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FEYNMAN INTEGRALS FROM DIFFERENTIAL EQUATIONS

We want to compute a Feynman integral family analytically with differential equations.

. ~ D =d—2¢

d”¢; \ ¥ 1
]VN/(HZ-,Ng)HD;/i

i=1 i=1

m Use |IBPs to find a basis of master integrals for the integral family

B Set up a differential equation w.r.t the external (kinematic) parameters

dI(X) = A(X,e)I(X) with d = Z dX;0x, where X; are kinematic variables

B Find a canonical differential equation [Henn]
J(X)=U-I(X) with dJ(X) = eB(X)J(X) and eB(X) = (dU) - U '+U - A(X,e)- U

and solve in terms of iterated integrals.

J(X) = Pexp (5[yB> - J (some point X") = (1+5LB+52LBLB+...> - J(XY)
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FEYNMAN INTEGRALS FROM DIFFERENTIAL EQUATIONS

We want to compute a Feynman integral family analytically with differential equations.

m Use IBPs to find a basis of master integrals for the integral family

L How can this be improved? [See talks by Giulio, Vsevolod, Rourou]

Twisted cohomology_/'

® Find a canonical differential equation and solve in terms of iterated integrals.

|—> How can this be found systematically? [See talk by Sara]

What are these?

What can we learn from Twisted cohomology ?
See also: [Talk by Shounak][Caron-Huot, Pokraka | Giroux, Pokraka]
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Feynman ’lnw(gmfs Twisted Cohomology



SHORT REVIEW: (RELATIVE) TWISTED COHOMOLOGY

multivalued function in £ single-valued form in Z , only poles @ branch points of ®

ﬁfunction with additional poles in £

Period of :relative twisted cohomology

Cij ~ /907: N @j
cohomology group with basis {¢g; } «——— dual cohomology group with basis {¢; }

--------------

: P.=P_,

homology group with basis{93} «——— dual homology group with basis{%}
H;; ~ weighted topological intersection of (¥4 & ¥
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FEYNMAN INTEGRALS AS TWISTED RELATIVE PERIODS

non-integer, contains £

koBaikov polynomial

e Define relative twisted (co-)homology groups and their duals

[Mastrolia, Mizera | Caron-Huot, Pokraka]

e Obtain period and intersection matrices P., P.,H ., C.

Baikov representation: I[(X)= (Z)“ d"z Vi

other
cuts

0 maximal
cuts

e Period matrix = Fundamental solution of DEQ: d P. = A(X,¢) P_.
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MAXIMAL CUTS AS TWISTED PERIODS

L D
szl déj

N s
[[iz: D;

Maximal cut: ~

2z 0 A"z dV N,

e Define relative twisted (co-)homology groups and their duals

e Obtain period and intersection matrices P., P.,H. C,

P maximal
e Y
cuts

9/18 TWISTED COHOMOLOGY & CANONICAL DIFFERENTIAL EQUATIONS | FRANZISKA PORKERT



DIFFERENTIAL EQUATIONS FOR PERIOD MATRICES

= Fundamental solution of thedifferential equation of the top sector

connection matrix A(X, ¢)

dpg _ Pg deC: Pm.C.

—J \\ /

other entries k’ diagonal blocks
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SELF-DUALITY AND BILINEAR RELATIONS FOR MAXIMAL CUTS

TWISTED RIEMANN BILINEAR RELATIONS SELF - DUALITY FOR MAXIMAL CUTS

For maximal cuts, we can choose bases, s.t.

~

P.=P .= A(X,e) = A(X, —¢)

.+ See also:
[Caron-Huot, Pokraka | Giroux, Pokraka | De, Pokrakal]

» Self-duality for full Feynman integrals:
[Pogel, Wang, Weinzierl, Wu, Xu] [Talk by Sebastian]

Bilinear relations for maximal cuts

'« For Calabi-Yau: Griffiths transversality
» For Hyperelliptic Curve: Legendre Relations
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Canonical Differential Equations

Twisted Cohomology



CENTRAL THEOREM

What is this?

The intersection matrix is constant

Basis and dual basis are in e-form and C-form —> in the external variables. dC = 0.

[Duhr, Porkert, Semper, Stawinski] l
Why??

Can we use this constructively?
Also observed for examples in [Caron-Huot, Pokraka | Giroux, Pokraka | De, Pokraka]
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THE C - FORM

Short version: All known (to us) canonical DEQS for Feynman integrals are also in C-form!
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THE C - FORM

Long version:

dJ(X) = eB(X)J(X) with B(X);; = zn:kafijk
k=1 !

m Differentially closed (f € A= 0x,f € AVi )
m Constants = K (0x,f=0Vi= f € K)

- A = K - vector space of closed differential forms
"""" generated by the forms appearing in B(X)

f"@ — Frac ((C RK .A)

[ Duhr, Semper, Stawinski, FP ]

B(X) in dLog-form with

1
fij :Zaijr_X

r

® -AdLog —
Rational functions in X
with singularities at the a;;r

dX .
® Adrog = <a~ijr — X‘ all 1, 7, 7“>

Elements of dF¢:
no pole/ pole of order > 1

—> AdLog M df(c — {O}
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WHY? PROOF!

Assumption: Period matrices P and P with differential equations in &-form and C-form (same algebra)

Twisted Riemann bilinear relations:

1 \T =T
C=_——PH") P
GL(N, A® K(g))> | ( T‘-Z) | » = Pexp <€/Q(X)>
= £ - expansion with coefficients in A > € GL(V, C(¢))

. = Pexp <g / n<x>>
| |

entries: Z 6kAk entries: Z ek Z C!fU J(w)
k w \

k "\ S .
€ JFc # eCcrF. lterated integrals
basis of words with J(0) =1
ApJ (D) = ZCZJ(UJ) — 0 = (clg — Ag)J(0) + Z ¢ J(w)
w wF~(

C-form < J(w) are linearly independent over F¢ = cffu =0 for w # () andcy € C '\

[Deneufchatel, Duchamp, Hoang Ngoc Minh, Solomon] et e ee ettt e,
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EXAMPLE: HYPERELLIPTIC INTEGRAL FAMILY

work in progress (arXiv:2412.XXXX)

Defines even hyperelliptic curve of genus 2
Choose basis of 5 master integrals I(\,e) with dI(A,e) = AN, e)I(A,€)

Rotate to a canonical basis J(A,e) = U(A, e)I(X,g)withdJ (X, g) = eB(A)J (X, €)
Using the algorithm by [Gérges, Nega, Tancredi, Wagner]

k—» Last step: Ansatz for final rotation: U g, =

o o O O O
o O o O O

0
0
0

*

*

* % % o o
* % % o o

... and solve for unknowns % (8 coupled DEQSs)
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EXAMPLE: HYPERELLIPTIC INTEGRAL FAMILY

FJENEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE NN NN EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE NN NN EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE .
m m

The intersection matrix is constant :
in the external variables, dC = 0.

EBaSis and dual basis are in £-form and C-form —>

1. Compute intersection matrix (' from basis & dual basis after final transformation:

- Contains the 8 unknowns Y of Uy,

2. Require all entries of C to be constant in parameters A; and solve for (some) Y% .

Ugyi— oo - - | . Allbutthree entries of the final transformation
* & k — — (expressed in periods, branch points & the three remaining new functions)
e 0 % — —
—— — =0
e - | | |
C = |- . ¢ - - | — Aconstant skew-diagonal intersection
‘ — — — —

The requirement, that the intersection matrix is constant, can be used consftructively!
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SUMMARY

‘ Twisted Riemann bilinear relations =—> bilinear relations for maximal cuts

A Basis and dual basis in & - and C - form => Constant intersection matrix

x Requiring constant intersection matrix can be used constructively

OUTLOOK

B Can we use constant intersection matrix for more examples (maximal cut & beyond)?

B Better understanding of the role of the C-form (more generally)




Thank you.’



