

Twisted Cohomology & Canonical Differential Equations

Franziska Porkert

with Claude Duhr, Cathrin Semper & Sven Stawinski

arXiv: 2408.04904

arXiv: 2407.17175

+ work in progress (arXiv:2412.XXXX)

Loop - the - Loop Workshop, 12.11.2024

MOTIVATION

geometry

function space

FEYNMAN INTEGRALS

Twisted cohomology

CONTENTS

Feynman Integrals Canonical Differential Equations

Feynman Integrals Twisted Cohomology

Canonical Differential Equations Twisted Cohomology

Feynman Integrals Canonical Differential Equations

FEYNMAN INTEGRALS FROM DIFFERENTIAL EQUATIONS

We want to compute a Feynman integral family analytically with differential equations.

$$I_{\nu} \sim \int \left(\prod_{i=1}^{L} \frac{\mathrm{d}^{D} \ell_{i}}{i \pi^{\frac{D}{2}}} \right) \prod_{j=1}^{n_{\mathrm{int}}} \frac{1}{D_{i}^{\nu_{i}}}$$

- Use IBPs to find a basis of master integrals for the integral family
- Set up a differential equation w.r.t the external (kinematic) parameters $d\mathbf{I}(\mathbf{X}) = A(\mathbf{X}, \varepsilon)\mathbf{I}(\mathbf{X})$ with $d = \sum dX_i \partial_{X_i}$ where X_i are kinematic variables
- Find a canonical differential equation [Henn]

$$\mathbf{J}(\mathbf{X}) = \mathbf{U} \cdot \mathbf{I}(\mathbf{X})$$
 with $d\mathbf{J}(\mathbf{X}) = \varepsilon B(\mathbf{X}) \mathbf{J}(\mathbf{X})$ and $\varepsilon B(\mathbf{X}) = (d\mathbf{U}) \cdot \mathbf{U}^{-1} + \mathbf{U} \cdot \mathbf{A}(\mathbf{X}, \varepsilon) \cdot \mathbf{U}^{-1}$ and solve in terms of iterated integrals.

$$\mathbf{J}(\mathbf{X}) = \mathbb{P}\exp\left(\varepsilon \int_{\gamma} B\right) \cdot \mathbf{J} \text{ (some point } \mathbf{X}^{0}\text{)} = \left(1 + \varepsilon \int_{\gamma} B + \varepsilon^{2} \int_{\gamma} B \int_{\gamma} B + \dots\right) \cdot \mathbf{J}(\mathbf{X}^{0})$$

FEYNMAN INTEGRALS FROM DIFFERENTIAL EQUATIONS

We want to compute a Feynman integral family analytically with differential equations. Use IBPs to find a basis of master integrals for the integral family → How can this be improved? [See talks by Giulio, Vsevolod, Rourou] Twisted cohomology. ■ Find a canonical differential equation and solve in terms of iterated integrals. → How can this be found systematically? [See talk by Sara] What are these? ←

What can we learn from Twisted cohomology?

See also: [Talk by Shounak] [Caron-Huot, Pokraka | Giroux, Pokraka]

Feynman Integrals Twisted Cohomology

SHORT REVIEW: (RELATIVE) TWISTED COHOMOLOGY

 $H_{ij}\sim$ weighted topological intersection of γ_i & $\check{\gamma}_j$

FEYNMAN INTEGRALS AS TWISTED RELATIVE PERIODS

Baikov representation: $I_{\underline{\nu}}(\underline{X}) = \int_{\Gamma} \underline{\mathcal{B}}(\underline{z})^{\mu} \cdot \mathrm{d}^n \underline{z} \qquad \prod_i z_i^{-\nu_i}$ Baikov polynomial

- Define relative twisted (co-)homology groups and their duals [Mastrolia, Mizera | Caron-Huot, Pokraka]
- ullet Obtain period and intersection matrices $m{P}_arepsilon$, $m{\check{P}}_arepsilon$, $m{H}_arepsilon$, $m{C}_arepsilon$

• Period matrix = Fundamental solution of DEQ: $\mathrm{d} P_{arepsilon} = A(X, arepsilon) \; P_{arepsilon}$

o non-integer, contains arepsilon

MAXIMAL CUTS AS TWISTED PERIODS

Maximal cut:
$$\sim \int \frac{\prod_{j=1}^L \mathrm{d}\ell_j^D}{\prod_{i=1}^N D_i^{\nu_i}} \Bigg| \frac{1}{D_i} \to \delta(D_i)$$

- Define relative twisted (co-)homology groups and their duals
- ullet Obtain period and intersection matrices $m{P}_arepsilon$, $m{\dot{P}}_arepsilon$, $m{H}_arepsilon$, $m{C}_arepsilon$

$$P_arepsilon \sim egin{bmatrix} \mathsf{maximal} \ \mathsf{cuts} \end{bmatrix}$$

DIFFERENTIAL EQUATIONS FOR PERIOD MATRICES

Maximal cut = Fundamental solution of the homogenous differential equation of the top sector

SELF-DUALITY AND BILINEAR RELATIONS FOR MAXIMAL CUTS

TWISTED RIEMANN BILINEAR RELATIONS

$$\boldsymbol{C} = \frac{1}{(2\pi i)^n} \boldsymbol{P} \left(\boldsymbol{H}^{-1}\right)^T \boldsymbol{\check{P}}^T$$

SELF - DUALITY FOR MAXIMAL CUTS

For maximal cuts, we can choose bases, s.t.

$$\check{\boldsymbol{P}}_{arepsilon} = \boldsymbol{P}_{-arepsilon} \Rightarrow \check{\boldsymbol{A}}(\boldsymbol{X}, arepsilon) = \boldsymbol{A}(\boldsymbol{X}, -arepsilon)$$

- See also: [Caron-Huot, Pokraka | Giroux, Pokraka | De, Pokraka]
- Self-duality for full Feynman integrals: [Pögel, Wang, Weinzierl, Wu, Xu] [Talk by Sebastian]

$$oldsymbol{C} = rac{1}{(2\pi i)^n} oldsymbol{P}_{arepsilon} \cdot \left(oldsymbol{H}^{-1}
ight)^T oldsymbol{P}_{-arepsilon}^T$$

Bilinear relations for maximal cuts

- $\varepsilon = 0$ For Calabi-Yau: Griffiths transversality For Hyperelliptic Curve: Legendre Relations

Canonical Differential Equations

Twisted Cohomology

CENTRAL THEOREM

Also observed for examples in [Caron-Huot, Pokraka | Giroux, Pokraka | De, Pokraka]

Short version: All known (to us) canonical DEQS for Feynman integrals are also in C-form!

THE C - FORM

Short version: All known (to us) canonical DEQS for Feynman integrals are also in C-form!

Long version:

$$d\mathbf{J}(\mathbf{X}) = \varepsilon B(\mathbf{X})\mathbf{J}(\mathbf{X})$$
 with $B(\mathbf{X})_{ij} = \sum_{k=1}^{n} dX_k f_{ijk}$

 $\mathcal{A} = \mathbb{K}$ - algebra of functions that contains all f_{ijk} and:

- Differentially closed ($f \in A \Rightarrow \partial_{X_i} f \in A \forall i$)
- lacksquare Constants = \mathbb{K} ($\partial_{X_i} f = 0 \ \forall i \Rightarrow f \in \mathbb{K}$)

$$\mathbb{A}=\mathbb{K}$$
 - vector space of closed differential forms generated by the forms appearing in $B(\boldsymbol{X})$

$$\mathcal{F}_{\mathbb{C}} = \operatorname{Frac}\left(\mathbb{C} \otimes_{\mathbb{K}} \mathcal{A}\right)$$

An ε - factorised differential equation is in C-form, if $\mathbb{A} \cap d\mathcal{F}_{\mathbb{C}} = \{0\}$.

[Duhr, Semper, Stawiński, FP]

Example:

B(X) in dLog-form with

$$f_{ij} = \sum_{r} \frac{1}{a_{ijr} - X}$$

 \bullet $\mathcal{A}_{\mathrm{dLog}} =$ Rational functions in Xwith singularities at the a_{ijr}

•
$$\mathbb{A}_{dLog} = \left\langle \frac{dX}{a_{ijr} - X} \middle| \text{ all } i, j, r \right\rangle$$

Elements of $d\mathcal{F}_{\mathbb{C}}$: no pole/ pole of order > 1

$$\Rightarrow \mathbb{A}_{dLog} \cap d\mathcal{F}_{\mathbb{C}} = \{0\}$$

WHY? PROOF!

Assumption: Period matrices P and \dot{P} with differential equations in ε -form and C-form (same algebra)

Twisted Riemann bilinear relations:

$$\mathbf{C} = \frac{1}{(2\pi i)^n} \mathbf{P} \left(\mathbf{H}^{-1} \right)^T \check{\mathbf{P}}^T$$

$$= \mathbb{E} \text{- expansion with coefficients in } \mathcal{A}$$

$$= \mathbb{E} \text{- expansion with coefficients in } \mathcal{A}$$

$$= \mathbb{E} \text{- expansion with coefficients in } \mathcal{A}$$

$$= \mathbb{E} \text{- expansion with coefficients in } \mathcal{A}$$

$$= \mathbb{E} \text{- expansion with coefficients in } \mathcal{A}$$

$$= \mathbb{E} \text{- expansion with coefficients in } \mathcal{A}$$

$$= \mathbb{E} \text{- expansion with coefficients in } \mathcal{A}$$

$$= \mathbb{E} \text{- expansion with coefficients in } \mathcal{A}$$

$$= \mathbb{E} \text{- expansion with coefficients in } \mathcal{A}$$

$$= \mathbb{E} \text{- expansion with coefficients in } \mathcal{A}$$

$$= \mathbb{E} \text{- expansion with coefficients in } \mathcal{A}$$

$$= \mathbb{E} \text{- expansion with coefficients in } \mathcal{A}$$

$$= \mathbb{E} \text{- expansion with coefficients in } \mathcal{A}$$

$$= \mathbb{E} \text{- expansion with coefficients in } \mathcal{A}$$

$$= \mathbb{E} \text{- expansion with coefficients in } \mathcal{A}$$

$$= \mathbb{E} \text{- expansion with coefficients in } \mathcal{A}$$

$$= \mathbb{E} \text{- expansion with coefficients in } \mathcal{A}$$

$$= \mathbb{E} \text{- expansion with coefficients in } \mathcal{A}$$

$$= \mathbb{E} \text{- expansion with coefficients in } \mathcal{A}$$

$$= \mathbb{E} \text{- expansion with coefficients in } \mathcal{A}$$

$$= \mathbb{E} \text{- expansion with coefficients in } \mathcal{A}$$

$$= \mathbb{E} \text{- expansion with coefficients in } \mathcal{A}$$

$$= \mathbb{E} \text{- expansion with coefficients in } \mathcal{A}$$

$$= \mathbb{E} \text{- expansion with coefficients in } \mathcal{A}$$

$$= \mathbb{E} \text{- expansion with coefficients in } \mathcal{A}$$

$$= \mathbb{E} \text{- expansion with coefficients in } \mathcal{A}$$

$$= \mathbb{E} \text{- expansion with coefficients in } \mathcal{A}$$

$$= \mathbb{E} \text{- expansion with coefficients in } \mathcal{A}$$

$$= \mathbb{E} \text{- expansion with coefficients in } \mathcal{A}$$

$$= \mathbb{E} \text{- expansion with coefficients in } \mathcal{A}$$

$$= \mathbb{E} \text{- expansion with coefficients in } \mathcal{A}$$

$$= \mathbb{E} \text{- expansion with coefficients in } \mathcal{A}$$

$$= \mathbb{E} \text{- expansion with coefficients in } \mathcal{A}$$

$$= \mathbb{E} \text{- expansion with coefficients in } \mathcal{A}$$

$$= \mathbb{E} \text{- expansion with coefficients in } \mathcal{A}$$

$$= \mathbb{E} \text{- expansion with coefficients in } \mathcal{A}$$

$$= \mathbb{E} \text{- expansion with coefficients in } \mathcal{A}$$

$$= \mathbb{E} \text{- expansion wi$$

$$\frac{\Delta_k J(\emptyset)}{w} = \sum_{w} c_w^k J(w) \implies 0 = (c_\emptyset^k - \Delta_k) J(\emptyset) + \sum_{w \neq \emptyset} c_w^k J(w)$$

C-form $\Leftrightarrow J(w)$ are linearly independent over $\mathcal{F}_{\mathbb{C}} \implies c_w^k = 0$ for $w \neq \emptyset$ and $c_\emptyset \in \mathbb{C}$ [Deneufchatel, Duchamp, Hoang Ngoc Minh, Solomon]

$$\Rightarrow c_w^k = 0 \text{ for } w \neq \emptyset \text{ and } c_\emptyset \in \mathbb{C}$$

 $C \in \mathbb{C}(\varepsilon) \longrightarrow \mathrm{d}C = 0$

EXAMPLE: HYPERELLIPTIC INTEGRAL FAMILY

work in progress (arXiv:2412.XXXX)

$$L(\underline{X},z) = \int \underbrace{(z-X_1)^{-\frac{1}{2}+a_1\varepsilon}\dots(z-X_6)^{-\frac{1}{2}+a_6\varepsilon}}_{\Phi = \frac{1}{y}\prod_{i=1}^6(1-\lambda_i^{-1}x)^{a_i\varepsilon}}, \ y^2 = (\lambda_1-x)\dots(\lambda_6-x)$$

$$Defines even hyperelliptic curve of genus 2$$

- lacksquare Choose basis of 5 master integrals $m{I}(\pmb{\lambda}, arepsilon)$ with $\mathrm{d} m{I}(\pmb{\lambda}, arepsilon) = m{A}(\pmb{\lambda}, arepsilon) m{I}(\pmb{\lambda}, arepsilon)$
- Rotate to a canonical basis $J(\lambda, \varepsilon) = U(\lambda, \varepsilon)I(\lambda, \varepsilon)$ with $dJ(\lambda, \varepsilon) = \varepsilon B(\lambda)J(\lambda, \varepsilon)$ Using the algorithm by [Görges, Nega, Tancredi, Wagner]

... and solve for unknowns * (8 coupled DEQs)

EXAMPLE: HYPERELLIPTIC INTEGRAL FAMILY

Basis and dual basis are in arepsilon-form and C-form \Rightarrow The intersection matrix is constant in the external variables, $\mathrm{d}m{C}=0$.

- 1. Compute intersection matrix C from basis & dual basis after final transformation: \bot Contains the 8 unknowns \bigstar of U_{fin}
- 2. Require all entries of C to be constant in parameters λ_i and solve for (some) \bigstar .

The requirement, that the intersection matrix is constant, can be used constructively!

SUMMARY

Twisted Riemann bilinear relations \Rightarrow bilinear relations for maximal cuts

Basis and dual basis in arepsilon - and C - form \Rightarrow Constant intersection matrix

Requiring constant intersection matrix can be used constructively

OUTLOOK

- Can we use constant intersection matrix for more examples (maximal cut & beyond)?
- Better understanding of the role of the C-form (more generally)

Thank you!