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Motivations
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‣ After the discovery of the Higgs, LHC is becoming more 
and more precision machine;
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Theoretical challenges
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Higher order  
corrections

Parton Distribution 
Functions

‣ We need theoretical predictions at least as accurate as the 
experimental measurements.

Feynman integrals



How to compute the Feynman Integrals?
‣ The first step is to reduce to a set of Master Integrals; 

‣ One possible way to evaluate the MIs is through differential equations; 

‣ By repeating the same process for every master integral we obtain a system of first order linear 
and homogeneous differential equations.

∂
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What are we looking for?
‣ So we just have to solve a system of first order differential equations… HOW? 
‣ Ideally, we would like: 

• A method easy to automatise 

• A solution compact and easy to handle to allow for simplifications 

• A solution fast to evaluate to be implemented in a Monte-Carlo 
• To have high control on numerical precision
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Analytical solution
‣ The first method is to solve it analytically; 

‣ The result is provided in closed form as a combination of elementary and special functions, such as 
Generalised PolyLogarithms; 

‣ When increasing the number of scales or legs, an analytical expression in terms of known classes of 
functions might not be available.

B0(p2, m2) = 2 − γE − log m2 +
m2

p2 ( 1
r

− r) log r with r =
−p2 + 2m2 + (p2 − 2m2)2 − 4m4

2m2

G(a1, …, an; z) = ∫
z

0

dt
t − a1

G(a2, …, an; z) and G( ⃗0n; z) =
1
n!

logn z
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Semi-analytical solution
‣ A third possibility could be to use a semi-analytical approach. In this case the result is provided as 

a power series which can be easily evaluated in every point of the domain. 

‣ This method is quite easy to automate. Provided that we have infinite time and space, we could 
achieve arbitrary precision. Moreover, once we have the solution, it can be evaluated numerically in 
a negligible amount of time. 

‣ However, series have a limited radius of convergence, hence, an algorithm for performing the 
analytic continuation of the solution must be provided. 
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SeaSyde [TA, R. Bonciani, S. Devoto, N.Rana,  

A.Vicini, arXiv:2205.03345]

A SIMPLE EXAMPLE

{ f′￼(x) + 1
x2 − 4x + 5

f(x) = 1
x + 2

f(0) = 1
fhom(x) = xr

∞

∑
k=0

ckxk

rc0 = 0
1
5 c0 + c1(r + 1) = 0
4

25 c0 + 1
5 c1 + c2(2 + r) = 0

11
125 c0 + 4

25 c1 + 1
5 c2 + c3(3 + r) = 0

…

fhom(x) = 5 − x −
3
10

x2 +
11
150

x3 + . . .
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SeaSyde [TA, R. Bonciani, S. Devoto, N.Rana,  

A.Vicini, arXiv:2205.03345]

A SIMPLE EXAMPLE

{ f′￼(x) + 1
x2 − 4x + 5
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SeaSyde [TA, R. Bonciani, S. Devoto, N.Rana,  

A.Vicini, arXiv:2205.03345]

A SIMPLE EXAMPLE

{ f′￼(x) + 1
x2 − 4x + 5

f(x) = 1
x + 2

f(0) = 1

f(x) = c fhom(x) + fpart(x)

= 1 +
3
10

x −
47
200

x2 +
3

250
x3 + …

‣ This procedure can be generalised to systems of differential equations; 
‣ The method has been firstly implemented in the Mathematica package DiffExp for a real 

kinematic variable [F.Moriello, arXiv:1907.13234], [M.Hidding, arXiv:2006.05510] 
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SeaSyde
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‣ Our goal in the end is to fit the W mass to the data, hence, we need to employ 
a gauge invariant definition of the mass. For this reason, it is important to 
perform the calculations in the complex-mass scheme.  

μ2
V = m2

V − iΓVmV

‣ The complex mass scheme regularises the behaviour 
at the resonance:                       

‣ If we utilise adimensional variables, they become 
complex-valued:

1
s − μ2

V + iδ

s̃ =
s

m2
V

→
s

μ2
V

[TA, R. Bonciani, S. Devoto, N.Rana,  

A.Vicini, arXiv:2205.03345]

https: //github.com/TommasoArmadillo/SeaSyde
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SeaSyde
‣ Power series have a limited radius of convergence which is determined by 

the position of the nearest singularity. 
‣ We need to be able to extend the solution beyond the radius of convergence, 

to the entire complex plane.

[TA, R. Bonciani, S. Devoto, N.Rana,  

A.Vicini, arXiv:2205.03345]

https: //github.com/TommasoArmadillo/SeaSyde
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‣ Power series have a limited radius of convergence which is determined by 
the position of the nearest singularity. 

‣ We need to be able to extend the solution beyond the radius of convergence, 
to the entire complex plane.

[TA, R. Bonciani, S. Devoto, N.Rana,  

A.Vicini, arXiv:2205.03345]

https: //github.com/TommasoArmadillo/SeaSyde
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‣ Power series have a limited radius of convergence which is determined by 
the position of the nearest singularity. 

‣ We need to be able to extend the solution beyond the radius of convergence, 
to the entire complex plane.

[TA, R. Bonciani, S. Devoto, N.Rana,  

A.Vicini, arXiv:2205.03345]

https: //github.com/TommasoArmadillo/SeaSyde

*For simplicity, we are not showing all 
the intermediate circles. 
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SeaSyde
[TA, R. Bonciani, S. Devoto, N.Rana,  


A.Vicini, arXiv:2205.03345]

‣ SeaSyde (Series Expansion Approach for SYstems of Differential Equations) 
is a general package for solving a system of differential equations using the 
series expansion approach; 

‣ Seasyde can handle complex kinematic variables by introducing an original 
algorithm for the analytic continuation in the complex plane, thus being able to 
handle complex internal masses; 

‣ SeaSyde can deal with arbitrary system of differential equations, covering also 
the case of elliptic integrals.

https: //github.com/TommasoArmadillo/SeaSyde
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Drell-Yan
‣ High precision predictions for the Drell-Yan are 

important for the  measurement;mW
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Extremely important for high precision phenomenology (per-cent and sub per-cent level)
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Reduction to Master Integrals
‣ We identified 11 integral families with either 0, 1 or 2 masses. We reduced them to Master 

Integrals using Kira in combination with Firefly. The complete reduction took . 

‣ We ended up with 274 masters integrals to evaluate.

𝒪(16h)

‣ The most complicated topology was a two-loop box 
with two internal different masses; 

‣ We evaluated all the masters using the method of 
differential equations, using a semi-analytical 
approach.
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Creating a grid

Master 
Integrals

Differential Equations 
(In-house Mathematica 

package based of LiteRed 
and Kira)

Boundary Conditions 
(AMFlow)

Solving the system 
(SeaSyde)

Numerical grid

‣ The computation of a grid with 3250 points for the two-loop box with two internal and different 
masses (56 equations) required 3 weeks on 26 cores. 

‣ This approach is completely general and easy to automate, and can be applied, in principle, to 
any integral family.

∼
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The expansion in δμW
‣ In  determination studies we need  templates with different values of . If we need 3 

weeks for a single grid, this is not feasible.
mW 𝒪(102) μW

Grid point

, s = s0 t = t0

Diff. eqs. 

w.r.t  μW

‣ Every point of our grid becomes a series expansion in , which can be evaluated in 
a negligible amount of time for arbitrary (but reasonable) values of the W mass; 

‣ The calculation of the  expansion for the entire grid took  1.5 days.

δμW = μW − μ̄W

δμW ∼ 14

For each point we 
reconstruct 

a posteriori the  
dependence

μw
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The hard function
‣ We present our final result in the form of the hard function , which can be passed to a Monte-

Carlo generator, e.g. MATRIX 

‣ We can interpolate the value of  in the entire phase-space. Thanks to its smoothness the error 
is, at worst, at the  level.

H(1,1)

H(1,1)

10−3

H(1,1) =
1
16 [2Re (

⟨ℳ(0,0) |ℳ(1,1)
fin ⟩

⟨ℳ(0,0) |ℳ(0,0)⟩ )]
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Summary & Outlook

16

‣ We presented how to use the series expansion approach to compute 2-loop Feynman integrals 
with internal (complex) masses; 

‣ We showed how we applied those techniques to the computation of the virtual contribution to 
mixed QCD-EW corrections to Charged-current Drell-Yan; 

‣ We showed how to reconstruct a posteriori the exact dependence on the W mass; 

‣ Finally, the techniques employed in this calculation are completely general, and can be applied to 
other relevant 2->2 process at NNLO QCD-EW level or even NNLO EW.
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Motivations

‣ The computational challenges are similar to 
the ones for FCC-ee.

sqrt(s) (GeV) Luminosity 
(ab-1) σ (fb) % error

91 150 2.17595 x 106 0.0002

240 5 1870.84 ± 0.612 0.03

365 1.5 787.74 ± 0.725 0.09

σ(e+e− → μ+μ− + X)

arXiv:2206.08326



Taylor vs Logarithmic
‣ When moving along an horizontal line, the Feynman prescription plays an important role
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Analytic continuation
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‣ When moving along an horizontal line, the Feynman prescription plays an important role
1

s − m2
V + iδ



‣ Each of the three pieces carries its own challenges; 
‣ The pure virtual contributions are usually the main bottleneck; 
‣ Each individual contribution is divergent in the dimensional regulator .ϵ

NNLO corrections
Pure Virtual

Real-Virtual

Double Real
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)
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)
·

/

)
·

Feynman  
Integrals



Evaluating Feynman integrals
‣ What we would like to compute are objects like this:

I(αi; sj, d) = ∫
l

∏
k=1

ddqk

iπd/2

1
𝒟α1

1 … 𝒟αn
n

d = 4 − 2ϵ

kinematic variables e.g. (p1 − q1)2 − m2 + iδ

‣ A given set of denominators  constitutes an integral family. Inside an integral family an integral is 
uniquely identified by the set of the different powers  to which the denominators are raised. 

‣ Using Integration by Parts (IBP) identities, we can express all the integrals of the given integral 
family in terms a smaller subset, the so-called Master Integrals.

𝒟i
αi



Creating a grid

s

t

BC

‣ This approach is completely general and 
easy to automate; 

‣ We have to solve a 56x56 system of 
differential equations w.r.t. to the Mandelstam 
variables s and t; 

‣ Since we are not putting the system in 
canonical form, these are usually quite 
complicated and the solution might require 
some time; 

‣ The computation of a grid with 3250 points 
required 3 weeks on 26 cores.∼

↳



Mass evolution

s

t

‣ We can re-use the grid from the 
Neutral-current Drell-Yan; 

‣ We have to solve a 36x36 system of 
differential equations w.r.t. to the 
Mandelstam variables s and t; 

‣ Then, for every point, we have to 
solve a 56x56, but easier, system 
w.r.t. one mass; 

‣ We used this as a cross-check.

s

t
Upper 
mass

BC

↳

↳


