Differential Equations for Cosmological Correlators
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Cosmological Correlators

time
A

10 billion correlations

years in galaxies

380,000 correlations

years in the CMB
reheating/ correlations on the

end of inflation boundary of quasi-dS

Cosmological correlators encode the physics of the primordial universe.



Cosmological Bootstrap

Cosmological correlators live on the future boundary of quasi-dS.

bootstrap boundary correlators in
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practical advantage: simplify calculations

conceptual advantage: reveals hidden structures

[See e.g. Snowmass 2203.08121]



Differential Equations in dS

In de Sitter, boundary correlators satisfy conformal Ward identities.
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[See also J. Chen's talk]

Do similar differential equations exist beyond dS?



Toy Model in FRW

Consider a conformally coupled scalar with polynomial interactions:
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conformal mass non-conformal interaction

in an FRW spacetime expanding as a power law:
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Wavefunction in Flat Space

Consider the tree-level wavefunction/correlators in this theory.
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Arkani-Hamed, Benincasa, Postnikov [2017]



Wavefunction in FRW

In FRW, the wavefunction can be represented as twisted integrals:
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T rational form (single-valued)

Qw = Yflat (X X, Y) /\ dxv

Modern amplitude approaches to compute integrals of this type include:

» twisted cohomology

» method of differential equations

[See also S. De's talk]



Twisted Cohomology

Two integrands differing by a total differential give the same integral.
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The set of equivalence classes of integrands = twisted cohomology

Basis size = # bounded regions formed by the singular hyperplanes.

= satisfies a closed system of differential equations.

[See yesterday's talks]



Two-Site Chain

The integral for the two-site chain takes the form
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We consider a family of integrals with the same singularities:
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Master Integrals

# master integrals = # bounded regions formed by the singular lines.
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Master Integrals

A good basis choice is given by the canonical forms of the bounded regions.
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Differential Equations

Taking the differential of the basis vector and performing IBP gives

with
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General Tree Graphs

Unfortunately, this direct approach breaks down for more complicated graphs.

» Twisted cohomology naively gives an over-complete basis.

» Deriving equations using IBP relations is highly technical.

Remarkably, these are solved by simple graphical rules.



Differential Equations

We've derived the system of differential equations for the two-site chain.
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However, the explicit result isn't very illuminating and is hard to generalize.



A Hidden Pattern

A hidden pattern was revealed when we drew pictures of the results!
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The tubings grow, and the system closes when all vertices are enclosed.



A Hidden Pattern

The same pattern is found for arbitrary n-site graphs at tree level.
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Remarkably, we can predict all entries with simple graphical rules.




Graphical Representation
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[See also S. De's talk]



Kinematic Flow

Upon differentiation, graph tubings evolve according to simple graphical rules.
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These rules allow us to predict (by hand!) the equations for all tree graphs.

This reformulates bulk time evolution as a flow in kinematic space.

Arkani-Hamed, Baumann, Hillman, Joyce, HL, Pimentel [2023]



Loop Integrands

The FRW wavefunction for the loop integral can be written as
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Just like in the tree-level case, we can write the loop integrand /integral as

a twisted integral over the flat-space wavefunction integrand/integral.

[See also F. Vaz3o's talk]



Loop Integrands

The same graphical rules apply to loop integrands, except one modification:

vanishing functions

A loop graph vanishes if a tube can return to itself by following the arrows.

He, Jiang, Liu, Yang, Zhang [2024]
Baumann, Goodhew, Lee [2024]



Conclusion

We've found a hidden pattern in the differential equations

for the FRW wavefunction of conformally coupled scalars.
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give the differential equations for all trees and loop integrands.



