Two-loop five-point two-mass Feynman integrals

Simone Zoia

Loop-the-Loop, 12th Nov 2024

Universität Zürich

with Samuel Abreu, Dmitry Chicherin & Vasily Sotnikov

Based on arXiv:2408.05201, JHEP 10 (2024) 167

Urgent demand for NNLO QCD for LHC physics . Canko Current frontier: $2 \rightarrow 3$ processes @ NNLO, $2 \rightarrow 2$ @ N3LO

Bottleneck: 2-loop 5-particle scattering amplitudes

Hot topic! See talks by C. Brancaccio, M. Vicini

Analytical data to search for new properties

Special functions, (dual) conformal symmetry, positivity, cluster algebras, intersection theory...

Why two external massive legs?

- 0-mass and 1-mass already done... natural next step
- Two heavy vector bosons + jet/photon at hadron colliders @ NNLO QCD
- Two heavy vector bosons at hadron colliders @ N3LO QCD
- Double Lagrangian insertion in four-cusp Wilson loop in planar N=4 sYM theory

Single Lagrangian insertion revealed intriguing hidden properties (positivity, conformal symmetry...) *Chicherin, Henn 2022*

Good news: we're getting better at this

Multi-scale integrals \rightarrow method of differential equations

Going from 1-mass to 2-mass was much easier than from 0 to 1

- We have **better tools**. In this work we used:
 - NeatIBP Wu, Boehm, Ma, Xu, Zhang '23
 - AMFlow Liu, Ma, Wang '18; Liu, Ma '22
 - Baikovletter Jiang, Liu, Xu, Yang '24
 - FiniteFlow Peraro '19
- Finite-field arithmetic to overcome the algebraic complexity
- We see **patterns** emerging

von Manteuffel, Schabinger '15; Peraro '16

Integral families

Scalar Feynman integrals with the same propagator structure = integral family

Dimensional regularisation: $D = 4 - 2\epsilon$

7 kinematic variables: $X = (s_{12}, s_{23}, s_{34}, s_{45}, s_{15}, s_4, s_5)$

 $I_{\vec{a}}(X;\epsilon) = \int \frac{d^{D}k}{i\pi^{D/2}} \frac{\rho_{9}^{-a_{9}}\rho_{10}^{-a_{10}}\rho_{11}^{-a_{11}}}{\rho_{1}^{a_{1}}\dots\rho_{8}^{a_{8}}} \qquad \rho_{1} = k_{1}^{2}$ $\rho_{2} = (k_{1} + p_{1})^{2}$ $\rho_{3} = (k_{1} + p_{1} + p_{2})^{2}$ $\left\{ \mathbf{I}_{\vec{a}}(X;\epsilon) \, | \, \forall \, \vec{a} \in \mathbb{Z}^{11} \right\}$. . .

 $s_{ij} = (p_i + p_j)^2$ $s_i = p_i^2$

Integral bases

Identities among the $I_{\vec{a}}$'s

e.g. Integration-By-Parts relations Chetyrkin, Tkachov '81; Laporta 2000

Finite-dimensional basis: master integrals $\overrightarrow{F}(X;\epsilon)$

Integrating by differentiating

Barucchi, Ponzano '73; Kotikov '91; Bern, Dixon, Kosower '94; Gehrmann, Remiddi 2000

Integral families by construction closed under differentiation

$$\frac{\partial}{\partial s_{12}} \overrightarrow{F}(X;\epsilon) = \sum_{\vec{a}} c_{\vec{a}}(X;\epsilon) \ \mathbf{I}_{\vec{a}}(X;\epsilon)$$

$$= A_{s_{12}}(X;\epsilon) \cdot \overrightarrow{F}(X;\epsilon)$$
IBP reduction

System of 1st order linear PDEs for the MIs \overrightarrow{F}

How do we solve it? Is there a "natural" basis?

Canonical form $d\vec{F} = \frac{\partial \vec{F}}{\partial s_{12}} ds_{12} + \dots + \frac{\partial \vec{F}}{\partial s_5} ds_5$ Henn 2013 $d\vec{F}(X;\epsilon) = \epsilon d\tilde{A}(X) \cdot \vec{F}(X;\epsilon)$

- Factorisation of ϵ makes ϵ -expansion of the solution easy
- In the best understood cases, the connection matrix A(X) takes the form

$$\tilde{A}(X) = \sum_{i} A_i \log W_i(X)$$

 $W_i(X) =$ **letters** = singularities of the solution

We know how to proceed from here!

How do we construct a canonical basis?

Is the IBP reduction a problem?

How to construct a canonical basis?

A lot of progress, but still no general algorithm

General approach: study leading singularities

Parameterise loop integrand and take residues (\equiv partial fraction) until all integration variables are localised

Construct integrals s.t.: at most simple poles + constant leading singularities

Arkani-Hamed, Bourjaily, Cachazo, Trnka 2012

How to construct a canonical basis?

A lot of progress, but still no general algorithm

General approach: study leading singularities

Parameterise loop integrand and take residues (\equiv partial fraction) until all integration variables are localised

Construct integrals s.t.: at most simple poles + constant leading singularities

Arkani-Hamed, Bourjaily, Cachazo, Trnka 2012

$$- \propto \frac{d\alpha_1 d\alpha_2}{p^2 (\alpha_1 \alpha_2 - x) [(1 + \alpha_1)(1 + \alpha_2) - x]} \rightarrow \frac{d\alpha_1}{p^2 (\alpha_1^2 + \alpha_1 + x)} \rightarrow \pm \frac{1}{p^2 \sqrt{1 - 4x}}$$

$$p^2 \sqrt{1 - 4x} \times - 2D \qquad \checkmark \qquad \text{This is how square roots enter the game!}$$

Study emerging patterns

Top sector has 3 MIs for all but PBzzz:

Gehrmann, Henn, Lo Presti '15; Papadopoulos, Tommasini, Wever '15

Abreu, Ita, Moriello, Page, Tschernow, Zeng '20

Badger, Becchetti, Chaubey, Marzucca '23; Badger, Becchetti, Giraudo, SZ '24

Febres Cordero, Figueiredo, Kraus, Page, Reina '24

1.

2.

З.

4.

 $\mu_{ij} = k$

$$\sqrt{\Delta_5} (p_i + p_j)^2 \mu_{12}$$

$$\sqrt{\Delta_5} (p_i + p_j)^2 \mu_{22}$$

$$C_1 (k_2 - p_i)^2 + C_2 k_2^2$$

Also in Jiang, Liu, *Xu, Yang 2024*

4th MI for PBzzz:

$$s_{45}\sqrt{\Delta_5}\sqrt{\lambda(s_4,s_5,s_{45})}\left(\dots\mu_{12}\dots+\mu_{22}+\dots\right)$$

$$\sum_{i}^{[-2\epsilon]} \cdot k_{j}^{[-2\epsilon]} \propto G(\{k_{i}, p_{1}, \dots, p_{4}\}, \{k_{j}, p_{1}, \dots, p_{4}\})$$
Complicated if not recognised!

A LOT of trial and error

Often need to try many candidates \rightarrow cheap tests are crucial

- Start from the **maximal cuts**, sector by sector $\mathbf{d}\vec{F} = \begin{bmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & \mathbf{f} \end{bmatrix} \cdot \vec{F}$
- Work on **univariate slices**
 - Vary only ϵ and fix kinematics \rightarrow check ϵ -degrees + spurious singularities mixing ϵ and kinematics
 - Vary kinematic variables w.r.t. single parameter: X = A + t B \rightarrow Polynomial degrees of entries, singularities, simple poles...

Go fully analytic only when the basis is already "good"

IBP reduction hindered by algebraic complexity

Laporta algorithm: Laporta 2000

- generate large linear system of equations
- solve with special ordering of the variables

$$I_i(X;\epsilon) = \sum_j C_{ij}(X;\epsilon) \ F_j(X;\epsilon)$$

needed integrals master integrals

Intermediate expression swell

IBP reduction hindered by algebraic complexity

Laporta algorithm: Laporta 2000

- generate large linear system of equations
- solve with special ordering of the variables

$$I_i(X;\epsilon) = \sum_j C_{ij}(X;\epsilon) \ F_j(X;\epsilon)$$

needed integrals master integrals

Intermediate expression swell

Expression swell bypassed through finite fields von Manteuffel, Schabinger 2015; Peraro 2016

- Evaluate rational functions at numerical points (X, ϵ) modulo prime \rightarrow finite field
- Perform all intermediate rational operations numerically
- Reconstruct the final result from numerical samples
- Public implementations for IBP reduction:
- FIRE Smirnov, Chukharev 2019
- Kira Klappert, Lange, Maierhöfer, Usovitsch 2020

Mathematica/C++ framework **FiniteFlow** *Peraro* 2019

 $A_{\chi}(X;\epsilon)$ reconstructed in

Functional reconstruction

$$f(x, y) = 1 + x + y \quad \rightarrow 5 \text{ pts.}$$
$$f(x, y) = \frac{(1 + x + y)^{10}}{1 - x} \rightarrow 70 \text{ pt}$$

ts.

 $A_{x}(X;\epsilon)$ reconstructed in

- Choose a good basis
- Smarter algorithms
- Make ansätze

If we knew the letters before-hand, we would only need to fit...

$$A_{x}(X) = \sum_{i} A_{i} \frac{\partial \log W_{i}(X)}{\partial x}$$

Functional reconstruction

$$f(x, y) = 1 + x + y \quad \rightarrow 5 \text{ pts.}$$
$$f(x, y) = \frac{(1 + x + y)^{10}}{1 - x} \rightarrow 70 \text{ pt}$$

ts.

 $A_{x}(X;\epsilon)$ reconstructed in

- Choose a good basis
- Smarter algorithms
- Make ansätze

If we knew the letters before-hand, we would only need to fit...

$$A_{x}(X) = \sum_{i} A_{i} \frac{\partial \log W_{i}(X)}{\partial x}$$

Functional reconstruction

Improve the IBP system

NeatIBP Wu, Boehm, Ma, Xu, Zhang '23

based on syzygy techniques Gluza, Kajda,

Kosower 2011; Ita 2016; Larsen, Zhang 2016

we would only need to fit...

$$A_{x}(X) = \sum_{i} A_{i} \frac{\partial \log W_{i}(X)}{\partial x}$$

Functional reconstruction

Improve the IBP system

NeatIBP Wu, Boehm, Ma, Xu, Zhang '23

based on syzygy techniques Gluza, Kajda,

Kosower 2011; Ita 2016; Larsen, Zhang 2016

Alphabet can be determined without knowing the DEs

- Leading singularities
- Package Baikovletter Jiang, Liu, Xu, Yang 2024
- cluster algebras, intersection theory, Schubert problem...

If all else fails... Rational letters = denor

letters = # linearly independent entries of $\sum A_x(X) dx \rightarrow$ computable numerically! ${\mathcal X}$

minators of the DEs:
$$d \log W(x) = \frac{dW(x)}{W(x)}$$

Systematic construction of algebraic letters

Algebraic letters inherit notion of "charge" from the master integrals

$$\vec{g} = \begin{pmatrix} \sqrt{\Delta} I_1 \\ I_2 \end{pmatrix} \qquad \begin{array}{c} g_1 \Big|_{\sqrt{\Delta} \to -\sqrt{\Delta}} = -g_1 \to \text{odd} \\ g_2 \Big|_{\sqrt{\Delta} \to -\sqrt{\Delta}} = g_2 \to \text{even} \end{array} \qquad d\vec{g} = \begin{pmatrix} \text{even odd} \\ \text{odd even} \end{pmatrix} \cdot \vec{g}$$

Letters with different charges do not talk to each other \rightarrow split the problem!

Algebraic letters are singular where (some of) the rational letters vanish

$$d \log \left(\frac{P + \sqrt{\Delta}}{P - \sqrt{\Delta}} \right) = \frac{\cdots}{\sqrt{\Delta} (P^2 - \Delta)}$$

Manifestly odd

$$P^2 - \Delta \propto \prod_{\text{rational}} W_i^{k_i}$$

Ansatz

Heller, von Manteuffel, Schabinger 2019; **SZ** 2020

Planar 2-loop 5-point 2-mass alphabet

570 independent letters,

215 rational letters,

44 square roots

236 letters odd w.r.t. 1 square root

119 letters odd w.r.t. 2 square roots

Most of the letters obtained with **Baikovletter**

(Covering all permutations of external legs)

Planar 2-loop 5-pt. alphabets:

0-mass: **31** letters, **1** square root Gehrmann, Henn, Lo Presti '15; Chicherin, Henn, Mitev '17

1-mass: 156 letters, 4 square roots

Abreu, Ita, Moriello, Page, Tschernow, Zeng '20; Chicherin, Sotnikov, **SZ** '21

Numerical evaluation through series expansions

Numerical evaluation in Euclidean and physical region with AMFlow Liu, Ma, Wang '18; Liu, Ma '22 + FiniteFlow Peraro '19 & LiteRed Lee '12 for the IBPs \rightarrow boundary values $\sqrt{}$

Evolve solution to other phase-space points with **DiffExp** Hidding 2020

Generalised power-series solutions with finite convergence radius $j_1 \ge 0 j_2 = 0$

Solution with method of **pentagon functions** underway

Gehrmann, Henn, Lo Presti '15; Chicherin, Sotnikov '20; + SZ '21; + Abreu, Page, Tschernow '23

T. Armadillo's talk

Abreu, Chicherin, Sotnikov, SZ work in progress...

More challenges ahead: more legs, more loops, more masses...

Colomba Brancaccio's talk

Phenomenology + formal studies

- Building upon new tools and techniques resulting from effort of entire community

Phenomenology + formal studies

Building upon new tools and techniques resulting from effort of entire community

More challenges ahead: more legs, more loops, more masses...

Colomba Brancaccio's talk

(Lhank you!