Differential Equations for Cosmological Correlators

Hayden Lee

University of Pennsylvania

w/ N. Arkani-Hamed, D. Baumann, A. Hillman, A. Joyce, G. Pimentel [2312.05300, 2312.05303] w/ D. Baumann, H. Goodhew [2410.17994]

Cosmological Correlators

Cosmological correlators encode the physics of the primordial universe.

Cosmological Bootstrap

Cosmological correlators live on the future boundary of quasi-dS.

practical advantage: simplify calculations

conceptual advantage: reveals hidden structures

Differential Equations in dS

In de Sitter, boundary correlators satisfy conformal Ward identities.

conformal Casimir

$$(X_1^2 - 1)\partial_{X_1}^2 - 2X_1\partial_{X_1}$$

cf.
$$(\Box - m^2)G(\eta, \eta') = i\delta(\eta - \eta')$$

Arkani-Hamed, Maldacena [2015] Arkani-Hamed, Baumann, HL, Pimentel [2018]

Chen, Feng, Tao [2024]

Gasparotto, Mazloumi, Xu [2024]

[See also J. Chen's talk]

Do similar differential equations exist beyond dS?

Toy Model in FRW

Consider a conformally coupled scalar with polynomial interactions:

$$S = \int \mathrm{d}^4 x \sqrt{-g} \left[-\frac{1}{2} (\partial \phi)^2 - \frac{1}{12} R \phi^2 - \frac{\lambda}{3!} \phi^3 \right]$$
 conformal mass non-conformal interaction

in an FRW spacetime expanding as a **power law**:

$$\mathrm{d}s^2 = a^2(\eta)[-\mathrm{d}\eta^2 + \mathrm{d}\vec{x}^2] \qquad a(\eta) \propto \frac{1}{\eta^{1+\varepsilon}} \begin{cases} \varepsilon = 0 : \mathrm{dS} \\ \varepsilon = -1 : \mathrm{flat} \\ \varepsilon = -2 : \mathrm{radiation} \\ \varepsilon = -3 : \mathrm{matter} \end{cases}$$

Wavefunction in Flat Space

Consider the tree-level wavefunction/correlators in this theory.

In **flat space**, the WF is given by **rational functions** with simple poles.

$$\psi_{\text{flat}}^{(2)} = \underbrace{\begin{array}{c} 1 \\ (X_1 + X_2)(X_1 + Y)(X_2 + Y) \end{array}}_{\text{flat}}$$

$$\psi_{\text{flat}}^{(3)} = \underbrace{\begin{array}{c} 1 \\ (X_1 + X_2 + X_3)(X_1 + Y)(X_2 + Y + Y')(X_3 + Y') \end{array}}_{\text{flat}} \left(\frac{1}{X_1 + X_2 + Y'} + \frac{1}{X_2 + X_3 + Y} \right)$$

Wavefunction in FRW

In FRW, the wavefunction can be represented as twisted integrals:

Modern amplitude approaches to compute integrals of this type include:

- twisted cohomology
- method of differential equations

Twisted Cohomology

Two integrands differing by a total differential give the same integral.

$$0 = \int \mathbf{d}(u\,\Omega) = \int u\,\underbrace{(\mathbf{d} + \mathbf{d}\log u\,\wedge)}_{\equiv \nabla_{\omega}}\Omega \quad \Rightarrow \quad \Omega \sim \Omega + \nabla_{\omega}\xi$$

The set of equivalence classes of integrands = twisted cohomology

Basis size = # bounded regions formed by the singular hyperplanes.

 \Rightarrow satisfies a closed system of **differential equations**.

Two-Site Chain

The integral for the two-site chain takes the form

$$\underbrace{X_1 \quad X_2} \quad = \quad \int_0^\infty \frac{(x_1 x_2)^{\varepsilon}}{(x_1 + X_1 + Y)(x_2 + X_2 + Y)(x_1 + x_2 + X_1 + X_2)}$$

We consider a family of integrals with the same singularities:

$$\int_0^\infty (x_1 x_2)^{\varepsilon} \Omega_{\mathbf{n}}, \quad \Omega_{\mathbf{n}} = \frac{\mathrm{d}x_1 \mathrm{d}x_2}{T_1^{n_1} T_2^{n_2} B_1^{n_3} B_2^{n_4} B_3^{n_5}} \qquad (n_i \in \mathbb{Z})$$

$$T_1 = x_1$$
, $B_1 = x_1 + X_1 + Y$,
 $T_2 = x_2$, $B_2 = x_2 + X_2 + Y$, $B_3 = x_1 + x_2 + X_1 + X_2$

Master Integrals

master integrals = # bounded regions formed by the singular lines.

$$T_1 = x_1$$
 $T_2 = x_2$
 $B_1 = x_1 + X_1 + Y$
 $B_2 = x_2 + X_2 + Y$
 $B_3 = x_1 + x_2 + X_1 + X_2$

Master Integrals

A good basis choice is given by the canonical forms of the bounded regions.

De, Pokraka [2023] Arkani-Hamed, Baumann, Hillman, Joyce, HL, Pimentel [2023]

Differential Equations

Taking the differential of the basis vector and performing IBP gives

with

General Tree Graphs

Unfortunately, this direct approach breaks down for more complicated graphs.

- Twisted cohomology naively gives an over-complete basis.
- Deriving equations using IBP relations is highly technical.

Remarkably, these are solved by simple graphical rules.

Differential Equations

We've derived the system of differential equations for the two-site chain.

$$\mathbf{d} \begin{bmatrix} \psi \\ F \\ \tilde{F} \\ Z \end{bmatrix} = \varepsilon \begin{bmatrix} \mathbf{\psi} \\ F \\ \tilde{F} \\ Z \end{bmatrix}$$

$$A = \sum_{i} \alpha_{i} \, \mathbf{d} \log R_{i}$$

However, the explicit result isn't very illuminating and is hard to generalize.

A Hidden Pattern

A hidden pattern was revealed when we drew pictures of the results!

The tubings grow, and the system closes when all vertices are enclosed.

A Hidden Pattern

The same pattern is found for arbitrary **n-site graphs** at tree level.

Remarkably, we can predict all entries with simple graphical rules.

Graphical Representation

Letters:

connected

(activated)

tubings

13 (19) letters

$$\begin{array}{ccc}
\bullet \times \bullet \times \bullet & \equiv & \operatorname{d} \log(X_1 + Y), \\
\bullet \times \bullet \times \bullet & \equiv & \operatorname{d} \log(X_3 + Y'), \\
\bullet \times \bullet \times \bullet & \equiv & \operatorname{d} \log(X_2 + Y + Y'),
\end{array}$$

Functions:

complete

(disconnected)

tubings

16 (25) functions

naive counting from twisted cohomology (64 vs. 201 for n_{site} =4)

Kinematic Flow

Upon differentiation, graph tubings evolve according to simple graphical rules.

These rules allow us to predict (by hand!) the equations for all tree graphs.

This reformulates bulk time evolution as a flow in kinematic space.

Loop Integrands

The FRW wavefunction for the loop integral can be written as

$$\psi_{\text{FRW}}^{\text{loop}}(\mathbf{X}, \mathbf{Y}) = \int \prod_{\ell} d^d y_{\ell} \, \hat{\psi}_{\text{FRW}}^{\text{loop}}(\mathbf{X}, \mathbf{y}) \int_{0}^{\infty} \left(\prod_{v} dx_{v} \, x_{v}^{\varepsilon} \right) \hat{\psi}_{\text{flat}}^{\text{loop}}(\mathbf{X} + \mathbf{x}, \mathbf{y})$$

Just like in the tree-level case, we can write the **loop integrand/integral** as a twisted integral over the flat-space wavefunction integrand/integral.

Loop Integrands

The same graphical rules apply to loop integrands, except one modification:

A loop graph vanishes if a tube can return to itself by following the arrows.

Conclusion

We've found a **hidden pattern** in the differential equations for the FRW wavefunction of conformally coupled scalars.

Simple rules give the differential equations for all trees and loop integrands.