CP violation in SMEFT loop-induced diboson production

The University of Manchester

Marion Thomas

University of Manchester

YOUNGST@RS - EFTs and Beyond

04/12/24

Based on arXiv:2411.00959, in collaboration with Eleni Vryonidou

Why gluon-induced diboson production?

Diboson processes probe Higgs properties...

Why gluon-induced diboson production?

... and are also sensitive to top couplings

Amplitudes dominated by top loops → probe poorly constrained top operators

CP violation in the SMEFT

CP-odd component of Higgs interactions not ruled out by measurements

CP mixing angle in top Yukawa in $t\bar{t}H$ and tH production [arXiv:2303.05974]

CP-odd contribution to $t\bar{t}H$ in $H \to \gamma\gamma$ [arXiv:2003.10866] + many more

 So far CP violation in EFTs at one-loop studied mostly in Higgs sector, eg. with Higgs Characterisation framework. [arXiv:1306.6464] [arXiv:1407.5089]

What about a more general treatment?

CP violation in the SMEFT

CP-odd component of Higgs interactions not ruled out by measurements

CP mixing angle in top Yukawa in $t\bar{t}H$ and tH production [arXiv:2303.05974] CP-odd contribution to $t\bar{t}H$ in $H \rightarrow \gamma\gamma$ [arXiv:2003.10866] + many more

 So far CP violation in EFTs at one-loop studied mostly in Higgs sector, eg. with Higgs Characterisation framework. [arXiv:1306.6464] [arXiv:1407.5089]

What about a more general treatment?

We extend the SMEFT@NLO UFO to include dim-6 CP-odd SMEFT operators entering gluon-induced diboson production and study their impact on kinematic distributions.

Marion Thomas

EFTs and Beyond - 04/12/2024

CP-violating SMEFT operators

Warsaw basis of dim-6 SMEFT operators Flavour symmetry: $U(2)_q \times U(3)_d \times U(2)_u$

Hermitian operators

 $c_i = \mathtt{RE}c_i$

$$\begin{array}{ccc} \mathcal{O}_{\varphi \tilde{G}} & c_{\varphi \tilde{G}} & \left(\varphi^{\dagger} \varphi - \frac{v^2}{2}\right) \widetilde{G}_A^{\mu \nu} G_{\mu \nu}^A \\ \mathcal{O}_{\varphi \tilde{W}} & c_{\varphi \tilde{W}} & \left(\varphi^{\dagger} \varphi - \frac{v^2}{2}\right) \widetilde{W}_I^{\mu \nu} W_{\mu \nu}^I \end{array}$$

Non-hermitian operators $c_i = \operatorname{RE}c_i + i\operatorname{IM}c_i$

\mathcal{O}_{tG}	c_{tG}	$ig_s \left(\bar{Q} \sigma^{\mu\nu} T_A t \right) \tilde{\varphi} G^A_{\mu\nu} + \text{h.c.}$
$\mathcal{O}_{t \varphi}$	c_{tarphi}	$\left(\varphi^{\dagger}\varphi - \frac{v^2}{2}\right) \bar{Q} t \tilde{\varphi} + \text{h.c.}$
\mathcal{O}_{tW}	c_{tW}	$\left(\bar{Q}\sigma^{\mu\nu}\tau_{I}t\right)\tilde{\varphi}W^{I}_{\mu\nu}+\text{h.c.}$
\mathcal{O}_{tB}	c_{tB}	$\left(\bar{Q}\sigma^{\mu\nu}t\right)\tilde{\varphi}B_{\mu\nu}+\text{h.c.}$
\mathcal{O}_{tZ}	c_{tZ}	$-\sin\theta_W c_{tB} + \cos\theta_W c_{tW}$

$$\widetilde{X}_{\mu\nu} = \frac{1}{2} \varepsilon_{\mu\nu\rho\sigma} X^{\rho\sigma}$$

Marion Thomas

Adding CP-odd operators in SMEFT@NLO

3 ingredients to add to UFO

Degrande, Durieux, Maltoni, Mimasu, Vryonidou, Zhang, [arXiv:2008.11743]

Feynman rules

Read from the SMEFT Lagrangian

Example: IMc_{tG} in $gg \rightarrow HH$

Adding CP-odd operators in SMEFT@NLO

3 ingredients to add to UFO

Degrande, Durieux, Maltoni, Mimasu, Vryonidou, Zhang, [arXiv:2008.11743]

► Feynman rules

Read from the SMEFT Lagrangian

Rational terms R_2

Calculated from one-particle irreducible diagrams

Example: IMc_{tG} in $gg \rightarrow HH$

What are the rational terms?

- Implementation of one-loop QCD calculations in MadLoop relies on Ossola-Papadopoulos-Pittau (OPP) reduction method.
- In d-dimension, write m-point amplitude for 1-particle irreducible diagrams:

Ossola, Papadopoulos, Pittau in arXiv:0609007, 0711.3596, 0802.1876 Hirschi et al. in arXiv:1103.0621

Marion Thomas

Adding CP-odd operators in SMEFT@NLO

3 ingredients to add to UFO

Degrande, Durieux, Maltoni, Mimasu, Vryonidou, Zhang, [arXiv:2008.11743]

► Feynman rules

Read from the SMEFT Lagrangian

Rational terms R_2

Calculated from one-particle irreducible diagrams

Example: IMc_{tG} in $gg \rightarrow HH$

Marion Thomas

EFTs and Beyond - 04/12/2024

Adding CP-odd operators in SMEFT@NLO

3 ingredients to add to UFO

Degrande, Durieux, Maltoni, Mimasu, Vryonidou, Zhang, [arXiv:2008.11743]

Feynman rules

Read from the SMEFT Lagrangian

Rational terms R_2

Calculated from one-particle irreducible diagrams

UV Counterterms

Checked against the Renormalisation Group Evolution Alonso, Jenkins, Manohar and Trott in arXiv:1308.2627, 1310.4838, 1312.2014 Example: $\mathrm{IM}c_{tG}$ in $gg \to HH$

Renormalised with $\mathcal{O}_{\varphi \tilde{G}}$

Marion Thomas

Growing amplitudes and tail effects

Modified top-gluon interactions in $gg \rightarrow HH$

- amplitude level.
- Hard to distinguish between CP-even and CP-odd contributions.

Growing amplitudes and tail effects

Modified top-Higgs interactions in $gg \rightarrow ZZ$

For all the operators and processes considered the $\mathcal{O}(\Lambda^{-4})$ distributions either overlap or converge \rightarrow we need other observables.

Distinguishing CP-odd contributions with angular observables

Consider $gg \to ZZ \to e^+e^-\mu^+\mu^-$ and $gg \to W^+W^- \to \mu^+\nu_\mu e^-\bar{\nu}_e$

No kinematic cuts except to keep Z and W bosons on-shell

• θ^* : angle between $Z(W^-)$ boson momentum in ZZ(WW) pair centre-of-mass frame and momentum of e^- in $Z(W^-)$ rest frame

Distinguishing CP-odd contributions with angular observables

 $IMc_{t\varphi}$ and IMc_{tG} interferences are **non-zero and odd** around $\cos\theta^* = 0$

We can distinguish between CP-even and CP-odd contributions

Impact on polarisation fractions

$ZZ \rightarrow 4l$ production

$$f_R = -\frac{1}{2} - \frac{(c_L^2 + c_R^2)}{(c_L^2 - c_R^2)} \langle \cos\theta^* \rangle + \frac{5}{2} \langle \cos^2\theta^* \rangle$$
$$f_L = -\frac{1}{2} + \frac{(c_L^2 + c_R^2)}{(c_L^2 - c_R^2)} \langle \cos\theta^* \rangle + \frac{5}{2} \langle \cos^2\theta^* \rangle$$
$$f_0 = 2 - 5 \langle \cos^2\theta^* \rangle$$

- $\langle \cos\theta^* \rangle, \langle \cos^2\theta^* \rangle$ are modified by SMEFT coefficients.
- ► $f_L \neq f_R$ for CP-odd coefficients because $\langle \cos\theta^* \rangle \neq 0$.

Impact on polarisation fractions

$WW \rightarrow 2l2\nu$ production

► $f_L \neq f_R$ also for CP-even coefficients: due to third generation boxes with $m_b \neq m_t$.

• Overall, inclusive polarisation fractions moderately impacted by SMEFT operators, except for $\mathcal{O}_{tG} \rightarrow$ what about the high-energy behaviour?

Energy behaviour of the polarisation fractions

EFTs and Beyond - 04/12/2024

Conclusions

Study of CP violation in the SMEFT at one-loop is only beginning. [arXiv:2409.00168] [arXiv:2409.00168]

We implemented the dim-6 CP-odd operators entering in gluon-induced diboson production in SMEFT@NLO (→ calculation of rational terms and UV counterterms).

Angular and polarisation observables are needed to distinguish between CP-even and CP-odd contributions.

Polarisation fractions can be significantly modified, especially in the high-energy region.

See also:

Conclusions

Study of CP violation in the SMEFT at one-loop is only beginning. [arXiv:2409.00168]

We implemented the dim-6 CP-odd operators entering in gluon-induced diboson production in SMEFT@NLO (→ calculation of rational terms and UV counterterms).

Angular and polarisation observables are needed to distinguish between CP-even and CP-odd contributions.

Polarisation fractions can be significantly modified, especially in the high-energy region.

Thank you!

See also:

What are the rational terms?

Implementation of one-loop QCD calculations in MadLoop relies on Ossola-Papadopoulos-Pittau (OPP) reduction method.

Ossola, Papadopoulos, Pittau in arXiv:0609007, 0711.3596, 0802.1876 Hirschi et al. in arXiv:1103.0621

Marion Thomas

EFTs and Beyond - 04/12/2024