An EFT-Inspired Introduction to NP in Isotope Shifts

Fiona Kirk

YOUNGST@RS - EFTs and Beyond, 5^{th} December 2024

Where is the New Physics?

Where is the New Physics?

Outline

Introduction to King Plots

New Nuclear Physics

New Physics

Introduction to King Plots

New Nuclear Physics

New Physics

Why Isotope Shifts?

The most accurately measured numbers in physics are ratios of atomic clock transition frequencies:

- $\nu_{Al^+}/\nu_{Hg^+} = 1.052871833148990438(55)$ (NIST; $\sigma_{\nu}/\nu \sim 5.2 \times 10^{-17}$) [Rosenband et al. Science 319, 1808 (2008)]
- $\nu_{Yb}/\nu_{Sr} = 1.207507039343337749(55)$ (RIKEN; $\sigma_{\nu}/\nu \sim 4.6 \times 10^{-17}$) [Nemitz et al. Nat. Photonics 10, 258 (2016)]
- $\nu_{\text{E3}}/\nu_{\text{E2}} = 0.932829404530965376(32)$ (PTB; $\sigma_{\nu}/\nu \sim 3.4 \times 10^{-17}$) [Lange et al. PRL 126 011102 (2021)]
- $\nu_{ln^+}/\nu_{Yb^+} = 1.973773591557215789(9)$ (PTB; $\sigma_{\nu}/\nu \sim 4.4 \times 10^{-18}$) [Hausser et al. arXiv: 2402.16807 (2024)]

 \Rightarrow These are sensitive to "everything", but we cannot calculate the spectrum below around 1% accuracy.

So what can we do with these?

[slide by Julian Berengut]

 \Rightarrow Can assume factorisation of electronic and nuclear contributions.

Can assume factorisation of electronic and nuclear contributions.

Can assume factorisation of electronic and nuclear contributions.

Isotope shifts:

$$\nu_i^{\mathcal{A}\mathcal{A}'} \equiv \nu_i^{\mathcal{A}} - \nu_i^{\mathcal{A}'}$$
$$= \mathcal{K}_i \mu^{\mathcal{A}\mathcal{A}'} + \mathcal{F}_i \delta \langle r^2 \rangle^{\mathcal{A}\mathcal{A}'} + \dots$$

i: transition index *AA*': isotope pair index *K_i*, *F_i*, ...: electronic coeffs. $\mu^{AA'}$, $\delta \langle r^2 \rangle^{AA'}$, ...: nuclear coeffs. *Z*: number of protons *N*, *N*': number of neutrons in *A*, *A*'

Isotope Shifts: Mass Shift & Field Shift

$$\nu_i^{AA'} = K_i \mu^{AA'} + F_i \delta \langle r^2 \rangle^{AA'} + \dots$$

Isotope Shifts: Mass Shift & Field Shift

$$\nu_i^{AA'} = K_i \mu^{AA'} + F_i \delta \langle r^2 \rangle^{AA'} + \dots$$

Mass Shift

$$\propto \mu^{AA'} = \frac{1}{M^A} - \frac{1}{M^{A'}}$$

Mass Shift: Nuclear Mass Effect

 $M_N \neq M_{N'} \Rightarrow T_N \neq T_{N'} \Rightarrow$ Correction to electronic kinetic energy.

Mass Shift: Nuclear Mass Effect

 $M_N \neq M_{N'} \Rightarrow T_N \neq T_{N'} \Rightarrow$ Correction to electronic kinetic energy.

• Perturbation due to nuclear recoil

$$\delta H = \frac{\mathbf{p}_N^2}{2M_N} = \frac{\left(\sum_i \mathbf{p}_i\right)^2}{2M_N} = \frac{\sum_i \mathbf{p}_i^2 + \sum_{i \neq j} \mathbf{p}_i \cdot \mathbf{p}_j}{2M_N} \propto \frac{1}{M_A}$$

in center of mass $\mathbf{p}_N + \sum_i \mathbf{p}_i = 0$
 M_N : Nuclear mass
 M_A : Atomic mass, $M_A \sim M_N$

Mass Shift: Nuclear Mass Effect

 $M_N \neq M_{N'} \Rightarrow T_N \neq T_{N'} \Rightarrow$ Correction to electronic kinetic energy.

Perturbation due to nuclear recoil

$$\delta H = \frac{\mathbf{p}_N^2}{2M_N} = \frac{\left(\sum_i \mathbf{p}_i\right)^2}{2M_N} = \frac{\sum_i \mathbf{p}_i^2 + \sum_{i \neq j} \mathbf{p}_i \cdot \mathbf{p}_j}{2M_N} \propto \frac{1}{M_A}$$

in center of mass $\mathbf{p}_N + \sum_i \mathbf{p}_i = 0$

 M_N : Nuclear mass M_A : Atomic mass, $M_A \sim M_N$

 \Rightarrow Contribution to isotope shift:

$$\delta E_i = K_i \left(\frac{1}{M_{A'}} - \frac{1}{M_A} \right) \equiv K_i \mu^{AA'}$$

K_i: Mass shift constant

Isotope Shifts: Mass Shift & Field Shift

$$\nu_i^{AA'} = K_i \mu^{AA'} + F_i \delta \langle r^2 \rangle^{AA'} + \dots$$

Mass Shift

Different motion of nuclei in A, A' \Rightarrow Correction to e^- kin. energy

$$\propto \mu^{AA'} = \frac{1}{M^A} - \frac{1}{M^{A'}}$$

7 of 23

Isotope Shifts: Mass Shift & Field Shift

$$\nu_i^{AA'} = K_i \mu^{AA'} + F_i \delta \langle r^2 \rangle^{AA'} + \dots$$

Mass Shift

Different motion of nuclei in A, A' \Rightarrow Correction to e^- kin. energy

$$\propto \mu^{oldsymbol{AA'}} = rac{1}{M^{oldsymbol{A}}} - rac{1}{M^{oldsymbol{A'}}}$$

$$\propto \delta \langle r^2 \rangle^{\mathbf{A}\mathbf{A}'} = \langle r^2 \rangle^{\mathbf{A}} - \langle r^2 \rangle^{\mathbf{A}'}$$

7 of 23

• Well outside the atom, spherically symm. charge distribution ⇒ Coulomb potential

- Well outside the atom, spherically symm. charge distribution ⇒ Coulomb potential
- **Inside the atom,** electron wavefct. affected by non-Coulombic nuclear potential, dep. on
 - Radial coordinate r
 - Nuclear charge radius $\langle r^2 \rangle = \frac{\int \rho_N(\mathbf{r}) r^2 d\mathbf{r}^3}{\int \rho_N(\mathbf{r}) d\mathbf{r}^3}$

$$\rho_N(\mathbf{r}) = \begin{cases} \rho_0 & r < R \\ 0 & r \ge R \end{cases}, \quad \rho_N(\mathbf{r}) = \frac{\rho_0}{1 + e^{\frac{r-c}{a}}}, \quad \dots \end{cases}$$

Distance from center of nucleus, r

(a) Coulomb $V = -\frac{Ze}{4\pi r}$ (b) Finite size nucleus (c) Larger nucleus

The larger the nucleus, the shallower the potential.

8 of 23

- Well outside the atom, spherically symm. charge distribution ⇒ Coulomb potential
- **Inside the atom,** electron wavefct. affected by non-Coulombic nuclear potential, dep. on
 - Radial coordinate r
 - Nuclear charge radius $\langle r^2 \rangle = \frac{\int \rho_N(\mathbf{r}) r^2 d\mathbf{r}^3}{\int \rho_N(\mathbf{r}) d\mathbf{r}^3}$

$$\rho_N(\mathbf{r}) = \begin{cases} \rho_0 & r < R \\ 0 & r \ge R \end{cases}, \quad \rho_N(\mathbf{r}) = \frac{\rho_0}{1 + e^{\frac{r-c}{a}}}, \quad \dots \end{cases}$$

Distance from center of nucleus, r

(a) Coulomb $V = -\frac{Ze}{4\pi r}$ (b) Finite size nucleus (c) Larger nucleus

The larger the nucleus, the shallower the potential.

8 of 23

- Well outside the atom, spherically symm. charge distribution ⇒ Coulomb potential
- **Inside the atom,** electron wavefct. affected by non-Coulombic nuclear potential, dep. on
 - Radial coordinate r
 - Nuclear charge radius $\langle r^2 \rangle = \frac{\int \rho_N(\mathbf{r}) r^2 d\mathbf{r}^3}{\int \rho_N(\mathbf{r}) d\mathbf{r}^3}$

$$\rho_N(\mathbf{r}) = \begin{cases} \rho_0 & r < R \\ 0 & r \ge R \end{cases}, \quad \rho_N(\mathbf{r}) = \frac{\rho_0}{1 + e^{\frac{r-c}{a}}}, \quad \dots \end{cases}$$

- Well outside the atom, spherically symm. charge distribution ⇒ Coulomb potential
- **Inside the atom,** electron wavefct. affected by non-Coulombic nuclear potential, dep. on
 - Radial coordinate r
 - Nuclear charge radius $\langle r^2 \rangle = \frac{\int \rho_N(\mathbf{r}) r^2 d\mathbf{r}^3}{\int \rho_N(\mathbf{r}) d\mathbf{r}^3}$

$$\rho_N(\mathbf{r}) = \begin{cases} \rho_0 & r < R \\ 0 & r \ge R \end{cases}, \quad \rho_N(\mathbf{r}) = \frac{\rho_0}{1 + e^{\frac{r-c}{a}}}, \quad \dots \end{cases}$$

 \Rightarrow Shift in $\langle r^2
angle \Rightarrow$ Energy shift

 $\delta E_i \equiv F_i \delta \langle r^2 \rangle^{AA'}$

 F_i : Field shift constant $\delta \langle r^2 \rangle^{AA'} = \langle r^2 \rangle^A - \langle r^2 \rangle^{A'}$: Charge radius variance

(a) Coulomb $V = -\frac{Ze}{4\pi r}$ (b) Finite size nucleus (c) Larger nucleus

The larger the nucleus, the shallower the potential.

Isotope Shifts: Mass Shift & Field Shift

$$\nu_i^{AA'} = K_i \mu^{AA'} + F_i \delta \langle r^2 \rangle^{AA'} + \dots$$

Mass Shift

Different motion of nuclei in A, A' \Rightarrow Correction to e^- kin. energy

$$\propto \mu^{{m A}{m A}'} = rac{1}{M^{m A}} - rac{1}{M^{m A'}}$$

Field Shift

Different nuclear charge distributions in A, A' \Rightarrow Different contact interactions betw. e⁻ & nuclei

$$\propto \delta \langle r^2 \rangle^{AA'} = \langle r^2 \rangle^A - \langle r^2 \rangle^{A'}$$

9 of 23

The King-Plot: Trade Data for Nuclear Physics

[W. King, J. Opt. Soc. Am. 53, 638 (1963)]

Issue: Large uncertainty on charge radius variance $\delta \langle r^2 \rangle^{AA'}$

$$\nu_1^{\mathcal{A}\mathcal{A}'} = \mathcal{K}_1 \mu^{\mathcal{A}\mathcal{A}'} + \mathcal{F}_1 \delta \langle r^2 \rangle^{\mathcal{A}\mathcal{A}'}$$

The King-Plot: Trade Data for Nuclear Physics

[W. King, J. Opt. Soc. Am. 53, 638 (1963)] **Issue:** Large uncertainty on charge radius variance $\delta \langle r^2 \rangle^{AA'}$ \Rightarrow Measure isotope shifts for 2 transitions

$$\nu_1^{AA'} = K_1 \mu^{AA'} + F_1 \delta \langle r^2 \rangle^{AA'}$$
$$\nu_2^{AA'} = K_2 \mu^{AA'} + F_2 \delta \langle r^2 \rangle^{AA'}$$

The King-Plot: Trade Data for Nuclear Physics

[W. King, J. Opt. Soc. Am. 53, 638 (1963)] Issue: Large uncertainty on charge radius variance $\delta \langle r^2 \rangle^{AA'}$ \Rightarrow Measure isotope shifts for 2 transitions $\nu_1^{AA'} = K_1 \mu^{AA'} + F_1 \delta \langle r^2 \rangle^{AA'}$ $\nu_{2}^{AA'} = K_{2} \mu^{AA'} + F_{2} \delta \langle r^{2} \rangle^{AA'}$ \Rightarrow Eliminate charge radius variance $\delta \langle r^2 \rangle^{AA'}$ $\tilde{\nu}_{2}^{AA'} = K_{21} + F_{21} \tilde{\nu}_{1}^{AA'}$ ${\widetilde
u}^{{\cal A}{\cal A}'}_i\equiv
u^{{\cal A}{\cal A}'}_i/\mu^{{\cal A}{\cal A}'} \quad \Rightarrow {\sf data}$ $F_{21} \equiv F_2/F_1$ $K_{21} \equiv K_2 - F_{21}K_1 \Rightarrow \text{fit}$ $\tilde{\nu}_1$

 K_{21}

The King-Plot: Fit to Isotope Shift Data

$$\tilde{\nu}_{2}^{AA'} = K_{21} + F_{21}\tilde{\nu}_{1}^{AA'}$$
$$\tilde{\nu}_{2}^{AA''} = K_{21} + F_{21}\tilde{\nu}_{1}^{AA''}$$

The King-Plot: Fit to Isotope Shift Data

$$\begin{aligned} \tilde{\nu}_{2}^{AA'} = & K_{21} + F_{21} \tilde{\nu}_{1}^{AA'} \\ \tilde{\nu}_{2}^{AA''} = & K_{21} + F_{21} \tilde{\nu}_{1}^{AA''} \\ \tilde{\nu}_{2}^{AA'''} = & K_{21} + F_{21} \tilde{\nu}_{1}^{AA'''} \end{aligned}$$

11 of 23

The King-Plot: Fit to Isotope Shift Data

$$\begin{split} \tilde{\nu}_{2}^{AA'} = & K_{21} + F_{21} \tilde{\nu}_{1}^{AA'} + ? \\ \tilde{\nu}_{2}^{AA''} = & K_{21} + F_{21} \tilde{\nu}_{1}^{AA''} + ? \\ \tilde{\nu}_{2}^{AA'''} = & K_{21} + F_{21} \tilde{\nu}_{1}^{AA'''} + ? \end{split}$$

Example of a Linear King Plot: Ca⁺ [arXiv:2311.17337]

Ytterbium and its Stable Isotopes

Ytterbium and its Stable Isotopes

13 of 23

PTB + MPIK = New Yb King Plot [arXiv:2403.07792]

Observed King plot nonlinearity: \sim 20.17(2) kHz

Nuclear Finite-Size Effects

Introduction to King Plots

New Nuclear Physics

New Physics

The Nonlinearity Decomposition Plot

• Plane of King linearity $(\mathbf{1} = (1, 1, 1, 1))$

$$\tilde{\boldsymbol{\nu}}_j \, pprox \, \boldsymbol{F}_{j1} \tilde{\boldsymbol{\nu}}_1 + \boldsymbol{K}_{j1} \mathbf{1} \,, \qquad j > 1.$$

• Project isotope-shift data onto $\tilde{\nu}_1$, 1, Λ_+ , Λ_- with $\Lambda_{\pm} \perp (\tilde{\nu}_1, 1)$:

$$\tilde{\boldsymbol{\nu}}_{j} = (\tilde{\boldsymbol{\nu}}_{1}, \boldsymbol{1}, \boldsymbol{\Lambda}_{+}, \boldsymbol{\Lambda}_{-}) (F_{j1}, K_{j1}, \lambda_{+}, \lambda_{-})^{T}$$

In presence of just one nonlinearity,

$$\begin{split} \tilde{\boldsymbol{\nu}}_{j} &\approx F_{j1}\tilde{\boldsymbol{\nu}}_{1} + K_{j1}\boldsymbol{1} + G_{j1}^{(4)}\delta\widetilde{\langle \mathbf{r}^{4}\rangle}, \qquad j > 1. \\ \text{slope:} \ \frac{\lambda_{-}}{\lambda_{+}} &\equiv \frac{G_{j1}^{(4)}\delta\langle \tilde{\mathbf{r}^{4}}\rangle_{-}}{G_{j1}^{(4)}\delta\langle \tilde{\mathbf{r}^{4}}\rangle_{+}} = \frac{\delta\langle \tilde{\mathbf{r}^{4}}\rangle_{-}}{\delta\langle \tilde{\mathbf{r}^{4}}\rangle_{+}} \Rightarrow \text{transition-universal} \end{split}$$

[arXiv:2004.11383, arXiv:2201.03578]

The Nonlinearity Decomposition Plot [arXiv:2403.07792]

Extracting Nuclear Physics from Isotope-Shift Measurements

• Assuming $\delta \langle r^4 \rangle$ dominates, what does the isotope-shift data tell us about the evolution of $\delta \langle r^4 \rangle$ along the isotope chain?

blue, orange, green: Calculations by group of Prof. Achim Schwenk **black:** new spectroscopic method, fixed at *

18 of 23

The Nonlinearity Decomposition Plot [arXiv:2403.07792]

Introduction to King Plots

New Nuclear Physics

New Physics

King-Plot Bounds on New Bosons [arXiv:1704.05068]

New effective Yukawa-potential

$$V_{\phi}(r) = -lpha_{\mathrm{NP}}(A-Z)rac{e^{-m_{\phi}r}}{r}$$

with $\alpha_{\rm NP}=(-1)^{s}rac{y_e y_n}{4\pi}$, s=0,1,2 (spin)

King-Plot Bounds on New Bosons [arXiv:1704.05068]

New effective Yukawa-potential

$$V_{\phi}(r) = -\alpha_{\rm NP}(A-Z)\frac{e^{-m_{\phi}r}}{r}$$

with $\alpha_{\rm NP}=(-1)^{s}rac{y_e y_n}{4\pi}$, s=0,1,2 (spin)

Induces new term in the King-relation:

$$\begin{split} \tilde{\nu}_{2}^{\mathcal{A}\mathcal{A}'} &= \mathcal{K}_{21}\tilde{\mu}^{\mathcal{A}\mathcal{A}'} + \mathcal{F}_{21}\tilde{\nu}_{1}^{\mathcal{A}\mathcal{A}'} + \mathcal{G}_{21}^{(4)}\delta\langle \widetilde{r^{4}}\rangle^{\mathcal{A}\mathcal{A}'} + \alpha_{\mathsf{NP}}X_{21}\tilde{\gamma}^{\mathcal{A}\mathcal{A}'} \\ X_{21} &= X_2 - \mathcal{F}_{21}X_1: \text{ NP electronic coefficient} \\ \tilde{\gamma}^{\mathcal{A}\mathcal{A}'} &\equiv (\mathcal{A} - \mathcal{A}')/\mu^{\mathcal{A}\mathcal{A}'}: \text{ NP nucl. coeff.} \end{split}$$

King-Plot Bounds on New Bosons [arXiv:1704.05068]

New effective Yukawa-potential

$$V_{\phi}(r) = -\alpha_{\rm NP}(A-Z)\frac{e^{-m_{\phi}r}}{r}$$

with $\alpha_{\mathrm{NP}} = (-1)^{s} rac{y_e y_n}{4\pi}$, s = 0, 1, 2 (spin)

Induces new term in the King-relation:

$$\begin{split} \tilde{\nu}_{2}^{AA'} &= K_{21}\tilde{\mu}^{AA'} + F_{21}\tilde{\nu}_{1}^{AA'} + G_{21}^{(4)}\delta\langle \tilde{r^{4}}\rangle^{AA'} + \alpha_{\text{NP}}X_{21}\tilde{\gamma}^{AA'} \\ X_{21} &= X_{2} - F_{21}X_{1}: \text{ NP electronic coefficient} \\ \tilde{\gamma}^{AA'} &\equiv (A - A')/\mu^{AA'}: \text{ NP nucl. coeff.} \end{split}$$

 \Rightarrow Extract α_{NP} from fraction of volumes spanned by frequency vectors:

$$\alpha_{\rm NP} = \frac{Vol.}{Vol.|_{th,\alpha_{\rm NP}=1}} = \frac{2 \det \left(\vec{\nu}_1, \vec{\nu}_2, \vec{\nu}_3, \vec{\mu}\right)}{\varepsilon_{ijk} \det \left(X_i \vec{\gamma}, \vec{\nu}_j, \vec{\nu}_k, \vec{\mu}\right)}$$

$$\{\vec{\nu}_i\}: \text{data vect. in isotope-pair space,} \quad \vec{\mu} \equiv (1, 1, 1, 1), X_i, \vec{\gamma}: \text{ theory input}$$

King-Plot Method in Presence of Nuclear Effects: The Generalised King Plot [PRR 2, 043444 (2020)]

 \Rightarrow test King linearity

 \Rightarrow account for one King nonlinearity

 \Rightarrow put bound on 2nd

 \Rightarrow King-plot method also works in presence of nuclear effects.

21 of 23

New Spectroscopy Bounds on New Physics

 $m_{\phi}
ightarrow$ 0: > size atom

- $m_{\phi}
 ightarrow \infty$: not sensitive to contact interactions
- "Peaks" due to cancellations among electronic coefficients

Conclusions

Atomic clocks are sensitive probes for

23 of 23

Check out our paper on the arXiv:

Yb King plot: arXiv:2403.07792

Stay tuned for:

- Kifit: Global King-plot analysis
- King-plot analysis of highly-charged Ca ions

Thank you for your attention.

Backup slides

Dark Portals and Isotope Shift Measurements

(No-Mass King-Plot:)

$$\begin{split} \vec{\nu_1} = & K_1 \vec{\mu} + F_1 \overrightarrow{\delta\langle r^2 \rangle} + \alpha_{\text{NP}} X_1 \vec{\gamma} \\ \vec{\nu_2} = & K_2 \vec{\mu} + F_2 \overrightarrow{\delta\langle r^2 \rangle} + \alpha_{\text{NP}} X_2 \vec{\gamma} \\ \vec{\nu_3} = & K_3 \vec{\mu} + F_3 \overrightarrow{\delta\langle r^2 \rangle} + \alpha_{\text{NP}} X_3 \vec{\gamma} \\ \Rightarrow \det(\vec{\nu_1}, \vec{\nu_2}, \vec{\nu_3}) = & \alpha_{\text{NP}} \det(\vec{K}, \vec{F}, \vec{X}) \det(\vec{\mu}, \overrightarrow{\delta\langle r^2 \rangle}, \vec{\gamma}) \\ \Rightarrow & \alpha_{\text{NP}} = \frac{Vol}{Vol|_{th,\alpha_{\text{NP}}=1}} = \frac{\det(\vec{\nu_1}, \vec{\nu_2}, \vec{\nu_3})}{\det(\vec{K}, \vec{F}, \vec{X}) \det(\vec{\mu}, \overrightarrow{\delta\langle r^2 \rangle}, \vec{\gamma})} \\ = \frac{\det(\vec{\nu_1}, \vec{\nu_2}, \vec{\nu_3})}{\frac{1}{2}\varepsilon_{ijk} \det(X_i \vec{\gamma}, \vec{\nu_j}, \vec{\nu_k})} \end{split}$$

Choose your King-Plot

Extraction of $\alpha_{\rm NP}$ using the "determinant method" requires

Type of King-Plot	Isotope-Pairs	Transitions	
Generalised King-Plot:	п	n-1	[PRR 2, 043444 (2020)]
No-Mass King-Plot:	п	п	[PRR 2, 043444 (2020)]

 $n \ge 3$ (else cannot search for nonlinearities)

$$\begin{aligned} \alpha_{\mathrm{NP}} &= \frac{V}{V|_{\mathrm{th},\alpha_{\mathrm{NP}}=1}} = \frac{(n-2)! \det\left(\vec{\nu}_{1},\ldots,\vec{\nu}_{n-1},\vec{\mu}\right)}{\varepsilon_{i_{1},\ldots,i_{n-1}} \det\left(X_{i_{1}}\vec{\gamma},\vec{\nu}_{i_{2}},\ldots,\vec{\nu}_{i_{n-1}},\vec{\mu}_{i_{n}}\right)} \\ \alpha_{\mathrm{NP}} &= \frac{v}{v|_{\mathrm{th},\alpha_{\mathrm{NP}}=1}} = \frac{(n-1)! \det\left(\vec{\nu}_{1},\vec{\nu}_{2},\ldots,\vec{\nu}_{n}\right)}{\varepsilon_{i_{1},i_{2},\ldots,i_{n}} \det\left(X_{i_{1}}\vec{\gamma},\vec{\nu}_{i_{2}},\ldots,\vec{\nu}_{i_{n}}\right)} \end{aligned}$$

Nonlinear King plot relation:

$$\tilde{\nu}_{2}^{AA'} = K_{21}\tilde{\mu}^{AA'} + F_{21}\tilde{\nu}_{1}^{AA'} + G_{21}^{(2)}\delta\langle r^{2}\rangle^{2} + G_{21}^{(4)}\delta\langle r^{4}\rangle + \dots?$$

Overlap of new physics potential and electronic wavefunction

$$X_i = \int \mathrm{d}^3 r \frac{e^{-m_\phi r}}{r} \left[|\psi_b(r)|^2 - |\psi_a(r)|^2 \right]$$

 $|\psi(r)|^2$: electron density in absence of new physics, a, b initial, final states

Requirement for searches for new light bosons:

- At least one of ψ_a or ψ_b should have good overlap with new potential.
- For tight bounds on α_{NP} , one X_i needs to be large.

Recipe for the Nonlinearity Decomposition Plot

[PRL 125, 123002 (2020), PRL 128, 163201 (2022)]

1. Arrange the isotope-shift data for all transitions $\tau \in \{\alpha, \beta, \gamma, \delta, \epsilon\}$ in *n*-vectors $\tilde{\nu}_{\tau}$, where *n* is the number of isotope pairs (here 4):

$$ilde{oldsymbol{
u}}_{ au} = (ilde{
u}_{ au}^{168,170}, ilde{
u}_{ au}^{170,172}, ilde{
u}_{ au}^{172,174}, ilde{
u}_{ au}^{174,176})$$

- 2. Choose a reference transition, say δ .
- 3. Plane of King linearity is defined by the relations $(\mathbf{1} = (1, 1, 1, 1))$

$$ilde{oldsymbol{
u}}_{ au} \,pprox\, F_{ au\delta} ilde{oldsymbol{
u}}_{\delta} + K_{ au\delta}\mathbf{1}$$
 .

4. Define two (n=4)-vectors Λ_{\pm} that are orthogonal to $ilde{
u}_{\delta}, \mathbf{1}$.

5. Project all isotope-shift data onto the four vectors $\tilde{\nu}_{\delta}$, **1**, Λ_+ , Λ_- :

$$\tilde{\boldsymbol{\nu}}_{ au} = \begin{pmatrix} \tilde{\boldsymbol{\nu}}_{\delta} & \mathbf{1} & \boldsymbol{\Lambda}_{+} & \boldsymbol{\Lambda}_{-} \end{pmatrix} \begin{pmatrix} F_{ au\delta} & K_{ au\delta} & \lambda_{+}^{(au)} & \lambda_{-}^{(au)} \end{pmatrix}^{T}$$

6. Plot all points $(\lambda_{+}^{(\tau)}, \lambda_{-}^{(\tau)})$ in the same plane.

The Nonlinearity Decomposition Plot

Notation	Transition	Refs.
$\alpha_{\text{MIT,PTB}}$ β	${}^{2}S_{1/2} \rightarrow {}^{2}D_{5/2}$ E2 in Yb+ ${}^{2}S_{1/2} \rightarrow {}^{2}D_{3/2}$ E2 in Yb+	MIT, t.w. MIT
$\gamma_{MIT,PTB}$	$^{2}S_{1/2} \rightarrow ^{2}F_{7/2}$ E3 in Yb ⁺	MIT, t.w.
δ	$^{1}S_{0} \rightarrow {}^{3}P_{0}$ in Yb	Kyoto
ϵ	${}^1S_0 \rightarrow {}^1D_2$ in Yb	Mainz

- δ(r²)² estimated using Angeli & Marinova Tables of experimental nuclear ground state charge radii
- $\delta \langle r^4 \rangle$: Calculations by group of Prof. Achim Schwenk, TU Darmstadt

In presence of just one nonlinearity, e.g. $G^{(4)}\delta\langle r^4\rangle$, slope: $\frac{\lambda_{-}^{(\tau)}}{\lambda_{+}^{(\tau)}} = \frac{G_{\tau}^{(4)}\delta\langle r^4\rangle_{-}}{G_{\tau}^{(4)}\delta\langle r^4\rangle_{+}} = \frac{\delta\langle r^4\rangle_{-}}{\delta\langle r^4\rangle_{+}} \equiv \frac{\lambda_{-}}{\lambda_{+}} \Rightarrow$ transition-universal

Extracting Nuclear Physics from Isotope-Shift Measurements

• Assuming $\delta \langle r^4 \rangle$ dominates, what does the isotope-shift data tell us about the evolution of $\delta \langle r^4 \rangle$ along the isotope chain?

\Rightarrow "Put the King plot on it's head.":

- 1. Instead of eliminating $\delta \langle r^2 \rangle$ from the system of equations, we use experimental data (Angeli & Marinova) to determine it.
- 2. Perform a fit to determine the field shift coefficient F_{τ} from the data.
- 3. Use theoretical input for the electronic coefficient $G_{\tau}^{(4)}$ (J. Berengut)
- 4. Solve for object

$$Q^{AA',RR'} \equiv \delta \langle r^4 \rangle^{AA'} - \frac{\mu^{AA'}}{\mu^{RR'}} \delta \langle r^4 \rangle^{RR'} \,,$$

where RR': reference isotope pair, AA': any of remaining isotope pairs.

$\delta \langle r^4 \rangle$ Calculations: Ab initio vs. DFT

- Experimental $\delta \langle r^4 \rangle^{AA'}$ values relative to $\delta \langle r^4 \rangle^{176,174} = 7 \text{ fm}^4$ extracted from isotope shifts from the α transition using atomic theory (fiducial, core holes)
- Above: ab initio calculations (t.w.)
- Below: density functional theory calculations (PRL.128.163201)
- Gray bands: estimated theory uncertainties