Mapping New Physics to Observables in the SMEFT Paradigm

Tisa Biswas

Department of Physics, Indian Institute of Technology, Kanpur, India

05 December 2024

EFTs and Beyond 2024

Outline

- ► The SMEFT paradigm: what it is and why is it important now?
- Going beyond dimension-six SMEFT
- ► A brief review on Heat Kernel Method
- Universal One-loop Effective Lagrangian up to dimension-eight
- Integrating out a heavy electroweak complex triplet scalar
- Integrating out a heavy electroweak complex doublet scalar
- Summary and Outlook

What is SMEFT and Why is it important now?

• Generically, we can search for new physics either **directly** through new resonance production or **indirectly** by measuring precisely the SM interactions.

So far, no new Physics beyond the SM has been observed at the LHC, so what now?

New Physics might just be beyond the LHC reach and when integrated out, this would lead to indirect effects in deviations of couplings involving the Higgs and the gauge bosons, for new non-resonant Physics effects at the LHC.

• An Effective Field Theory is a field theory that describes the low energy phenomena of an underlying UV sector in terms of only the light particles.

do/dE

E

do/dI

E

SMEFT = Effective Field Theory of **SM** fields + **SM** symmetries but allows for d > 4 operators.

Fundamental assumption: new physics nearly decoupled: $\Lambda \gg (v, E)$.

dimension-6

$$\mathscr{L} = \mathscr{L}_{SM}^{(4)} + \frac{1}{\Lambda} \sum_{k} C_{k}^{(5)} Q_{k}^{(5)} + \frac{1}{\Lambda^{2}} \sum_{k} C_{k}^{(6)} Q_{k}^{(6)} + \frac{1}{\Lambda^{3}} \sum_{k} C_{k}^{(7)} Q_{k}^{(7)} + \mathscr{O}\left(\frac{1}{\Lambda^{4}}\right)$$

 C_k :BSM effects, Q_k :SM particles

Tisa Biswas

EFT Expansion and Going Beyond the Dim-6 SMEFT

Tisa Biswas

Bottom-up vs Top-down Approach

Tisa Biswas

New effects at dimension-8 & EFT validity

'Disentangling' effects

Higher dimensional operators \Rightarrow **new Lorentz structures**

More derivatives = higher energy growth

New gauge self-interactions emerge

Anomalous QGC independent from TGC: beyond $\mathcal{O}_W =$ $\varepsilon_{IJK}W^{I,\nu}_{\mu}W^{J,\rho}_{\nu}W^{K,\mu}_{\rho}$

 h^4 independent from h^3 : $(\phi^{\dagger}\phi)^3$ and $(\phi^{\dagger}\phi)^4$

$$F_{\mu\nu}F^{\mu\rho}F_{\rho\sigma}F^{\sigma\nu} \quad \text{(Light-by-light)}$$

$$G_A^{\mu\nu}G_{\mu\nu}^A V^{\rho\sigma}V_{\rho\sigma}, \quad V = Z, \gamma, W^{\pm} \quad (gg \to VV)$$

$$i\phi^{\dagger}B_{\mu\nu}W^{\mu\rho}\{D_{\alpha}, D^{\nu}\}\phi \quad \text{(Neutral TGC)}$$

Much is left to study

Non-redundant basis is known

a) Model independent: study effects of dim-8 operators

- Understand where these could be relevant
- Global analyses up to dimension-8 (not yet...)
- Identify processes/observables that are uniquely sensitive, ...

b) Model dependent: predict effects of dim-8 operators

- Apply results of (a) by making some assumptions about $c_i^{(8)}$
- Study classes of explicit UV models up to dimension-8:

2HDM [Dawson et al.; PRD 106 (2022) 5, 055012] Triplet scalar & dark photon [Corbett et al.; JHEP 06 (2021) 076] Vector-like quarks [Dawson, Homiller & Sullivan; PRD 104 (2021) 11, 115013]

Tisa Biswas

Mapping New Physics to Observables in the SMEFT Paradigm

[Hays et al.; JHEP 02 (2019) 123] [Hays et al.; JHEP 11 (2020) 087]

[Boughezal et. al; PRD 104 (2021) 9, 095022]

[Boughezal et. al; PRD 104 (2021) 1, 016005]

[Murphy; JHEP 10 (2020) 174], Li et al.; PRD 104 (2020) 015026]

Heat Kernel Method

Let us the part of the UV Lagrangian that is bilinear in Φ :

$$\mathscr{L}^{c} = \Phi^{\dagger}(D^{2} + U + M^{2})\Phi = \Phi^{\dagger}(\Delta)\Phi$$

The Heat-Kernel for an operator Δ can be written as,

$$K(t, x, y, \Delta) = \langle x | e^{-t\Delta} | y \rangle$$

The Heat-Kernel satisfies the heat equation,

$$(\partial_t + \Delta)K(t, x, y, \Delta) = 0$$
 with initial condition $K(0, x, y, \Delta) = \delta(x - y)$

The HK for the operator Δ ,

$$K(t, x, y, \Delta) = K_0(t, x, y)H(t, x, y, \Delta)$$

$$\frac{1}{(4\pi t)^{d/2}}e^{\frac{-(x-y)^2}{4t}-tM^2} \sum_k \frac{(-t)^k}{k!}b_k(x,y)$$

Here, $b_k(x, y)$: Heat-Kernel coefficients

[A.A. Bel'kov et al., hep-ph/9606307, L.G. Avramidi, Nucl. Phys. B, 355(1991)]

Obtaining one-loop effective action in terms of Heat-Kernel coefficients:

$$\mathscr{L}_{\text{eff,1-loop}} = c_s tr \log(-P^2 + U + M^2) = c_s \text{tr} \int_0^\infty \frac{dt}{t} e^{-t\Delta} = c_s \text{tr} \int_0^\infty \frac{dt}{t} K(t, x, x, \Delta)$$
$$= c_s \text{tr} \int_0^\infty \frac{dt}{t} (4\pi t)^{-d/2} e^{-tM^2} \sum_k \frac{(-t)^k}{k!} \text{tr}[b_k] = \frac{c_s}{(4\pi)^{d/2}} \sum_{k=0}^\infty M^{d-2k} \frac{(-1)^k}{k!} \Gamma[k - d/2] \text{tr}[b_k]$$

Tisa Biswas

One-loop effective action and relevant coefficients

Obtaining one-loop effective action in terms of Heat-Kernel coefficients:

$$\mathscr{L}_{\text{eff,1-loop}} = \frac{c_s}{(4\pi)^{d/2}} \sum_{k=0}^{\infty} M^{d-2k} \frac{(-1)^k}{k!} \Gamma[k - d/2] \text{tr}[b_k]$$

For $k \le d/2$, the Gamma function has simple poles. Assuming $d = 4 - \varepsilon$, the divergent part of the one-loop effective action:

$$\mathscr{L}_{\text{eff}}^{\text{div}} = \frac{c_s}{(4\pi)^{2-\varepsilon/2}} M^{d-2k} \frac{(-1)^k}{k!} \frac{(\varepsilon/2-3+k)!}{(\varepsilon/2-1)!} (2/\varepsilon - \gamma_E + \mathcal{O}(\varepsilon)) \text{tr}[b_k]$$

and we renormalise the one-loop effective action.

Relevant coefficients for higher dimensional operators:

$$tr[b_{0}] = trI,$$

$$tr[b_{1}] = tr[U],$$

$$tr[b_{2}] = tr[U^{2} + \frac{1}{6}(G_{\mu\nu})^{2}],$$

$$tr[b_{3}] = tr[-U^{3} - \frac{1}{2}(P_{\mu}U)^{2} - \frac{1}{2}U(G_{\mu\nu})^{2} - \frac{1}{10}(J_{\nu})^{2} + \frac{1}{15}G_{\mu\nu}G_{\nu\rho}G_{\rho\mu}]$$

$$tr[b_{4}] = ...,$$

$$tr[b_{6}] = ...$$

$$tr[b_{8}] = ...$$

[U. Banerjee, J. Chakrabortty, S. U. Rahaman and K. Ramkumar, Eur. Phys. J. Plus 139 (2024) no.2, 159].

Tisa Biswas

Universal One-loop Effective Lagrangian up to *D*8

$$\begin{split} \mathcal{L}_{qu}^{ce's} &= \begin{pmatrix} c_{e'} \\ (4\pi)^{2} W^{4} & \left[-\frac{1}{2} \left(\ln \left[\frac{W^{2}}{\mu^{2}} \right] - \frac{1}{2} \right) \right] + \begin{pmatrix} c_{h} \\ (4\pi)^{2} W^{2} \\ W^{2} & \left[-\frac{1}{2} \left(\ln \left[\frac{W^{2}}{\mu^{2}} \right] U^{2} - \frac{1}{6} \ln \left[\frac{W^{2}}{\mu^{2}} \right] (G_{\mu\nu})^{2} \right] \\ &+ \frac{1}{h^{2} b} \left[-U^{3} - \frac{1}{2} (P_{\mu}U)^{2} - \frac{1}{2} U (G_{\mu\nu})^{2} - \frac{1}{10} (G_{\mu})^{2} + \frac{1}{16} G^{\mu\nu} G_{\mu\nu} G^{\mu}_{\mu} \right] \\ &+ \frac{1}{h^{2} b} \left[U^{4} - U^{2} (P^{2}U) - \frac{4}{5} (U^{2})^{2} + \frac{1}{5} (U^{2})^{2} + \frac{1}{5} (U^{2})^{2} + \frac{1}{5} (U^{2})^{2} + \frac{1}{5} (U^{2})^{2} \right] \\ &+ \frac{1}{h^{2} b} \left[U^{4} - U^{2} (P^{2}U) - \frac{4}{5} (U^{2})^{2} + \frac{1}{5} (U^{2})^{2} + \frac{1}{5} (U^{2})^{2} \right] \\ &+ \frac{1}{h^{2} b} \left[U^{4} - U^{2} (U^{2}) + \frac{4}{5} (U^{2})^{2} + \frac{1}{5} (U^{2})^{2} \right] \\ &+ \frac{1}{2} \frac{1}{10} (U^{4} - U^{2})^{2} (U^{2})^{2} + \frac{1}{5} (U^{2})^{2} \left(\frac{1}{2} - \frac{1}{15} (U^{2})^{2} \right) \\ &+ \frac{1}{h^{2} b} \left[U^{4} - U^{2} (U^{2}) + \frac{1}{2} U^{2} (U^{2})^{2} + \frac{1}{5} (U^{2})^{2} \right] \\ &+ \frac{1}{h^{2} b} \left[U^{4} - U^{2} (U^{2})^{2} + \frac{1}{5} (U^{2})^{2} - \frac{1}{5} (U^{2})^{2} \\ &+ \frac{1}{2} \frac{1}{10} (U^{2})^{2} - \frac{1}{2} U^{2} (U^{2})^{2} U^{2} + \frac{1}{5} (U^{2})^{2} \\ &+ \frac{1}{2} \frac{1}{10} (U^{2})^{2} U^{2} (U^{2})^{2} U^{2} (U^{2})^{2} (U^{2})^{2} \\ &+ \frac{1}{15} U^{2} (U^{2})^{2} U^{2} (U^{2})^{2} U^{2} (U^{2})^{2} U^{2} + \frac{1}{5} U^{2} (U^{2})^{2} \\ &+ \frac{1}{16} U^{2} (U^{2})^{2} U^{2} (U^{2})^{2} U^{2} (U^{2})^{2} U^{2} \\ &+ \frac{1}{16} \frac{1}{10} (U^{2})^{2} U^{2} (U^{2})^{2} U^{2} \\ &+ \frac{1}{10} \frac{1}{10} (U^{2})^{2} (U^{2})^{2} U^{2} \\ &+ \frac{1}{10} \frac{1}{10} (U^{2})^{2} U^{2} (U^{2})^{2} U^{2} U^{2} (U^{2})^{2} \\ &+ \frac{1}{10} \frac{1}{10} (U^{2})^{2} (U^{2})^{2} U^{2} (U^{2})^{2} \\ &+ \frac{1}{10} U^{2} (U^{2})^{2} U^{2} U^{2} (U^{2})^{2} U^{2} \\ &+ \frac{1}{10} \frac{1}{10} U^{2} U^{2} (U^{2})^{2} U^{2} U^{2} U^{2} U^{2} \\ &+ \frac{1}{10} \frac{1}{10} U^{2} U^{2} U^{2} U^{2} U^{2} U^{2} U^{2} U^{2} \\ &+ \frac{1}{10} U^{2} U^{2} U^{2} U^{2} U^{2} U^{2} U^{2} U^{2} U^{2} \\ &+ \frac{1}{10} U^{2} U$$

Complex Scalar Triplet upto Dimension-eight...

SM + complex, triplet scalar, Δ : Full Lagrangian for a complex scalar triplet with hypercharge Y = 1 is then given by

$$\mathscr{L}_{BSM} = \mathscr{L}_{SM} + \left(\left[(D_{\mu} \Delta)^{\dagger} (D^{\mu} \Delta) \right] - m_{\Delta}^{2} [\Delta^{\dagger} \Delta] + \mathscr{L}_{Y} - V(H, \Delta) \right)$$

where the scalar potential is

$$V(H,\Delta) = \lambda_1 \left(H^{\dagger} H \right) \operatorname{Tr}[\Delta^{\dagger} \Delta] + \lambda_2 \left(\operatorname{Tr}[\Delta^{\dagger} \Delta] \right)^2 + \lambda_3 \operatorname{Tr}\left[\left(\Delta^{\dagger} \Delta \right)^2 \right] + \lambda_4 \left(H^{\dagger} \Delta \Delta^{\dagger} H \right) + \left[\mu_{\Delta} \left(H^T i \sigma^2 \Delta^{\dagger} H \right) + \text{h.c.} \right].$$

$$\mathscr{L}_Y = Y_{\Delta_{ab}} L_a^T Ci \sigma^2 \Delta L_b + \text{h.c.}$$

where C represents the charge conjugation matrix, and $a, b = e, \mu, \tau$ denote the flavor indices.

[TB, Chakrabortty, Englert, Spannowsky (in prep)]

Tisa Biswas

Complex Scalar Triplet upto Dimension-eight...

Integrating out the heavy complex triplet up to one loop

2 ⁸ (+ + +) (EFT operators	Matching results at scale $M_{\Delta}(\gg v)$			
$O^{\scriptscriptstyle O}_{\phi}:(\phi ^{\scriptscriptstyle \prime} \phi)^{\scriptscriptstyle 4}$	$\mathscr{O}_{\phi^8} = (\phi^{\dagger}\phi)^4$	$\mathbb{C}_{\phi^8} = \frac{1}{16\pi^2} c_{\phi^8}^{[\![U]\!]} - \frac{1}{32\pi^2} \ln\left(\frac{M_A^2}{\mu^2}\right) c_{\phi^8}^{[\![U^2]\!]} - \frac{1}{96\pi^2} c_{\phi^8}^{[\![U^3]\!]} + \frac{1}{384\pi^2} c_{\phi^8}^{[\![U^4]\!]}$	$C_{\phi 8}^{\llbracket U^{+} \rrbracket}$	$\frac{\frac{3}{8}\lambda_{4}^{4} + \frac{3}{4}\lambda_{1}^{3}\lambda_{4} + \frac{15}{16}\lambda_{1}^{2}\lambda_{4}^{2} + \frac{9}{16}\lambda_{1}\lambda_{4}^{3} + \frac{17}{128}\lambda_{4}^{4}}{\frac{213}{128}\lambda_{4}^{2} + \frac{111}{128}\lambda_{4}^{2} + \frac{513}{128}\lambda_{4}^{3} + \frac{17}{128}\lambda_{4}^{4}}$	
¥ Higgs trilinear &	$\mathscr{O}_{\phi^6}^{(1)} = (\phi^\dagger \phi)^2 (D_\mu \phi^\dagger D^\mu \phi)$	$\mathbb{C}_{\phi 6}^{(1)} = \frac{1}{16\pi^2} c_{\phi 6}^{(1), \llbracket U \rrbracket} - \frac{1}{384\pi^2} c_{\phi 6}^{(1), \llbracket U^2(P^2U) \rrbracket}$	$\begin{array}{c} c^{(1), \llbracket U^2(P^2U) \rrbracket} \\ \phi^6 \\ c^{(2), \llbracket U^2(P^2U) \rrbracket} \end{array}$	$\frac{3\lambda_1}{2} + \frac{9\lambda_1\lambda_4}{4} + \frac{11\lambda_1\lambda_4}{8} + \frac{3\lambda_4}{16}$	
quartic couplings	$\mathscr{O}_{\phi^6}^{(2)} = (\phi^{\dagger}\phi)(\phi^{\dagger}\sigma^{I}\phi)(D_{\mu}\phi^{\dagger}\sigma^{I}D^{\mu}\phi)$	$\mathbb{C}_{\phi^6}^{(2)} = -\frac{1}{384\pi^2} c_{\phi^6}^{(2)} [\![U^2(P^2U)]\!]$	$c_{\phi^6}^{(2),[[U^2(P^2U)]]}$	$\frac{\lambda_1 \lambda_4}{2} + \frac{\lambda_4}{4}$	
Higgs pair &	$\mathcal{O}_{\phi^6}^{(3)} = (\phi^{\dagger}\phi)^2 (\phi^{\dagger}D^2\phi + \text{h.c.})$	$\mathbb{C}_{\phi^6}^{(3)} = \frac{1}{16\pi^2} c_{\phi^6}^{(3), \llbracket U \rrbracket} - \frac{1}{192\pi^2} c_{\phi^6}^{(3), \llbracket (P_{\mu}U)^2 \rrbracket} - \frac{1}{384\pi^2} c_{\phi^6}^{(3), \llbracket U^2(P^2U) \rrbracket}$	$c_{\phi^6}^{(3),[[U^2(P^2U)]]}$	$\frac{3\lambda_1^2}{4} + \frac{9\lambda_1^2\lambda_4}{8} + \frac{15\lambda_1\lambda_4^2}{16} + \frac{9\lambda_4^2}{32}$	
triple Higgs production	$\mathscr{O}^{(1)}_{W^2\phi^4} = (\phi^{\dagger}\phi)^2 W^I_{\mu\nu} W^{I\mu\nu}$	$\mathbb{C}_{W^2\phi^4}^{(1)} = -\frac{1}{192\pi^2} c_{W^2\phi^4}^{(1), \llbracket U(G_{\mu\nu})^2 \rrbracket} + \frac{1}{480\pi^2} c_{W^2\phi^4}^{(1), \llbracket U^2(G_{\mu\nu})^2 \rrbracket} + \frac{1}{1920\pi^2} c_{W^2\phi^4}^{(1), \llbracket (UG_{\mu\nu})^2 \rrbracket}$	$c^{(1),[[(UG_{\mu\nu})^2]]}_{W^2\phi^4}$	$-\tfrac{1}{4}g^2(2\lambda_1+\lambda_4)^2$	
$O^{(1)}$, $(a^{\dagger}a)^{2}(D, a)^{\dagger}(D a)$	$\mathscr{O}^{(3)}_{W^2\phi^4} = (\phi^{\dagger}\sigma^{I}\phi)(\phi^{\dagger}\sigma^{J}\phi)W^{I}_{\mu\nu}W^{J\mu\nu}$	$\mathbb{C}_{W^2\phi^4}^{(3)} = -\frac{1}{192\pi^2} c_{W^2\phi^4}^{(3), \llbracket U(G_{\mu\nu})^2 \rrbracket} + \frac{1}{480\pi^2} c_{W^2\phi^4}^{(3), \llbracket U^2(G_{\mu\nu})^2 \rrbracket} + \frac{1}{1920\pi^2} c_{W^2\phi^4}^{(3), \llbracket (UG_{\mu\nu})^2 \rrbracket}$	$c^{(3),[[(UG_{\mu u})^2]]}_{W^2\phi^4}$	$-g^2\lambda_4^2$	
$O_{\phi 6}^{*}: (\varphi^{*}\varphi)^{-} (D_{\mu}\varphi)^{*} (D^{\mu}\varphi)$	$\hat{\mathcal{O}}^{(1)}_{B^2\phi^4} = (\phi^{\dagger}\phi)^2 B_{\mu\nu} B^{\mu\nu}$	$\mathbb{C}_{B^{2}\phi^{4}}^{(1)} = -\frac{1}{192\pi^{2}}c_{B^{2}\phi^{4}}^{(1),\llbracket U(G_{\mu\nu})^{2} \rrbracket} + \frac{1}{480\pi^{2}}c_{B^{2}\phi^{4}}^{(1),\llbracket U^{2}(G_{\mu\nu})^{2} \rrbracket} + \frac{1}{1920\pi^{2}}c_{B^{2}\phi^{4}}^{(1),\llbracket (UG_{\mu\nu})^{2} \rrbracket} + \frac{1}{960\pi^{2}}c_{B^{2}\phi^{4}}^{(1),\llbracket U(J_{\mu})^{2} \rrbracket}$	$- c^{(1),\llbracket (UG_{\mu\nu})^2 \rrbracket}_{B^2 \phi^4}$	$-\frac{1}{4}g^2\lambda_4^2 - \frac{3}{8}g'^2(2\lambda_1 + \lambda_4)^2$	
All Higgs couplings &	$\mathscr{O}_{WB\phi^4}^{(1)} = (\phi^{\dagger}\phi)(\phi^{\dagger}\sigma^{I}\phi)W_{\mu\nu}^{I}B^{\mu\nu}$	$\mathbb{C}_{WB\phi^4}^{(1)} = \frac{1}{480\pi^2} c_{WB\phi^4}^{(1), [[U^2(G_{\mu\nu})^2]]} + \frac{1}{1920\pi^2} c_{WB\phi^4}^{(1), [[(UG_{\mu\nu})^2]]}$	$\frac{c_{WB\phi^4}^{(1),\llbracket (UG_{\mu\nu})^2\rrbracket}}{c_{WB\phi^4}}$	$-2gg'\lambda_4(2\lambda_1+\lambda_4)$	
Higgs ZZ/WW	$\mathcal{O}_{\phi^4}^{(3)} = (D^{\mu}\phi^{\dagger}D_{\mu}\phi)(D^{\nu}\phi^{\dagger}D_{\nu}\phi)$	$\mathbb{C}_{\phi^4}^{(3)} = \frac{1}{16\pi^2} c_{\phi^6}^{(3), [[U]]} + \frac{1}{1920\pi^2} c_{\phi^4}^{(3), [[U^2U]^2]]}$	$c_{\phi^4}^{(3),\llbracket (P^2U)^2 \rrbracket}$	$6\lambda_1^2 + 6\lambda_1\lambda_4 + \frac{5}{2}\lambda_4^2$	
Single Higgs production &	$\mathcal{O}_{\phi^4}^{(4)} = (D_{\mu}\phi^{\dagger}D^{\mu}\phi)(\phi^{\dagger}D^{2}\phi + \text{h.c.})$	$\mathbb{C}_{\phi^4}^{(4)} = \frac{1}{16\pi^2} c_{\phi^4}^{(4), \ U\ } + \frac{1}{1920\pi^2} c_{\phi^4}^{(4), \ [P^2U]^2\ }$	$c_{\phi^4}^{(4), \llbracket (P^2U)^2 \rrbracket}$	$6\lambda_1^2 + 6\lambda_1\lambda_4 + \frac{5}{2}\lambda_4^2$	
decay	$\mathcal{O}_{\phi^4}^{(1)} = ((D^{\mu}\phi^{\dagger}\phi)(D^{\mu}\phi^{\dagger}\phi) + \text{h.c.})$	$\mathbb{C}_{\phi^4}^{(6)} = \frac{1}{16\pi^2} c_{\phi^4}^{(3), [L^0]} + \frac{1}{1920\pi^2} c_{\phi^4}^{(3), [L^{P-U}]}$ (10) (10) [U] (10) [U] (10) [(P^2U)^2]	$c_{\phi^4}^{(8), \llbracket (P^2U)^2 \rrbracket}$	$rac{3}{2}\lambda_1^2+rac{3}{2}\lambda_1\lambda_4+rac{5}{8}\lambda_4^2$	
$X^2 X'^2$ classes	$\mathcal{D}_{\phi^4} = (D \ \psi \ D \ \psi)(\psi \ \psi)$ $\mathcal{D}_{\phi^4} = (\Phi^{\dagger} D^2 \phi)(D^2 \phi^{\dagger} \phi)$	$\mathbb{C}_{\phi^4}^{(13)} = \frac{1}{16\pi^2} c_{\phi^4}^{(13), [[0]]} + \frac{1}{1920\pi^2} c_{\phi^4}^{(13), [[1]]} + \frac{1}{1920\pi^2} c_{\phi^4}^{(13), [[1]]}$	$c_{\phi^4}^{(10),\llbracket (P^2U)^2\rrbracket}$	λ_4^2	
	$\mathcal{O}_{\psi^4}^{(6)} = (\psi^{\dagger} \phi) D_{\psi} W^{I \mu \nu} (D_{\mu} \phi^{\dagger} \mathrm{i} \sigma^I \phi + \mathrm{h.c.})$	$\mathbb{C}_{\phi^4}^{(6)} = \frac{1}{16\pi^2} c_{\phi^4}^{(6)} + \frac{1}{1920\pi^2} c_{$	$c_{\phi^4}^{(11),\llbracket (P^2U)^2\rrbracket}$	$3\lambda_1^2 + 3\lambda_1\lambda_4 + \frac{1}{4}\lambda_4^2$	
↓ ↓	$\mathscr{O}_{W\phi^4D^2}^{(7)} = \varepsilon^{IJK} (D_{\mu}\phi^{\dagger}\sigma^I\phi)(\phi^{\dagger}\sigma^J D_{\nu}\phi)W^{K\mu\nu}$	$\mathbb{C}_{W\phi^4D^2}^{(7)} = -\frac{1}{960\pi^2} c_{W\phi^4D^2}^{(7), [[U(P_{\mu}U)J_{\mu}]]}$			
anomalous quartic gauge self-couplings			•		

Matching results for dimension-eight operators in the SMEFT for the complex triplet model with the heavy triplet integrated up to one loop. The terms in blue, magenta, black and green denote the contributions from lower dimensional terms: M_{Λ}^{-4} , M_{Λ}^{-2} , M_{Λ}^{0} , and M_{Λ}^{2} , respectively.

Complex Scalar Triplet upto Dimension-eight...

Incorporating the effect of fermionic interactions with the heavy scalar :

	Dim-8 EFT operators	Matching results at scale $M_{\Delta}(\gg v)$	$c_{l^4\phi^2}^{(1), \llbracket U \rrbracket}$	$-\frac{1}{4M^6}Y_{\Delta_{rt}}Y^*_{\Delta_{ps}}\left(10\lambda_1\lambda_2+6\lambda_1\lambda_3+5\lambda_2\lambda_4+3\lambda_3\lambda_4\right)$
	$\mathscr{O}_{l^4\phi^2}^{(1)} = \varepsilon_{ij}\varepsilon_{mn}(\ell^i C\ell^m)\phi^j\phi^n(\phi^{\dagger}\phi)$	$\mathbb{C}_{l^{4}\phi^{2}}^{(1)} = -\frac{1}{32\pi^{2}} ln \frac{M_{\Delta}}{\mu^{2}} c_{l^{4}\phi^{2}}^{(1), \llbracket U^{2} \rrbracket} + \frac{1}{16\pi^{2}} c_{l^{4}\phi^{2}}^{(1), \llbracket U \rrbracket}$	$c_{l^4\phi^2}^{(2),\llbracket U rbracket}$	$\frac{-1}{4M^6}Y_{\Delta_{rt}}Y^*_{\Delta_{ps}}\left(6\lambda_1\lambda_4+2\lambda_2\lambda_4+3\lambda_3\lambda_4\right)$
D5, D7 operators	$\mathscr{O}_{l^{4}\phi^{2}}^{(2)} = \varepsilon_{ij}\varepsilon_{mn}(\ell^{i}C\ell^{m})\phi^{j}\phi^{n}(\phi^{\dagger}\phi)$	$\mathbb{C}_{l^{4}\phi^{2}}^{(2)} = -\frac{1}{32\pi^{2}} ln \frac{M_{\Delta}}{\mu^{2}} c_{l^{4}\phi^{2}}^{(2), \llbracket U^{2} \rrbracket} + \frac{1}{16\pi^{2}} c_{l^{4}\phi^{2}}^{(2), \llbracket U \rrbracket}$	$c_{l4D2}^{\llbracket U \rrbracket}$	$= \frac{-1}{4M_0^6} Y_{\Delta_{rt}} Y_{\Delta_{rt}}^* \left(20\lambda_2 + 12\lambda_3 \right)$
\checkmark contribute to <i>v</i>	$\mathscr{O}_{l^4D^2}^{(1)} = D^{\nu}(\bar{\ell}_p \gamma^{\mu} \ell_r) D_{\nu}(\bar{\ell}_s \gamma_{\mu} \ell_t)$	$\mathbb{C}_{l^4D^2}^{(1)} = \frac{1}{16\pi^2} c_{l^4D^2}^{(1), [\![U]\!]}$	$C_{l^4\phi^2}^{(1),\llbracket U^2 \rrbracket}$	$\frac{1}{4M^6}Y_{\Delta_{rt}}Y^*_{\Delta_{ps}}\left(\frac{3}{2}\lambda_1\lambda_3+\frac{3}{4}\lambda_3\lambda_4+2\lambda_1\lambda_2+\lambda_2\lambda_4\right)$
masses:	Dim-7 EFT operators	Matching results at scale $M_{\Delta}(\gg v)$	$c_{14}^{(2)}, \llbracket U^2 \rrbracket$	$\frac{-1}{8M6}Y_{\Delta rt}Y^*_{\Delta rz}\lambda_4\lambda_2$
Type-II seesaw-mechanism	$\mathscr{O}_{L\phi D}^{(1)} = \varepsilon_{ij} \varepsilon_{mn} \ell^i C(D^{\mu} \ell^j) \phi^m (D_{\mu} \phi^n)$	$\mathbb{C}_{L\phi D}^{(1)} = \frac{1}{16\pi^2} c_{L\phi D}^{(1), [\![U]\!]}$	$\begin{bmatrix} l & \psi^2 \\ \\ c^{(1)}, \llbracket U \rrbracket$	$\frac{-1}{2}(4\lambda_2)U_{\lambda}Y_{\lambda}$
D6, D8 operators	$\mathscr{O}_{L\phi D}^{(2)} = \varepsilon_{im} \varepsilon_{jn} \ell^i C(D^{\mu} \ell^j) \phi^m (D_{\mu} \phi^n)$	$\mathbb{C}_{L\phi D}^{(2)} = \frac{1}{16\pi^2} c_{L\phi D}^{(2), [\![U]\!]}$	$(2), \llbracket U \rrbracket$	$2M^3 (m_2) \mu \Delta T \Delta_{ij}$
	$\mathscr{O}_{L\phi} = arepsilon_{ij} arepsilon_{mn} (\ell^i C \ell^m) \phi^j \phi^n (\phi^\dagger \phi)$	$\mathbb{C}_{L\phi} = -\frac{1}{32\pi^2} ln \frac{M_{\Delta}}{\mu^2} c_{L\phi}^{\llbracket U^2 \rrbracket}$	$C_{L\phi D}$	$\frac{1}{2M^3}(4\lambda_2)\mu_{\Delta}Y_{\Delta_{ij}}$
Strong constraints	Dim-6 EFT operators	Matching results at scale $M_{\Delta}(\gg v)$	$c_{L\phi}^{\llbracket U floor}$	$-\frac{-1}{2M^3}\mu_{\Delta}Y_{\Delta_{im}}\left(\lambda_2\lambda_4-\frac{3}{2}(\lambda_2+\lambda_3)\lambda_4+\lambda_2(2\lambda_1+\lambda_4)\right)$
from lepton flavour violating decays	$\mathscr{O}_{ll} = \left(ar{\ell}_{L_{lpha}}^r \gamma_\mu \ell_{L_{\gamma}}^p ight)_i \left(ar{\ell}_{L_{eta}}^s \gamma^\mu \ell_{L_{\delta}}^q ight)$	$\mathbb{C}_{ll} = \frac{1}{16\pi^2} c_{ll}^{\llbracket U \rrbracket}$	ΠΤΤΠ	$+\frac{3}{2}(\lambda_2+\lambda_3)(2\lambda_1+\lambda_4))$
	Dim-5 EFT operators	Matching results at scale $M_{\Delta}(\gg v)$		$\frac{1}{4M^2}Y_{\Delta_{pq}}Y^*_{\Delta_{rs}}(4\lambda_2+3\lambda_3)^2$
	$\mathscr{O}_{\phi^2 L^2} = \mathcal{E}_{ij} \mathcal{E}_{mn} \phi^i \phi^m (\ell_p^j)^T C \ell_r^n$	$\mathbb{C}_{\phi^{2}L^{2}} = \frac{1}{16\pi^{2}} c_{\phi^{2}L^{2}}^{\llbracket U \rrbracket}$	$c^{\llbracket U \rrbracket}_{\phi^2 L^2}$	$\frac{-1}{4M}\mu_{\Delta}Y_{\Delta_{pq}}(4\lambda_2+3\lambda_3)$

Matching for relevant dimension-eight, -seven, -six, -five operators in the SMEFT for the complex triplet model with the heavy triplet integrated up to one loop. The terms in blue, magenta, black and green denote the contributions from lower dimensional terms: $M_{\Delta}^{-4}, M_{\Delta}^{-2}, M_{\Delta}^{0}$, and M_{Δ}^{2} , respectively.

Complex Scalar Doublet upto Dimension-eight...

The full Lagrangian is given by:

$$\mathscr{L}_{\mathscr{H}_2} = \mathscr{L}_{\mathrm{SM}} + |D_{\mu}\mathscr{H}_2|^2 - m_{\mathscr{H}_2}^2 |\mathscr{H}_2|^2 + V_{\mathrm{scalar}} + \mathcal{L}_{\mathrm{Yuk}} ,$$

where V_{scalar} refers to the scalar potential part:

$$V_{\text{scalar}} = -\frac{\lambda_{\mathscr{H}_2}}{4} |\mathscr{H}_2|^4 - \left(\eta_H |\tilde{H}|^2 + \eta_{\mathscr{H}_2} |\mathscr{H}_2|^2\right) \left(\tilde{H}^{\dagger} \mathscr{H}_2 + \mathscr{H}_2^{\dagger} \tilde{H}\right) \\ - \lambda_{\mathscr{H}_2,1} |\tilde{H}|^2 |\mathscr{H}_2|^2 - \lambda_{\mathscr{H}_2,2} |\tilde{H}^{\dagger} \mathscr{H}_2|^2 - \lambda_{\mathscr{H}_2,3} \left[(\tilde{H}^{\dagger} \mathscr{H}_2)^2 + (\mathscr{H}_2^{\dagger} \tilde{H})^2 \right]$$

and L_{Yuk} is the Yukawa interactions of the fermions with the heavy scalar:

$$\mathbf{L}_{\mathrm{Yuk}} = -\left\{Y_{\mathcal{H}_2}^{(e)} \bar{\ell}_L \mathcal{H}_2 e_R + Y_{\mathcal{H}_2}^{(u)} \bar{q}_L \tilde{\mathcal{H}}_2 u_R + Y_{\mathcal{H}_2}^{(d)} \bar{q}_L \mathcal{H}_2 d_R + \mathrm{h.c.}\right\}$$

Complex Scalar Doublet upto Dimension-eight...

Integrating out the heavy doublet up to one loop

Dim-8 EFT operators	Matching results at scale $M_{\mathcal{H}_2}(\gg v)$		
$\mathscr{O}_{\phi^8} = (\phi^{\dagger}\phi)^4$	$\mathbb{C}_{48} = \frac{1}{1 - 2} c_{48}^{[U]} - \frac{1}{22 - 2} \ln \left(\frac{M_{\mathscr{H}_2}^2}{2} \right) c_{48}^{[U^2]} - \frac{1}{22 - 2} c_{48}^{[U^3]} + \frac{1}{22 - 2} c_{48}^{[U^4]}$	$\overline{c_{\phi^8}^{\llbracket U^4 rbracket}}$	$4\lambda_{1}^{4} + 8\lambda_{1}^{3}\lambda_{2} + 12\lambda_{1}^{2}\lambda_{2}^{2} + 192\lambda_{1}^{2}\lambda_{3}^{2} + 8\lambda_{1}\lambda_{2}^{3} + 96\lambda_{1}\lambda_{2}\lambda_{3}^{2} + 2\lambda_{2}^{4} + 48\lambda_{2}^{2}\lambda_{3}^{2} + 32\lambda_{3}^{4}$
(1)	$\frac{1}{16\pi^2} \phi^{\circ} \frac{32\pi^2}{9} \left(\mu^2 \right) \phi^{\circ} \frac{96\pi^2}{96\pi^2} \phi^{\circ} \frac{384\pi^2}{9} \phi^{\circ}$	$c_{\phi^6}^{(3),\llbracket U^2(P^2U) rbracket}$	$4\lambda_1^3 - 6\lambda_1^2\lambda_2 - 6\lambda_1\lambda_2^2 - 16\lambda_1\lambda_3^2 - 2\lambda_2^3 - 8\lambda_2\lambda_3^2.$
$\mathscr{O}_{\phi^6}^{(1)} = (\phi^\dagger \phi)^2 (D_\mu \phi^\dagger D^\mu \phi)$	$\mathbb{C}_{\phi^6}^{(1)} = -\frac{1}{192\pi^2} c_{\phi^6}^{(1), [\![(P_\mu U)^2]\!]}$	$c^{(1), [\![U^2(G_{\mu u})^2]\!]}_{W^2\phi^4}$	$-g^2\left(\lambda_1^2+\lambda_1\lambda_2+rac{1}{2}\lambda_2^2 ight)$
$\mathcal{O}^{(3)}_{c} = (\phi^{\dagger}\phi)^2(\phi^{\dagger}D^2\phi + hc)$	$ \begin{array}{c} \hline \\ \hline $	$C_{B^{2}\phi^{4}}^{(1a), [[U^{2}(G_{\mu\nu})^{2}]]}$	$-2g^{\prime 2}\left(2\lambda_1^2+\lambda_2^2+2\lambda_1\lambda_2 ight)$
	$C_{\phi 6} = \frac{1}{16\pi^2} C_{\phi 6} = \frac{1}{192\pi^2} C_{\phi 6} = \frac{1}{384\pi^2} C_{\phi 6} = \frac{1}{384\pi^2} C_{\phi 6} = \frac{1}{384\pi^2} C_{\phi 6} = \frac{1}{16\pi^2} C_{\phi 6} = \frac{1}{1$	$= \frac{c_{WB\phi^4}^{(1),[U,G_{\mu\nu})}}{c_{WB\phi^4}^{(1),[U,G_{\mu\nu})}}$	$-8gg'\lambda_1\lambda_2$
$\mathscr{O}_{W^{2}\phi^{4}}^{(1)} = (\phi^{\dagger}\phi)^{2}W_{\mu\nu}^{I}W^{I\mu\nu}$	$\mathbb{C}_{\mathbf{W}^{2}\mathbf{A}^{4}}^{(1)} = -\frac{1}{192\pi^{2}} c_{\mathbf{W}^{2}\mathbf{A}^{4}}^{(1), [[U(G_{\mu\nu})^{2}]]} + \frac{1}{480\pi^{2}} c_{\mathbf{W}^{2}\mathbf{A}^{4}}^{(1), [[U^{2}(G_{\mu\nu})^{2}]]} + \frac{1}{1920\pi^{2}} c_{\mathbf{W}^{2}\mathbf{A}^{4}}^{(1), [[U(G_{\mu\nu})^{2}]]}$	$c_{W^2\phi^4}^{(1),[[(UG_{\mu\nu})]]}$	$-g^2 \left(2\lambda_1^2 - \frac{1}{2}\lambda_2^2 - 2\lambda_1\lambda_2\right)$
o(1) (+++)2p puy	$(1) \qquad (1) \operatorname{Tr}(\mathcal{C}_{1})^{2} \qquad (1) \operatorname{Tr}($	$\frac{c_{B^{2}\phi^{4}}^{(1),[[(UG_{w})^{2}]]}}{(1)[[(UG_{w})^{2}]]}$	$-g^{\prime 2}\left(8\lambda_{1}^{2}-2\lambda_{2}^{2}-8\lambda_{1}\lambda_{2}\right)$
$\mathscr{O}_{B^2\phi^4}^{(1)} = (\phi^{\dagger}\phi)^2 B_{\mu\nu} B^{\mu\nu}$	$\mathbb{C}_{B^2\phi^4}^{(1)} = -\frac{1}{192\pi^2} c_{B^2\phi^4}^{(1), [[U(G_{\mu\nu})^2]]} + \frac{1}{480\pi^2} c_{B^2\phi^4}^{(1), [[U^2(G_{\mu\nu})^2]]} + \frac{1}{1920\pi^2} c_{B^2\phi^4}^{(1), [[U(G_{\mu\nu})^2]]}$	$C_{WB\phi^4}^{(1),[[(O,U_{W})]]}$	$-4gg'\lambda_1\lambda_2$
$\mathscr{O}_{\mathrm{unp},I}^{(1)} = (\phi^{\dagger}\phi)(\phi^{\dagger}\sigma^{I}\phi)W_{\mathrm{up}}^{I}B^{\mu\nu}$	$\begin{bmatrix} C^{(1)} & - & 1 & c^{(1)}, \begin{bmatrix} U(G_{\mu\nu})^2 \end{bmatrix} + & 1 & c^{(1)}, \begin{bmatrix} U^2(G_{\mu\nu})^2 \end{bmatrix} + & 1 & c^{(1)}, \begin{bmatrix} (UG_{\mu\nu})^2 \end{bmatrix} \end{bmatrix}$	$c_{\phi^4}^{(4),[[1],[1],[2],[1],[2],[2],[1],[2],[2],[2],[2],[2],[2],[2],[2],[2],[2$	$8(4\lambda_1^2 + 4\lambda_1\lambda_2 + \lambda_2^2)$
<i>WBφ</i> ⁺ (1 1)(1 1) <i>μν</i>	$\frac{1}{2} \frac{1}{2} \frac{1}$	$c_{\phi^4}^{(1)}$	$\frac{2(4\lambda_1^2 + 4\lambda_1\lambda_2 + \lambda_2^2)}{(4\lambda_1^2 + 4\lambda_2^2 + \lambda_2^2)}$
$\mathscr{O}_{\phi^4}^{(3)} = (D^{\mu}\phi^{\dagger}D_{\mu}\phi)(D^{\nu}\phi^{\dagger}D_{\nu}\phi)$	$\mathbb{C}_{\phi^4}^{(3)} = \frac{1}{16\pi^2} c_{\phi^6}^{(3), [\![U]\!]}$	$\begin{bmatrix} c_{\phi^4} \\ (12), \llbracket (P^2 U)^2 \rrbracket$	$4(4\lambda_1^2 + 4\lambda_1\lambda_2 + \lambda_2^2)$
$\mathcal{Q}^{(4)} = (D_{\mu} \phi^{\dagger} D^{\mu} \phi)(\phi^{\dagger} D^{2} \phi + h_{\alpha})$	\sim (4) 1 (4) $[I/]$ 1 (4) $[(P^2 I)^2]$	$\begin{bmatrix} C_{\phi^4} \\ [0.5mm] (6), \llbracket U(J_{\mu})^2 \rrbracket \end{bmatrix}$	$-8(4\lambda_1 + 4\lambda_1\lambda_2 + \lambda_2)$ $4\alpha'^2(2\lambda_1 + \lambda_2)$
$\mathcal{U}_{\phi^4} = (\mathcal{D}_{\mu}\psi^*\mathcal{D}^*\psi)(\psi^*\mathcal{D}^*\psi + \text{i.c.})$	$\mathbb{C}_{\phi^4}^{(1)} = \frac{1}{16\pi^2} c_{\phi^4}^{(1), \mathbb{L}^2} + \frac{1}{1920\pi^2} c_{\phi^4}^{(1), \mathbb{L}^2} = 0$	$\begin{bmatrix} C_{B^2\phi^2D^2} \\ g^{(8)}, \llbracket U(J_{\mu})^2 \rrbracket$	$-4g'(2\lambda_1 + \lambda_2)$ $-4g'^2(2\lambda_1 + \lambda_2)$
$\mathscr{O}_{\phi^4}^{(8)} = ((D^2 \phi^{\dagger} \phi) (D^2 \phi^{\dagger} \phi) + \text{h.c.})$	$\mathbb{C}_{44}^{(8)} = \frac{1}{1/2^2} c_{44}^{(8), [[U]]} + \frac{1}{1/2^{2}} c_{44}^{(8), [[P^2U]^2]}$	$\frac{c_{B^2\phi^2 D^2}}{c^{(10), [[U(J_{\mu})^2]]}}$	$-4\sigma \sigma' \lambda_2$
(10)	ϕ^* 10 π^2 ϕ^* 1920 π^2 ϕ^4	$\frac{c_{WB\phi^2D^2}}{c^{(13),[[U(J_{\mu})^2]]}}$	$-\sigma^2(2\lambda_1 + \lambda_2)$
$\mathscr{O}_{\phi^4}^{(10)} = (D^2 \phi^{\dagger} D^2 \phi)(\phi^{\dagger} \phi)$	$\mathbb{C}_{\phi^4}^{(10)} = \frac{1}{16\pi^2} c_{\phi^4}^{(10), [\![U]\!]}$	$W^2 \phi^2 D^2$	8 (
$\mathcal{Q}^{(11)} = (\phi^{\dagger} D^2 \phi) (D^2 \phi^{\dagger} \phi)$	$\alpha(11) = 1 (11) \llbracket U \rrbracket (11) \llbracket (P^2 U)^2 \rrbracket$	•	
$\psi^{4} = (\psi D \psi)(D \psi \psi)$	$\mathbb{C}_{\phi^4} = \frac{1}{16\pi^2} c_{\phi^4} + \frac{1}{1920\pi^2} c_{$		

Matching results for relevant dimension-eight operators in the SMEFT for the complex triplet model with the heavy triplet integrated up to one loop. The terms in blue, magenta, black and green denote the contributions from lower dimensional terms: $M_{\mathcal{H}}^{-4}, M_{\mathcal{H}}^{-2}, M_{\mathcal{H}}^{0}$ and $M_{\mathcal{H}}^{2}$, respectively.

To Dimension-8

	Dim-8 EFT operators	Matching results at scale $M_{\mathcal{H}_2}(\gg v)$		(a)
$O_{oldsymbol{\phi}}^8:(\phi^\dagger\phi)^4$	$\mathscr{O}_{le\phi^5} = (\phi^{\dagger}\phi)^2 (\bar{l}_p e_r \phi)$	$\mathbb{C}_{le\phi^5} = \frac{-1}{96\pi^2} c_{le\phi^5}^{\llbracket U^3 \rrbracket} - \frac{1}{32\pi^2} ln \frac{M_{\mathscr{H}_2}}{\mu^2} c_{le\phi^5}^{\llbracket U^2 \rrbracket} + \frac{1}{16\pi^2} c_{le\phi^5}^{\llbracket U \rrbracket}$	$c_{le\phi5}^{\llbracket U^3 \rrbracket}$ (1), $\llbracket (P_{\mu}U)^2 \rrbracket$	$\frac{-Y_{\mathscr{H}_2}^{(\ell)}}{M^2} \left(18\eta_{\mathscr{H}_2}\lambda_1^2 + 36\eta_{\mathscr{H}_2}\lambda_1\lambda_2 + 16\eta_{\mathscr{H}_2}\lambda_3^2 + 12\lambda_3\eta_{\mathscr{H}_2}\lambda_3^2 + $
₩	$\mathscr{O}_{le\phi^3D^2}^{(1)} = (D_{\mu}\phi^{\dagger}D^{\mu}\phi)(\bar{l}_{p}e_{r}\phi)$	$\mathbb{C}_{le\phi^{3}D^{2}}^{(1)} = \frac{-1}{96\pi^{2}}c_{le\phi^{3}D^{2}}^{(1),\llbracket U^{3}\rrbracket} - \frac{1}{32\pi^{2}}ln\frac{M_{\mathscr{H}_{2}}}{\mu^{2}}c_{le\phi^{5}}^{(1),\llbracket U^{2}\rrbracket} + \frac{1}{16\pi^{2}}c_{le\phi^{3}D^{2}}^{(1),\llbracket U\rrbracket}$	$\frac{c_{le\phi^{3}D^{2}}}{c_{le\phi^{3}D^{2}}^{(5),[[(P_{\mu}U)^{2}]]}}$	$\frac{1}{M^2} \left((6\lambda_1 + 4\lambda_2) \eta_{\mathscr{H}_2} Y_{\mathscr{H}_2} \right) \\ \frac{1}{M^2} \left((6\lambda_1 + 4\lambda_2) \eta_{\mathscr{H}_2} Y_{\mathscr{H}_2}^{(e)} \right) $
Higgs trilinear &	$\mathcal{O}_{le\phi^3D^2}^{(5)} = (\phi^{\dagger}D_{\mu}\phi)(\bar{l}_p e_r D^{\mu}\phi)$	$\mathbb{C}_{le\phi^{3}D^{2}}^{(5)} = \frac{-1}{96\pi^{2}}c_{le\phi^{3}D^{2}}^{(5),[[U^{3}]]} - \frac{1}{32\pi^{2}}ln\frac{M_{\mathscr{H}_{2}}}{\mu^{2}}c_{le\phi^{3}D^{2}}^{(5),[[U^{2}]]} + \frac{1}{16\pi^{2}}c_{le\phi^{3}D^{2}}^{(5),[[U]]}$	$c_{leW^{2}\phi}^{(1),[[U(G_{\mu\nu})^{2}]]}$ $c_{leW^{2}\phi}^{(1),[[U(G_{\mu\nu})^{2}]]}$	$\frac{1}{M^2} \eta_{\mathscr{H}_2} \left(g^2 Y_{\mathscr{H}_2}^{(e)} + \eta_{\mathscr{H}_2} \frac{g^2}{2} Y_{\mathscr{H}_2}^{(e)} \right)$
Higgs pair &	$\mathscr{O}_{leW^2\phi}^{(1)} = (\bar{l}_p e_r) \phi W^I_{\mu\nu} W^{I\mu\nu}$	$\mathbb{C}_{leW^2\phi}^{(1)} = \frac{-1}{96\pi^2} c_{leW^2\phi}^{(1),[U^3]}$	$\begin{array}{c} c_{leb}^{(1), \mathbb{I}^{0}} \stackrel{(U, \mu \nu)}{=} \\ c_{leb}^{2} \phi \\ (1), \llbracket U(G_{\mu \nu})^{2} \rrbracket \\ c_{leb} R \phi \end{array}$	$\frac{\frac{1}{M^2} \left(6\eta_{\mathscr{H}_2} g^{\prime 2} Y_{\mathscr{H}_2}^{(c)} \right)}{\frac{1}{M^2} \left(\eta_{\mathscr{H}_2} g g^{\prime} Y_{\mathscr{H}_2}^{(c)} \right)}$
triple Higgs production	$\mathscr{O}^{(1)}_{leB^2\phi} = (\bar{l}_p e_r) \phi B_{\mu\nu} B^{\mu\nu}$	$\mathbb{C}_{leB^{2}\phi}^{(1)} = \frac{-1}{96\pi^{2}} c_{leB^{2}\phi}^{(1), [U^{3}]}$	$c_{l^2e^2\phi^2}^{(1),\llbracket U \rrbracket}$	$-\frac{1}{M^{6}} \left((6 Y_{\mathcal{H}_{2}}^{(e)} ^{2}) \eta_{\mathcal{H}_{2}} + Y_{\mathcal{H}_{2}}^{(e)} Y_{\mathrm{SM}}^{(e)} \eta_{\mathcal{H}_{2}}(\lambda_{1} - \lambda_{2}) + 3Y_{\mathcal{H}_{2}}^{(e)} Y_{\mathcal{H}_{2}}^{(e)} \eta_{\mathcal{H}_{2}}(\lambda_{1} - \lambda_{2}) + 3Y_{\mathcal{H}_{2}}^{(e)} \eta_{\mathcal{H}_{2}}(\lambda_{1} - \lambda_{$
$O^{(1)} \cdot (\phi^{\dagger} \phi)^2 (D \phi)^{\dagger} (D \psi \phi)$	$\mathscr{O}_{leWB\phi}^{(1)} = (\bar{l}_p e_r) \tau^I \phi W^I_{\mu\nu} B^{\mu\nu}$	$\mathbb{C}_{leWB\phi}^{(1)} = \frac{-1}{96\pi^2} c_{leWB\phi}^{(1),[[U^3]]}$	$c_{(2,2,42)}^{(3),[\![U]\!]}$	$-3\lambda_{\mathscr{H}_2} Y_{\mathscr{H}_2}^{(e)} ^2(\lambda_1+\lambda_2)+3Y_{\mathscr{H}_2}^{(e)}Y_{\mathrm{SM}}^{(e)}\eta_{\mathscr{H}_2}\lambda_{\mathscr{H}_2})$ $-\frac{1}{16}\left(6Y_{\mathscr{H}_2}^{(e)}\eta_{\mathscr{H}_2}+Y_{\mathscr{H}}^{(e)}Y_{\mathrm{SM}}^{(e)}\eta_{\mathscr{H}_2}(\lambda_1-\lambda_2)\right)$
$O_{\phi^6}^{\prime}:(\phi^{\prime}\phi)^2(D_{\mu}\phi)^{\prime}(D^{\mu}\phi)$	$\mathcal{O}_{l^2 e^2 \phi^2}^{(1)} = (\bar{l}_p e_r \phi)(\bar{l}_s e_t \phi)$	$\mathbb{C}_{l^{2}e^{2}\phi^{2}}^{(1)} = -\frac{1}{32\pi^{2}} ln \frac{M_{\mathscr{H}_{2}}}{\mu^{2}} c_{l^{2}e^{2}\phi^{2}}^{(1), \llbracket U^{2} \rrbracket} + \frac{1}{16\pi^{2}} c_{l^{2}e^{2}\phi^{2}}^{(1), \llbracket U \rrbracket}$	$\begin{array}{c} c_{1} c_{2} c_{2} \\ c_{1} c_{1} [U] \\ c_{1} c_{1} u \phi^{2} \\ c_{2} [U] \end{array}$	$\frac{1}{M^6} \left(-7Y_{\mathscr{H}_2}^{(e)} Y_{\mathrm{SM}}^{(u)} \eta_{\mathscr{H}_2} \lambda_1 - 2Y_{\mathscr{H}_2}^{(e)} Y_{\mathrm{SM}}^{(u)} \eta_{\mathscr{H}_2} \lambda_2 - 3Y_{\mathscr{H}_2}^{(e)} Y_{\mathrm{SM}}^{(u)} \right)$
All Higgs couplings &	$\mathcal{O}_{l^2e^2\phi^2}^{(3)} = (\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_r) \phi^{\dagger} \phi$	$\mathbb{C}_{l^2 e^2 \phi^2}^{(3)} = \frac{1}{16\pi^2} c_{l^2 e^2 \phi^2}^{(3), [U]}$	$c_{legd\phi^2}^{(3), [logd\phi^2]}$	$\frac{1}{M^6} \left(-Y_{\mathscr{H}_2}^{(e)} Y_{\mathrm{SM}}^{(d)} \eta_{\mathscr{H}_2} (\lambda_1 + \lambda_2) - 3Y_{\mathscr{H}_2}^{(e)} Y_{\mathrm{SM}}^{(d)*} \eta_{\mathscr{H}_2} (2\lambda_1 + 3Y_{\mathscr{H}_2}^{(e)} Y_{\mathrm{SM}}^{(d)} \eta_{\mathscr{H}_2} \lambda_{\mathscr{H}_2} \right)$
Higgs ZZ/WW	$\mathscr{O}_{lequ\phi^2}^{(1)} = (\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^t u_t) \phi^{\dagger} \phi$	$\mathbb{C}_{lequ\phi^{2}}^{(1)} = -\frac{1}{32\pi^{2}} ln \frac{M_{\mathscr{H}_{2}}}{\mu^{2}} c_{le\phi^{5}}^{\llbracket U^{2} \rrbracket} + \frac{1}{16\pi^{2}} c_{lequ\phi^{2}}^{\llbracket U \rrbracket}$	$c_{l^2 e^2 D^2}^{[\![U]\!]}$	$\frac{3}{M^6} \lambda_{H_2} Y_{\mathscr{H}_2}^{(e)} ^2$
Single Higgs production	$\mathscr{O}_{legd\phi^2}^{(3)} = (\bar{l}_p e_r \phi)(\bar{q}_s d_t \phi)$	$\mathbb{C}_{lead\phi^{2}}^{(3)} = -\frac{1}{32\pi^{2}} ln \frac{M_{\mathscr{H}_{2}}}{\mu^{2}} c_{lead\phi^{2}}^{(3), [U^{2}]} + \frac{1}{16\pi^{2}} c_{lead\phi^{2}}^{(3), [U]}$	$\begin{array}{c} c_{le\phi 3D^2}^{(0),10} \\ c_{le\phi 3D^2}^{[U]} \\ c_{le\phi 5}^{[U]} \end{array}$	$\frac{\frac{1}{M^{6}}\left(-6Y_{\mathscr{H}_{2}}^{(e)}\eta_{\mathscr{H}_{2}}^{(e)}\lambda_{\mathscr{H}_{2}}\right)}{\frac{1}{M^{6}}\left(-3Y_{\mathscr{H}_{2}}^{(e)*}\eta_{\mathscr{H}_{2}}\lambda_{1}^{2}-6Y_{\mathscr{H}_{2}}^{(e)*}\eta_{\mathscr{H}_{2}}\lambda_{1}\lambda_{2}-3Y_{\mathscr{H}_{2}}^{(e)*}\eta_{\mathscr{H}_{2}}\lambda_{2}^{2}\right)}$
a decay	$\mathscr{O}_{l^2 e^2 D^2} = (\bar{l}_p e_r \phi)(\bar{q}_s d_t \phi)$	$\mathbb{C}_{l^2 e^2 D^2} = \frac{1}{16\pi^2} c_{l^2 e^2 D^2}^{[U]}$	100-	$-3Y_{\mathscr{H}_2}^{(e)}\eta_{\mathscr{H}_2}(2\lambda_1+\lambda_2)\lambda_{\mathrm{SM}}-2Y_{\mathscr{H}_2}^{(e)^2}\eta_{\mathscr{H}_2}(\lambda_1+\lambda_2)\lambda_{\mathrm{SM}}$
$O_{u\phi^5}:(\phi^{\dagger}\phi)^2 \bar{Q}u \tilde{\phi}$	Dim-6 EFT operators	Matching results at scale $M_{\mathcal{H}_{5}}(\gg v)$	$c_{e\phi}^{\llbracket U rbracket}$	$+6Y_{\mathscr{H}_{2}}^{(e)}\lambda_{\mathscr{H}_{2}}\lambda_{2}+9Y_{\mathscr{H}_{2}}^{(e)}\eta_{\mathscr{H}_{2}}\lambda_{\mathscr{H}_{2}}\lambda_{\mathrm{SM}})$ $\frac{1}{M^{6}}\left(m_{H}^{2}Y_{\mathscr{H}_{2}}^{(e)}\eta_{\mathscr{H}_{2}}(8\lambda_{1}+\lambda_{2})-9m_{H}^{2}Y_{\mathscr{H}_{2}}^{(e)}\eta_{\mathscr{H}_{2}}\lambda_{\mathscr{H}_{2}}\right)$
	$\mathscr{O}_{e\phi} = (\phi^{\dagger}\phi)(\bar{l}_{p}e_{r}\phi)$	$\mathbb{C}_{e\phi} = -\frac{1}{22\pi^2} ln \frac{M_{\mathcal{H}_2}}{w^2} c_{e\phi}^{[[U^2]]} (1 + m_H^2) + \frac{1}{16\pi^2} c_{e\phi}^{[[U]]} (1 + m_H^2)$	$c_{e\phi}^{\llbracket U \rrbracket}$	$\frac{1}{M^2} \left(-3\eta_{\mathscr{H}_2} \lambda_{\mathrm{SM}} Y_{\mathscr{H}_2}^{(e)} + 3\eta_{\mathscr{H}_2} (\lambda_1 + \lambda_2) \right)$
Top quark Yukawa	$\mathcal{O}_{le} = \left(\bar{l}_p \gamma_\mu l_r\right) \left(\bar{e}_s \gamma^\mu e_t\right)$	$\mathbb{C}_{l\rho} = \frac{1}{16\pi^2} c_{l\rho}^{[U]}$	$\begin{array}{c} c_{le}^{\parallel 0 \parallel} \\ c_{le}^{\parallel U \parallel} \end{array}$	$\frac{\overline{M^2}\left(-3\eta_{\mathscr{H}_2}Y_{\mathrm{SM}}^{(e)}Y_{\mathscr{H}_2}^{(e)}-\frac{3}{2}\lambda_{\mathscr{H}_2}Y_{\mathscr{H}_2}^{(e)}Y_{\mathscr{H}_2}^{(e)*}\right)}{-\frac{1}{2}\left(-3\eta_{\mathscr{H}_2}Y_{\mathrm{SM}}^{(d)*}Y_{\mathscr{H}_2}^{(e)}\right)}$
coupling	$\mathcal{O}_{ledq} = (\bar{l}_p^j e_r)(\bar{d}_s q_t^j)$	$\mathbb{C}_{leda} = \frac{1}{16\pi^2} c_{lada}^{(1), [U]}$	$c_{lequ}^{(1),[\![U]\!]}$	$\frac{1}{M^2} \left(-3\eta_{\mathscr{H}_2} Y_{\mathrm{SM}}^{(u)} Y_{\mathscr{H}_2}^{(e)} \right)$
Gluon fusion & tth	$\mathcal{O}_{low}^{(1)} = (\bar{l}_{p}^{j}e_{r})\boldsymbol{\varepsilon}_{ik}(\bar{q}_{c}^{k}u_{t})$	$\mathbb{C}_{(1)}^{(1)} = \frac{1}{1-c} C^{(1), [[U]]}$		

Matching results for relevant dimension-eight and dimension-six operators in the SMEFT for the complex triplet model with the heavy triplet integrated up to one loop. The terms in blue, magenta, black and green denote the contributions from lower dimensional terms: $M_{\mathcal{H}_2}^{-4}, M_{\mathcal{H}_2}, M_{\mathcal{H}_2}^0$, and $M_{\mathcal{H}_2}^2$, respectively.

Summary and Outlook

- ► The SMEFT is a well-defined, general framework to parametrize BSM effects.
- Given the prowess and potential of LHC as a precision machine, matching EFT with the UV-model is imperative especially if the new physics is lurking outside the LHC reach.
- Matching mismatch sometimes require the introduction of higher order operators.
- **UOLEA up to dimension 8** It is universal, i.e., does not depend on the specific form of the UV theory as well as IR DoFs.
- Equally applicable for SMEFT or any other effective theory at any scale
- ▶ We performed matching for complex triplet scalar and doublet scalar models.
- ▶ Will be implemented in matching tools like CoDEx to get the WCs.
- ► Dimension-8 effects are phenomenologically interesting.
- ▶ NTGC searches provide important tests for the gauge structure of the SM, clean channel that improves with higher luminosity.
- ▶ Identify regions where the EFT expansion may be breaking down.

We have lots to do to enable discovery of new Physics, by improving analysis techniques, looking for unconventional signatures, increasing precision and assessing validity.

Thank you for your

attention

Mapping New Physics to Observables in the SMEFT Paradigm