YOUNGSTG@RS - Combinatorics in Fundamental Physics, 26-11-2024

Random geometry and the enumerative combinatorics of maps
Timothy Budd

T.Budde@science.ru.nl

Ay Lt ::% http:// hef.ru.nl/ ~tbudd/



Discrete geometry by planar maps
» Planar map is a connected graph embedded in S? viewed up to
continuous deformation.

52



Discrete geometry by planar maps
» Planar map is a connected graph embedded in S? viewed up to
continuous deformation.

N\

52



Discrete geometry by planar maps
» Planar map is a connected graph embedded in S? viewed up to
continuous deformation.

» Quadrangulation: all faces of degree 4.

52



Discrete geometry by planar maps
» Planar map is a connected graph embedded in S? viewed up to
continuous deformation.
» Quadrangulation: all faces of degree 4.
» Equivalently, quadrangulation is a gluing of squares into a
topological S2.




Discrete geometry by planar maps
» Planar map is a connected graph embedded in S? viewed up to

continuous deformation.

» Quadrangulation: all faces of degree 4.

» Equivalently, quadrangulation is a gluing of squares into a
topological S2.

» Rooting (distinguishing an oriented edge) kills all internal
symmetries = good for counting!

SQ



Discrete geometry by planar maps

>

>
>

Planar map is a connected graph embedded in S? viewed up to 5
continuous deformation. S

Quadrangulation: all faces of degree 4.

Equivalently, quadrangulation is a gluing of squares into a
topological S2.

Rooting (distinguishing an oriented edge) kills all internal
symmetries = good for counting!

Quadrangulation of disk of perimeter 2p.



Discrete geometry by planar maps

» Planar map is a connected graph embedded in S? viewed up to
continuous deformation. 52

» Quadrangulation: all faces of degree 4.

» Equivalently, quadrangulation is a gluing of squares into a
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» Quadrangulation of disk of perimeter 2p.

Many map enumeration methods:

» Recursive methods and generating functions [Tutte, '60s] [Brown,
Bender, Canfield, Goulden, Jackson, Ambjgrn, Bousquet-Mélou, .. .|

» Matrix models ['t Hooft, Brézin, ltzykson, Parisi, Zuber, Kazakov, Kostov,
Ginsparg, Zinn-Justin, ...]

» Probabilistic methods [Le Gall, Miermont, Curien, Bettinelli, Sheffield, Miller,
Gwynne, Budzinski, ... ]

» Bijective method [Cori, Vaugelin, Schaeffer, Bouttier, Di Francesco, Guitter, Fusy,
Chapuy, Bernardi, Miermont, ...
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Bijection between quadrangulations and labeled trees
» There exists a bijection [Cori, Vauquelin] [Schaeffer, '99]

{ rooted quadrangulations } 2-to-(n+2) { rooted plane trees with labels in N }
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» Uniform quadrangulation <= uniform plane tree + uniform labeling.
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[Aldous, '92]

Brownian motion 2



Beyond enumeration: metric information preserved under bijection

2 4 6 8 10 12 2”

1
B i "
rownian
Welling n— oo
__________ )
gluing -—,
-
Brownian sphere Continuum random tree (CRT) Brownian motion 2

[Aldous, '92]



Beyond enumeration: metric information preserved under bijection

2 4 6 8 10 12 2n
d(-,)/n*| [Le Gall, 1] % X

n— 00 [Miermont, '11] Brownian
Weumg n — o0
N { ; N 24

Brownian sphere Continuum random tree (CRT) Brownian motion 2

[Aldous, '92]



-
Flat quadrangulations cof the disk)




iy

-
Flat quadrangulations cof the disk)




oy

recipe

-
Flat quadrangulations cof the disk)




==y

recipe

-
Flat quadrangulations cof the disk)




oy

recipe

-
Flat quadrangulations cof the disk)




oy

recipe

-
Flat quadrangulations cof the disk)




oy

recipe

-
Flat quadrangulations cof the disk)




{

T

Theorem (TB, '24+)

Flat quadrangulations of perimeter n are in
bijection with (n — 1)-step walks (1,0) — (0,0)
in half plane H with no point subexcursions.

recipe




{

T

Theorem (TB, '24+)

Flat quadrangulations of perimeter n are in
bijection with (n — 1)-step walks (1,0) — (0, 0)
in half plane H with no point subexcursions.

recipe




{

T

Theorem (TB, '24+)

Flat quadrangulations of perimeter n are in
bijection with (n — 1)-step walks (1,0) — (0, 0)
in half plane H with no point subexcursions.

H

point|subexcursion

recipe




{

% Z(:E) _ Z xlength
walks

Theorem (TB, '24+)
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Theorem (TB, '24+)

Flat quadrangulations of perimeter n are in
bijection with (n — 1)-step walks (1,0) — (0, 0)
in half plane H with no point subexcursions.

Its generating function is Z(x) = F(E~1(x))
with radius of convergence
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Theorem (TB, '24+)

Flat quadrangulations of perimeter n are in
bijection with (n — 1)-step walks (1,0) — (0,0)
in half plane H with no point subexcursions.

Its generating function is Z(x) = F(E~1(x))
with radius of convergence

L — E(}) = e~4o/m.

Note: horizontal side <+ horizontal step with
same relative x-coordinate.
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Theorem (TB, '24+)
For n > 2 and p > 1 there exists a bijection

rigid quadrangulations with height-labeled quadrangulations
2n corners and base p with n vertices and perimeter 2p
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Theorem (Bousquet-Mélou, Elvey Price, '20)
The generating function of perimeter-2p height-labeled quadrangulations is

1 [2k\ [2k—p 1 /2k\?
Q(p)(X):kgpk_‘*‘l<k)< « )R(X)k+1, when Zk_—i—1<k> R(x)x = x.
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Theorem (Bousquet-Mélou, Elvey Price, '20)
The generating function of perimeter-2p height-labeled quadrangulations is

QP (x) = é%—}-l <2kk) (2"; p) RO, when 3o L ( )2 ()< = x.

k>0

The generating function of rigid quadrangulations is Q*)(x) with radius of convergence
= Siso i (3) 167K = L
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Quadrangulations (o the 2-sphere)
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Take home messages

» Mathematical construction of path integrals in QG via the lattice approach requires fine

handle on combinatorics.
» The bijective method often brings more than enumeration:

P a dictionary to read of statistics;
P if the other side is suitably simple: a construction of the continuum object.

» Being in bijection does not imply being in the same universality class.
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Take home messages

» Mathematical construction of path integrals in QG via the lattice approach requires fine

handle on combinatorics.
» The bijective method often brings more than enumeration:

P a dictionary to read of statistics;
P if the other side is suitably simple: a construction of the continuum object.

» Being in bijection does not imply being in the same universality class.

Thanks!




