Series expansion approach
and application to 2L mixed
corrections to Drell-Yan

In collaboration with R. Bonciani, S. Devoto, N. Rana, A. Vicini
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After the discovery of the
and more precision machine;

Standard Model Production Cross Section Measurements

Iggs,

Status: February 2022
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Theoretical challenges P

»  We need theoretical predictions at least as accurate as the ) g \
experimental measurements. r
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to compute eynman Integrals?
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»  The first step Is to reduce to a set of Master Integrals;
N
Zcili: ¢; Ml n<N

» One possible way to evaluate the Mls is through differential equations;

0 . :
—(a;; 55, d) = Z scalar integrals = Z master integrals

0s;,
N

» By repeating the same process for every master integral we obtain a system of first order linear
and homogeneous differential equations.
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vWhat are we looking for?

» SO we just have to solve a system of first order differential equations... HOW?
»|deally, we would like:

; ImportMasterIntegrals["my master -integrals"]
® A methOd easy tO aUtOmatlse ABISS: Succesfully imported 380 master integrals

® A solution compact and easy to handle to allow for simplifications

2 2
Lir(x) + Lis G) _ ’; log; *)
N B

Lir(x) + L, (1 —x) = 3 + log(x)log(1 — x)

® A solution fast to evaluate to be implemented in a Monte-Carlo
® [0 have high control on numerical precision
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Analytlcal solutlon
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The first method Is to solve it analytically;

—p? +2m* + \/(p2 — 2m?%)? — 4m*

2m?

2
B(p2m®) =2 — v —loem?+ " (L _ )1 h =
o\P > YE — 102 M~ - 2 \7 r)logr wit r

The result Is provided In closed form as a combination of elementary and special functions, such as
Generalised PolyLogarithms;

< dt — 1
Glay,...,a,;7) = Gla, ...,a,;7) and G(0,;z2) = — log" z
JO t - al n.

When increasing the number of scales or legs, an analytical expression in terms of known classes of
functions might not be available.
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Semi-analytical solution

A third possibility could be to use a semi-analytical approach. In this case the result is provided as
a power series which can be easily evaluated in every point of the domain.

1 1 1

2P+ ...

This method is quite easy to automate. Provided that we have infinite time and space, we could

achieve arbitrary precision. Moreover, once we have the solution, it can be evaluated numerically in
a negligible amount of time.

However, series have a limited radius of convergence, hence, an algorithm for performing the
analytic continuation of the solution must e provided.
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A SIMPLE EXAMPLE
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»  This procedure can be generalised to systems of differential equations;

» The method has been firstly implemented in the Mathematica package DIffExp for a real
kinematic variable [FMoriello, arXiv:1907.13234], [M.Hidding, arXiv:2006.05510]
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SeaSyde

https: //github.com/TommasoArmadillo/SeaSyde

» Our goal in the end is to fit the W mass to the data, hence, we need to employ
a gauge Invariant definition of the mass. For this reason, it is important to
perform the calculations in the complex-mass scheme.
2 _ 2 SEASYDE
py, = my, — il ymy,
» The complex mass scheme regularises the behaviour
at the resonance: 1 -0
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SeaS d e A.Vicini, arXiv:2205.03345]
y https: //github.com/TommasoArmadillo/SeaSyde

Power series have a limited radius of convergence which is determined by
the position of the nearest singularity.

We need to be able to extend the solution beyond the radius of convergence,

to the entire complex plane. SEASYDE
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Power series have a limited radius of convergence which is determined by
the position of the nearest singularity.

We need to be able to extend the solution beyond the radius of convergence,

to the entire complex plane. SEASYDE
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Power series have a limited radius of convergence which is determined by
the position of the nearest singularity.

We need to be able to extend the solution beyond the radius of convergence,

to the entire complex plane. SEASYDE
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[TA, R. Bonciani, S. Devoto, N.Rana,
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SeaSyde (Series Expansion Approach for SYstems o

A.Vicini, arXiv:2205.03345]

ub.com/TommasoArmadillo/SeaSyde

- Differential Equations)

IS a general package for solving a system of differentia
series expansion approach:;

Seasyde can handle complex kinematic variables by introducing an original
algorithm for the analytic continuation in the complex plane, thus being able to

handle complex internal masses;

SeaSyde can deal with arbitrary system of differential equations, covering also

the case of elliptic integrals.

equations using the

&S

SEASYDE
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Reduction to Master Integrals

We Iidentified 11 integral families with either O, 1 or 2 masses. We reduced them to Master
Integrals using Kira in combination with Firefly. The complete reduction took O(16Ah).

The most complicated topology was a two-loop box
with two internal different masses;

We evaluated all the masters using the method of
differential equations, using a semi-analytical
approach.

X Dl;l X D%l X D2;3
/ _ e _ e _ — L —

12




Creatingagrd
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ferential

—quations

nouse Mathematica

Master /9 package based of LiteRed 2 Solving the system

and Kira) (Seasyde) \

INntegrals

TN

Boundary Conditions

Numerical grid

(AMFlow)

» The computation of a grid with 3250 points for the two-loop box with two internal and different
masses (56 equations) required ~3 weeks on 26 cores.

»This approach is completely general and easy to automate, and can be applied, in principle, to

any integral family.

13



» In my; determination studies we need 0O(10?) templates with different values of Uy If we need 3
weeks for a single grid, this is not feasible.

x 10711

Grid point +
s=Sp =1 For each point we 2
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= - O_
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w.r.t KRw
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» Every point of our grid becomes a series expansion in opy, = Uy — Hy, Which can be evaluated in
a negligible amount of time for arbitrary (but reasonable) values of the W mass;

» The calculation of the ouy, expansion for the entire grid took ~ 1.5 days.

14




hard
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. We present our final result in the form of the hard function H'"1, which can be passed to a Monte-
Carlo generator, e.g. MATRIX
HUD = — [2Re /i
16 (MO0 | 4 ©.0))

»  We can interpolate the value of H (L.1)in the entire phase-space. Thanks to its smoothness the error
s, at worst, at the 107> level.
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We presented how to use the series expansion approach to compute 2-loop Feynman integrals
with internal (complex) masses;

We showed how we applied those techniques to the computation of the virtual contribution to
mixed QCD-EW corrections to Charged-current Drell-Yan;

We showed how to reconstruct a posteriori the exact dependence on the W mass;

Finally, the techniques employed in this calculation are completely general, and can be applied to
other relevant 2->2 process at NNLO QCD-EW level or even NNLO EW.

16
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The computational challenges are similar to
the ones for FCC-ee.
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faylor vs Logarithmic

» When moving along an horizontal line, the Feynman prescription plays an important role
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Analytic continuation

» When moving along an horizontal line, the Feynman prescription plays an important role
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NNLO correctis

Double Real Pure Virtual

~ Real-Virtual >——'<
>:°°“<

»  Each of the three pieces carries its own challenges; /

Feynman
Integrals

»  The pure virtual contributions are usually the main bottleneck;

» Each individual contribution is divergent in the dimensional regulator €.



Evaluatlng Feynman mtegrals

» What we would like to compute are objects like this:

[(a;; s

/ B "\

kinematic variables

d=4-"2¢

/ l
X J’ JHlﬂd/z @0‘1 G

e.g. (p1—qp)> —m*+id

» A given set of denominators 91‘ constitutes an integral family. Inside an integral family an integral is

uniquely identified by the set of the different powers a; to which the denominators are raised.

» Using Integration by Parts ||

33
family in terms a smaller subset, the so-called Master Integrals.

) Identities, we can express all the integrals of the given integral



Creatingagrd

» This approach Is completely general and
easy to automate;

» We have to solve a 56x56 system of

t
\‘ differential equations w.r.t. to the Mandelstamr
variables s and i;
Since we are not putting the system In
canonical form, these are usually quite
BC g complicated and the solution might require
> some time;
S

» The computation of a grid with 3250 points
required ~3 weeks on 26 cores.

v




We can re-use the grid from the
Neutral-current Drell-Yan;

We have to solve a 36x36 system of
differential equations w.rt. to the
Mandelstam variables s and t;

Then, for every point, we have to
solve a 56x56, but easier, system
Ww.r.t. One mass;

We used this as a cross-check.



