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Modern multiloop calculations often require the computation of very large sets of integrals
Can be cut down by orders of magnitude by reducing to master integrals

O(10*~°) integrals — Integral — __, O(10"~?2) master integrals
Reduction

|

Vector
Decomposition

A

Arbitrary vector —— —> Basis vectors

\4

A given family of Feynman Integrals forms a (finite dimensional) vector space

I J:iciei

[Smirnov, Petukhov, 2011] 1=1 \
[Frellesvig, Gasparotto, Mandal, Mastrolia, Matiazzi, Mizera 2019] IBP Coefficients

Feynman Integrals — Master Feynman Integrals
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We can endow this vector space with an inner product (—|—), known as the intersection
number. This inner product allows us to compute IBP decomposition coefficients. [Mastrolia, Mizera, 2018]
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We can endow this vector space with an inner product (—|—), known as the intersection
number. This inner product allows us to compute IBP decomposition coefficients. [Mastrolia, Mizera, 2018]

n n mn
J=) e —— Ulh) =Y elelh) =Y aCy  Cy = (eilhy)
1=1 i=1 i=1
Inverting
E J ‘ h -1 ) ji “Master Decomposition Formula”

To define intersection numbers properly we must switch representation of
Feynman integrals.
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Super quick Baikov review:

Momentum Representation Baikov Representation

J . 1, ) ~m
Ial---am ~ / <Hd k’z> D?l — D?nm e Ial-..am ~ / (H de) qu . Z%m

[Baikov, 1996]

In Baikov the integration variables are the propagators of the Feynman Integral

The function b(z1, -+ , Z;n) is a multivariate polynomial that is unique for each family

B in Seva’s talk

7Y is a non integer parameter that depends on d
b” = u is a multivalued function called the “twist”

Integrals of this kind are called “twisted integrals” — central objects of study for intersection
theory

J
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‘N\ @1, is a meromorphic top n-form
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Defines an equivalence relation: (1| ~ (or + V€] — (| Cr] = (¢pr + Vuér| CR]

l

HZ;L The twisted cohomology group: Closed modulo exact forms

v =dim HY = {# of solutions to w = 0} is the number of Master Integrals

[Lee, Pomeransky, 2013]

[Frellesvig, Gasparotto, Laporta, Mandal, Mastrolia, Matiazzi, Mastrolia, Mizera 2021]
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The intersection number is a pairing between two elements of H [Matsumoto, 1998

(oLl¢R) Z/L(SOL)MOR

A regularisation map to make the integral well defined

A practical definition for 1-forms:

du
(pLlor) = Y Res.—p(YoR) Vi =|d+— |¢Y=¢r
pEP u
The set of the zeroes of the polynomial b Can solve by Laurent series ansatz to extract

the terms contributing to the residue

For more than one variable things are more complicated, and there are several strategies
one can adopt.

[Chestnov, Frellesvig, Gasparotto, Mandal, Mastrolia, 2022]

[Frellesvig, Gasparotto, Laporta, Mandal, Mastrolia, Matiazzi, Mastrolia, Mizera 2021]
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intersection number computation to be well defined
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There is an important condition that the differential forms must satisfy for the
intersection number computation to be well defined

dz1 N\ - Ndz,,
I= | @ pum) = (orlCal wr=
Cr

Zixlzm

The twist u must be regulated: Need u(0CRr) = 0 but u(0) # 0 for Feynman integrals

One solution — “regulated twist”: ~ © — u, = 2{ -+ 20 u —— u,(0) =0

p — 0 at the end of the calculation

¢; = lim
p—0

n
—1
S (Jlhy) (€7
=1 [Frellesvig, Gasparotto, Mandal, Mastrolia, Mizera et al 2019]
[Frellesvig, Gasparotto, Mandal, Mastrolia, Mizera et al 2021]
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There is an important condition that the differential forms must satisfy for the
intersection number computation to be well defined

dz1 N\ - Ndz,,
I Z/ uw(z) or(z) =: (¢r| CR] YL =
Cr

Zixlzm

The twist u must be regulated: Need u(0CRr) = 0 but u(0) # 0 for Feynman integrals

One solution — “regulated twist”: ~ © — u, = 2{ -+ 20 u —— u,(0) =0

p — 0 at the end of the calculation

diverge!
finite!
\ n
S E ) -1
C; = ;E)% <J|h]> (C )ji
=1 [Frellesvig, Gasparotto, Mandal, Mastrolia, Mizera et al 2019]

[Frellesvig, Gasparotto, Mandal, Mastrolia, Mizera et al 2021]
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Another solution: We work with elements of a relative twisted cohomology group instead of
the “ordinary” cohomology group which does not need the introduction of a regulator p

In practice this means we can use a new type of differential form, known as the “delta form”

U(Z) [Matsumoto,2018]

— [Caron-Huot,Pokraka,2021]

<§0L ‘5Z> - ReSZ:() ('LL(O) SOL) [Caron-Huot,Pokraka,2022]
[Duhr,Porkert et al, 2024]

0 forms act as residue operators, “integrating out” variables from intersection numbers

(See Franziska’s talk!)
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Regulator approach: u, = 2°(z —1)7 h) =
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Relative cohomology is deeply related to analytic regularisation

Can be interpreted as a careful analysis of what survives the limitas p — 0

Regulated twist U:\/regulated twist c; = lim <Z<J|hj> (Cl>j'>
—0 §
AW uy(z) = 2 u(z)  u(0) #0 T Ni=
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. — ;i_% <i<<]hj> (Cl>ji> c; = ;ii% <Z<J|P hj) (Cl)ji>

Cfij = <62|h]> Cij = <€’i|phj>

[Fontana, Peraro 2023]

(onlor) = % Res.—o (u(2) o1 (2)) x Resaco (pr(2)/u(2)) + O(")
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—0
p i=1

Cfij = <62|h]> Cij = <€’i|phj>

[Fontana, Peraro 2023]
1
(orler) = S Resa—o (u(2) pr(2)) x Res.=o (pr(2)/u(2)) + O(p")
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[Fontana, Peraro 2023]
1
(orler) = S Resa—o (u(2) pr(2)) x Res.=o (pr(2)/u(2)) + O(p")
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™

. —1 _ . . -1
¢; = lim (;umh» (C >ji>—._1 lim (J|phj) x lim (C71) . Cij = (eslphy)

The delta-form secretly is a specific case of the formula above for yr = 1/%

im (01| = Res.q (u(2) 01.(2))  Resucq (1/(z u(2))) = Fo2= ‘u“((())) L) _ (o015(2)

p—0
[Brunello, Crisanti, Chestnov, Frellesvig, Mandal, Mastrolia 2023]
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Consider a one loop box on the double cut

N /p2 el = (2

|
!
—-—f— - - —4-@ — —— b=4dm® (st+ (21— 23) %) — 87t + 25t (21 + 23) + 4dsz1z3 — t (21 — 23)°
|
!
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N /p2 el = (2

uw="5bl1"5/2 = dim H" = {# of solutions to w =0} =4

/ ! \\
physical basis

)2 D1

|
!
—-—f— - - —4-@ — —— b=4dm® (st+ (21— 23) %) — 87t + 25t (21 + 23) + 4dsz1z3 — t (21 — 23)°
|
!
|
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Consider a one loop box on the double cut

N /p2 el = (2

uw="5bl1"5/2 = dim H" = {# of solutions to w =0} =4

<
/ 1 \\ physical basis dual basis

)2 D1

|
!
—-—f— - - —4-@ — —— b=4dm® (st+ (21— 23) %) — 87t + 25t (21 + 23) + 4dsz1z3 — t (21 — 23)°
|
!
|

) 11 1 )
€= {1, 2_17 2—37 212‘3} h ={1,61,03,013} dab = 5((1)5([))
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Consider a one loop box on the double cut

N /p2 el = (2

|
!
—-—f— - - —4-@ — —— b=4dm® (st+ (21— 23) %) — 87t + 25t (21 + 23) + 4dsz1z3 — t (21 — 23)°
|
!
|

uw="5bl1"5/2 = dim H" = {# of solutions to w =0} =4

<
/ 1 \\ physical basis dual basis

)2 D1

- 1 1 1 ~
6_{1’ PR zlzg} h = {1,061, 63,013} dap = 6(a)d(d)
st2 —4m2—|—s+t
4((d77)(d73) ) 0 0 0
st2((4478d)m2+(d76)t)(74m2+s+t) 4(d75)m25t(4m2757t) 0 0
C = <é|ﬁ> — 2(d—7)(d—6)(d—4)(t—4m?2)? "~ (d—6)(d—4)(t—4m?2)?
st2((44—8d)m2+(d—6)t)(—4m2—|—s—|—t) 0 4(d—5)m2st(4m2—s—t) 0
2(d—7)(d—6)(d2—4)(t—4m2)2 "~ (d—6)(d—4)(t—4m?2)?
(d—7)(d—sé)(4m2—t) —(d—G)(Stt—4m2) —(d—6)($tt—4m2) 1
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Up to four point non-planar Feynman Integrals at two loops:

/

[Brunello, Crisanti, Chestnov, Frellesvig, Mandal, Mastrolia 2023]

Pentabox:

[Brunello, Chestnov, Mastrolia 2024]

Fourier Integrals in QCD and Gravity:

N (g )i

_ 1 0(u1-q)d(ug-(q—Fk))e"a?
T, = /Md ]

ij d . d
2 — ig]® G —/d q1d"qo

(g1 + q2)2(g57+43)

[Brunello, Crisanti, Giroux, Smith, Mastrolia 2023]




Hidden Structures (1/3)

UNIVERSITA
DEGLI STUDI
DI PADOVA

Delta forms allow for the computation of much simpler intersection numbers for Feynman

Integrals

Can help us shed light on properties of Feynman integral bases previously not known

P>

3(d—2)2mi

0

0
0
0
0
0

{1111

e =

W [0 0 8 b
227k b
0 0 0

0 0 0

0 0 0
1

@om Y 0

0 (d—3)m32 (1)

0 0 (d—3)m32
0 0 0

_ o O O O O O

1
Y Y Y Y Y Y
Z1 R2 R3 R1R2 K1R3 k223 R1R2%3

5123 }

[Crisanti, Smith, 2024]
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By studying the elements on the diagonal of the C-matrix unexpected patterns seem to
emerge

We conjecture a new closed formula for computing intersection numbers for quadratic twists

e n+p-+q
(B(@Pb(2)7) = fu(pr4:7) X jtt(f((bi;l\H 0= b

Homogenised polynomial

Hessian determinants are multivariate discriminants of

Factorised prefactor . .
guadratic polynomials

First formula of its kind beyond dLog forms

[Crisanti, Smith, 2024]
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Example usage: P\ .

b=4m? (st + (21 — 23) ?) — s°t + 25t (21 + 23) + 4sz125 — t (21 — 23) °
u = b(d=5)/2 i

1 P4 141
b2

The various components evaluate to

B(0T) = e

det (H(b)
det (EL(bp)

Evaluate: <1

—163t2(—4m2 + 5+ t)
—325%tH(—4m? + 5 + t)?

)
)
And thus

1 d—5 1 1
b2> f2( 2 )X det (H(b))  4(d — 3)2st2 (—4m2 + 5 + 1)

¢

No intersection number computation strategy needed!
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The (twisted cohomology) intersection number is an inner product between elements of a
cohomology group (and its dual).

* Through the usage of parametric representations such as Baikov Feynman integrals can be
cast as twisted period integrals. These twists must be regulated however for ordinary
intersection numbers to apply.

* Relative cohomology intersection numbers use a different formalism to allow for the removal
of regulators from intersection computations. Through careful analysis, we can show how the
relative intersection number can be thought of as a limit of ordinary intersection numbers.

* Relative cohomology intersection numbers seem to be closer to the “true nature” of
Feynman integrals — many patterns seem to emerge when studying their properties.
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Thank you for listening!
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Regulated twist yregulated twist
N u,(2) = 2 u(z)
du
<90L|90R> = Z ReSz:p(%WR) pr =d+ — w = @L
pEP x.\o(\ u




