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Discrete geometry by planar maps
▶ Planar map is a connected graph embedded in S2 viewed up to

continuous deformation.

▶ Quadrangulation: all faces of degree 4.

▶ Equivalently, quadrangulation is a gluing of squares into a
topological S2.

▶ Rooting (distinguishing an oriented edge) kills all internal
symmetries =⇒ good for counting!

▶ Quadrangulation of disk of perimeter 2p.

Many map enumeration methods:

▶ Recursive methods and generating functions [Tutte, ’60s] [Brown,

Bender, Canfield, Goulden, Jackson, Ambjørn, Bousquet-Mélou, . . . ]

▶ Matrix models [’t Hooft, Brézin, Itzykson, Parisi, Zuber, Kazakov, Kostov,

Ginsparg, Zinn-Justin, . . . ]

▶ Probabilistic methods [Le Gall, Miermont, Curien, Bettinelli, Sheffield, Miller,

Gwynne, Budzinski, . . . ]

▶ Bijective method [Cori, Vauqelin, Schaeffer, Bouttier, Di Francesco, Guitter, Fusy,

Chapuy, Bernardi, Miermont, . . . ]
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▶ Matrix models [’t Hooft, Brézin, Itzykson, Parisi, Zuber, Kazakov, Kostov,

Ginsparg, Zinn-Justin, . . . ]

▶ Probabilistic methods [Le Gall, Miermont, Curien, Bettinelli, Sheffield, Miller,

Gwynne, Budzinski, . . . ]

▶ Bijective method [Cori, Vauqelin, Schaeffer, Bouttier, Di Francesco, Guitter, Fusy,

Chapuy, Bernardi, Miermont, . . . ]



Discrete geometry by planar maps
▶ Planar map is a connected graph embedded in S2 viewed up to

continuous deformation.

▶ Quadrangulation: all faces of degree 4.

▶ Equivalently, quadrangulation is a gluing of squares into a
topological S2.

▶ Rooting (distinguishing an oriented edge) kills all internal
symmetries =⇒ good for counting!

▶ Quadrangulation of disk of perimeter 2p.

Many map enumeration methods:

▶ Recursive methods and generating functions [Tutte, ’60s] [Brown,

Bender, Canfield, Goulden, Jackson, Ambjørn, Bousquet-Mélou, . . . ]
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Holomorphic Multiplicative Chaos
[Remy, Zhu, Powell, Najnudel, Paquette, Simm, Rhodes, Vargas, ...]
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Bijection between quadrangulations and labeled trees

▶ There exists a relation [Cori, Vauquelin] [Schaeffer, ’99]{
rooted quadrangulations

with n faces

}
2-to-(n+2)←−−−−−→

{
rooted plane trees with labels in N

that vary by at most 1 along its n edges

}

▶ Hence, #quadrangulation =
2

n + 2
3n

1

n + 1

(
2n

n

)

n→∞∼ 2√
π

12n

n5/2

▶ Uniform quadrangulation ⇐⇒ uniform plane tree + uniform labeling.
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Beyond enumeration: metric information preserved under bijection



(of the disk)Flat quadrangulations

bijection

Theorem (TB, ’24+)

Flat quadrangulations of perimeter n are in
bijection with (n− 1)-step walks (1, 0)→ (0, 0)
in half plane H with no point subexcursions.

Its generating function is Z (x) = F (E−1(x))

with radius of convergence
1
µF

= E ( 14 ) = e−4G/π.

Note: horizontal side ↔ horizontal step with
same relative x-coordinate.
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height-labeled quadrangulation
with boundary labeled 0101...

An extended bijection

Theorem (TB, ’24+)

For n ≥ 2 and p ≥ 1 there exists a bijection{
rigid quadrangulations with

2n corners and base p

}
←→

{
height-labeled quadrangulations
with n vertices and perimeter 2p

}

π
2 -corner with turning number ℓ︸ ︷︷ ︸

#left−#right

←→ vertex with label ℓ
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Scanning        vs       Peeling
Bijection via exploration

Theorem (Bousquet-Mélou, Elvey Price, ’20)

The generating function of perimeter-2p height-labeled quadrangulations is

Q(p)(x) =
∑
k≥p

1

k + 1

(
2k

k

)(
2k − p

k

)
R(x)k+1, when

∑
k≥0

1

k + 1

(
2k

k

)2

R(x)k+1 = x .

The generating function of rigid quadrangulations is Q(1)(x) with radius of convergence
1
µR

=
∑

k≥0
1

k+1

(
2k
k

)2
16−k−1 = 1

4π .
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(of the 2-sphere)Quadrangulations

[Tutte, '63] [Kostov, Zinn-Justing, Guttman, ...] [Elvey Price, Bousquet-Mélou, '20] 

Height-labeled quadrangulations (without alternating faces)

[TB, '24+] 

(of the disk)Flat quadrangulations

[TB, Zonneveld, '24+] 

Rigid (flat) quadrangulations (of the disk)



Take home messages

▶ Mathematical construction of path integrals in QG via the lattice approach requires fine
handle on combinatorics.

▶ The bijective method often brings more than enumeration:
▶ a dictionary to read of statistics;
▶ if the other side is suitably simple: a construction of the continuum object.

▶ Being in bijection does not imply being in the same universality class.
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