. . ·

B5·
The degenerate cut condition : Identify cut-tubings that set

all but one Bi in In to zero .



3b) Evolve 2-cuts obtained in (2b) :

o

Lv

o

&

&
3) We also have the following 3-cut :

& X . X *



Cut Stratification - All Trees and Loops
-> simple universal rules forcut tubings enumerate
the physical subspace of FRW forms for any n-site,

↳-loop graph Y(l)I
-> At tree-level

, explains the counting (-&h+) predicted
by kinematic flow ,

with b-cuts organized in a Pascal's triangle :

1cuts 2-cuts b-cutscuts Scuts Gocuts
...

30 31 32 33 34 35...

n= 2 I I

n=3 ↓ 2 ↓

n=4 ↓ 3 3 I

n= 5 I & G & I

n= 6 I 5 1010 5 I

i : i i i i i



He, Jiang , Lin ,Yang ,Zhang'24)
-> Matches the couting (=-2 (2-1)) for I-loop n-gons :

1-cuts 2-cuts 3-cuts &-cuts...

n=2 (bubble) 3 7

n=3 (triangle) & 22. I 25

n=4 (box) 5 42 100 19

: : : :

-> New prediction : For 2-site L-loop coefficients
C

.

#physical forms+) = 2( .
2 - 1)

# 2-cuts

Matches counting for sunset (l=2) graph (Baumann , goodnew,

Lee '24 ; Hang '24)
predicted by loop-level kinematic flow !



Outlook & Discussions

< Cut/residue stratification of relative twisted cohomology +

physics , geometry of hyperplane arrangements explains the

origin of the physical DEG subspace predicted recently.

7. Algorithm in terms of cut-tubings whose construction

dictated by simple universal rules ; holds for anytll.



Future Directions

> Why does the characterization of the physical subspace

favour only cuts corresponding to products of flat-space
amplitudes An only ?

-> Does the flow of cut-tubings encode the connection

matrix Aij in the DEG system - could it explain the

physio-geometric origins of kinematic flow ?

(Chen , Feng ,
Tao '24 ;

> Does this analysis extend to recent progress Gasparotto,
Mazloumi,

Xu 124)

beyond our toy model theory of conformally-coupled scalars?


