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EFT & Running

• EFT Approach: Standard Model as the low-energy description of a more fundamental theoryemerging at a large energy scale Λ
LEFT =

∑

i

ci
Λ[Oi]−4

Oi .

• Running: The Wilson coefficients cineed to be evolved from the scale Λdown to the experimental scale.
• EFT Anomalous Dimensions are crucialfor interpreting experimental results.

UV theory

ci(m)

ci(Λ)

µ

Λ

m Observable

1. MATCHING

2. RUNNING

3. MAPPING

µ
dci(µ)

dµ
= βi({ck(µ)})
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On-Shell Methods for Renormalization

Core Features:

• Unitarity Cuts: Anomalous dimensions are derived from discontinuities of scatteringamplitudes.
• Phase-Space Integration: Lorentz-invariant phase-space integrals replace full Feynmanintegrals.
• Advantages:

— Avoid complexities of standard loop calculations by focusing on physical, on-shell states.
— Gauge invariance is automatic.
— Explain zeroes in anomalous dimensions⇝ Nonrenormalization Theorems based on

◦ HELICITY; [Cheung, Shen (15)]
◦ LENGTH; [Bern, Parra-Martinez, Sawyer (20)]
◦ ANGULAR MOMENTUM. [Jiang, Shu, Xiao, Zheng (21)]
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Limitations and Generalizations

• Originally applied only to massless particles and operators with same dimensions.
• Generalized to include Leading Mass Effects via the Higgs low-energy theorem:
Lint
h = −

(
1+

h

v

)∑

f

mf f̄f =⇒ lim
{ph}→0

M(A→ B+Nh) =
∑

f

(
mf

v

∂

∂mf

)N

M(A→ B) .

• Extended to handle the most General Operator Mixing:
µ
dci
dµ

=
∑

n>0

1

n!
γi←j1,...,jncj1 · · · cjn = γi←jcj +

1

2
γi←j,kcjck + · · · ,

γi←j1,...,jn =
∂nβi

∂cj1 · · · ∂cjn

∣∣∣∣
∗
.
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S-Matrix and Dilatation Operator

• Form Factor associated with a local, gauge-invariant operatorOi:
Fi(n⃗; q) =

1

Λ[Oi]−4
⟨n⃗|Oi(q)|0⟩ .

• Exploiting the fundamental relations [Elias-Miró, Ingoldby, Riembau (20)]
⋄ Analyticity: F ∗i ({sij − iϵ}) = Fi({sij + iϵ})

⋄ Unitarity:
∑

n⃗

∫
dΠn |n⃗⟩⟨n⃗| = 1 , dΠn =

n∏

i=1

d3pi
(2π)3

1

2Ei

⋄ CPT Theorem: ⟨n⃗; out|Oi(x)|0⟩ = ⟨0|O†i (−x)|n⃗; in⟩
it is possible to show that [Caron-Huot, Wilhelm (16)]

e−iπDF ∗i (n⃗) = (SF ∗i )(n⃗)

(
=
∑

m⃗

∫
dΠm ⟨n⃗|S|m⃗⟩F ∗i (m⃗)

)

where S = 1 + iM is the S-matrix andD =
∑

i pi · ∂/∂pi is the Dilatation Operator.
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Master Formulae

Linear operator mixing
(
γ
(1)
i←j − δijγ

(1)
i,IR

)
Fi|(0)∗ = − 1

π
(MFj)|(1)∗

(MFj)
(1)(n⃗) =

∑

k

∑

h1,h2

1
2

𝑘

𝑘 + 1

𝑘 + 2

𝑛

1′!!

2′!"

.

.

.

.

.

.

+ permutations

Nonlinear operator mixing

γ
(1)
i←j,kFi|(0)∗ = − 1

π

∂

∂ck

∣∣∣∣
∗
(MFj)

(1)

The extension for multiple operator insertions γi←j1,...,jn is straightforward.
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Leading Mass Effects
The amplitude requiresN fermion mass
insertions not to vanish

⇓

Consider an equivalent amplitude entailing
N extra massless Higgs fields

Lint
h = −

(
1 +

h

v

)∑

f

mf f̄f

N : superficial degree of divergence.
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EFT for Axion-Like Particles
Most general CP-violating and SU(3)c × U(1)em invariant dimension-5 Lagrangian:

LEFT =
C̃γ
Λ
ϕFF̃ +

C̃g
Λ
ϕGG̃+ Yij

P ϕf̄iiγ5fj +
Cγ
Λ
ϕFF +

Cg
Λ
ϕGG+ Yij

S ϕf̄ifj .

Let’s consider ϕf̄ifj ← ϕFF : we needN = (4− [ϕf̄f ]) + ([ϕFF ]− 4) = 1mass insertion.
ϕf̄ifj is substituted with h

vϕf̄ifj . 0.1.
FER

M
IO

N
1

0.1 Fermion

�Sij �

7

4h

1�fi
2�

f̄j

3�

= � 1

⇡

X

h1,h2

2
666666664

Chapter 1

Diagrams

3�

xh1
�

yh2
�

1

2

4h

2�
f̄j

1�fi
+

3

3� xh1
�

2�
f̄j

yh2
fk

4

4h

1�fi

+

5

3� xh1
�

1�fi
yh2

f̄k

6

4h

2�
f̄j

3
777777775

��������������
⇤

1. The 1st contribution is zero by setting the off-shell momentum q = 0: g1 = 0.2. The integrand of the 2nd contribution is
g2 =

4

Λ
e2Q2

fyiδ
ij ⟨1 y⟩2⟨2x⟩2
⟨1x⟩⟨2 y⟩⟨x y⟩ .

3. The 3rd is recast from the 2nd: ∫ dΠ2 g3 = −
∫
dΠ2 g2|1↔2.
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Phase-Space Integral via Stokes Theorem

Efficient way to perform the integral [Mastrolia (09)]:
1. Parameterize the internal spinors as:
(
λx

λy

)
=

1√
1 + zz̄

(
1 z̄
−z 1

)(
λ1

λ4

)
=⇒ g2(z, z̄) =

4

Λ
e2Q2

fyiδ
ij (⟨1 2⟩ − z̄⟨2 4⟩)2
z̄(1 + zz̄)(z⟨1 2⟩+ ⟨2 4⟩) .

2. Integrate in z̄, keeping only rational contributions:
G2 rat(z, z̄) =

∫
dz̄

g2(z, z̄)

(1 + zz̄)2
=

2

Λ
e2Q2

fyiδ
ij z(3 + 2zz̄)⟨1 2⟩ − (1 + 2zz̄)⟨2 4⟩

z2(1 + zz̄)2
.

3. Apply Residue Theorem by summing over the z-poles PG2 ofG2 rat:
∫

dΠ2 g2 = − 1

8π

∑

z0∈PG2

Res(z,z̄)=(z0,z∗
0 )
G2 rat(z, z̄) = −

3e2Q2
f

4πΛ
yiδ

ij⟨1 2⟩ .
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ϕf̄f ← ϕFF and ϕf̄iγ5f ← ϕF F̃ 0.1.
FER

M
IO

N
1

0.1 Fermion

�Sij �

7

4h

1�fi
2�

f̄j

3�

= � 1

⇡

X

h1,h2

2
666666664

Chapter 1

Diagrams

3�

xh1
�

yh2
�

1

2

4h

2�
f̄j

1�fi
+

3

3� xh1
�

2�
f̄j

yh2
fk

4

4h

1�fi

+

5

3� xh1
�

1�fi
yh2

f̄k

6

4h

2�
f̄j

3
777777775

��������������
⇤

γSij←γ
⟨1 2⟩
v

= − 1

π

∫
dΠ2 (g1 + g2 + g3) =

3e2Q2
f

2π2Λ
yiδ

ij⟨1 2⟩

=⇒ γSij←γ =
3e2Q2

f

2π2

mi

Λ
δij =⇒ µ

dYij
S

dµ
⊃ γSij←γCγ =

3e2Q2
f

2π2

mi

Λ
δijCγ .

The CP-counterpart ϕf̄iiγ5fj ← ϕFF̃ comes for free!
{
FPij

(1−fi , 2
−
f̄j
, 3ϕ) = −iFSij

(1−fi , 2
−
f̄j
, 3ϕ)

Fγ̃(1
−
γ , 2

−
γ , 3ϕ) = iFγ(1

−
γ , 2

−
γ , 3ϕ)

=⇒ γPij←γ̃ = −γSij←γ .
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Conclusions

Summary:
• Derived a master formula for general operator mixings up to 2-loop order.
• Leading mass effects included in massless limit via Higgs low-energy theorem.
• Implemented Stokes integration as an efficient tool for phase-space cut-integrals.
• Established a connection between anomalous dimensions of CP-dual operators.
• Validated findings by reproducing established results in popular EFTs.

Future Prospects:
• Future experimental advances will improve limits on low-energy observables(e.g. flavor-violating processes and electric dipole moments) by orders of magnitude.
• Higher-order contributions are crucial for the precise assessment of new physics effects.
• While this is a very challenging task when approached with standard techniques, on-shell andunitarity-based methods offer a simpler, more efficient, and elegant way to reach this goal.
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Thank you for your attention!
Q&A
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Selection Rules: Dimension-6 Operators

Depending on the particle contents of the two operators,
it might happen that there are no allowed unitarity cuts even
at a higher loop order than the one predicted by the first
form of the theorem. Instead of analyzing the unitarity cuts,
this can be explained in the more familiar diagrammatic
language. Clearly, if the only diagrams that can be drawn
involve scaleless bubbles, there will be no available cut
where all loops are included in the cut. Thus, diagrams with
fewer cut legs will force the form factor to include the
scaleless bubble and, thus, to evaluate to zero. Then, the
corresponding anomalous dimension must also be zero.
This explains the more general rule presented in the
introduction. As noted above, this relies on the absence
of infrared singularities whenever corresponding lower-
loop form factors vanish.
Examples of zeros in the SMEFT at one loop are the

renormalization of F3 by ϕ2F2, and of D2ϕ4, Fϕψ2, and
Dϕ2ψ2 by ϕ3ψ2, which were already explained using the
helicity selection rules [7] but also follow from the
principles described here. In contrast to the helicity

selection rules, however, our theorem can also apply at
higher loops. The full set of zeros predicted by our rules for
operators of dimensions five, six, and seven includes
examples at one through four loops and is described in
Tables I, II, and III, respectively. The tables also indicate
the overlap between our theorem and the one-loop helicity
selection rules of [7]. Note, we have combined some of the
categories of operators of [7], since our theorem does not
need to distinguish operators based on their chirality.
Two-loop examples.—Now, consider two calculations

that show explicit examples, from Table II, of the nontrivial
zeros in the anomalous-dimension matrix at two loops. The
examples will also demonstrate the vanishing of γIR. The
first example is the renormalization ofOϕ2F2 byOϕ6, which
is the entry (2,8) of Table II.
The minimal two-loop form factor for Oϕ2F2 includes

two external scalars and two external gauge bosons. The
product MF! in Eq. (4) at two loops requires either a cut
between a five-point amplitude and the tree-level form
factor or a four-point amplitude and a one-loop form factor
with an insertion ofOϕ6 . However, the cut between the five-
point amplitude and the tree-level form factor leaves five
total external legs and, thus, cannot match the minimal form
factor for Oϕ2F2. For the cut between the four-point
amplitude and the one-loop form factor to match the
minimal form factor for Oϕ2F2, the one-loop form factor
would have to involve a massless tadpole, which would
evaluate to zero.
We can also directly check that the (single) diagram—

Fig. 2(a)—for the Oϕ6 → Oϕ2F2 renormalization evaluates

TABLE I. Application of the nonrenormalization theorem to
dimension-five operators. The operators labeling the rows are
renormalized by the operators labeling the columns. ×L indicates
the theorem applies at L-loop order. (L) denotes that there are no
diagrams before L loops, but renormalization is possible at that
order, since the required cuts can exist. Light-gray shading
indicates a zero at one loop due to helicity selection rules, while
dark-gray shading indicates the entry is a new zero predicted by
our nonrenormalization theorem.

TABLE II. Application of the nonrenormalization theorem to
dimension six. The notation is explained in Table I.

TABLE III. Application of the nonrenormalization theorem to
dimension seven. The notation is explained in Table I. The
shortest and longest operators have been dropped from the list of
columns and rows, respectively, since our theorem requires a
reduction in length of the operators.

PHYSICAL REVIEW LETTERS 124, 051601 (2020)

051601-4

Table: From [Bern, Parra-Martinez, Sawyer (20)].Dimension-6 operator mixing pattern. Operatorslabeling the rows are renormalized by theoperators labeling the columns.
• ×L: length selection rules apply at L-looporder
• (L): no diagrams before L loops, butrenormalization is possible at that order
• Light-gray: zero at one loop due to helicityselection rules
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Spinor-Helicity Formalism

The 4-momentum of an on-shell state is mapped onto a 2× 2matrix
pµ = (p0, p⃗) −→ pα̇α = σ̄α̇α

µ pµ =

(
p0 + p3 p1 − ip2

p1 + ip2 p0 − p3

)
,

where σ̄µ α̇α = (1,−σ⃗)α̇α. If the particle is massless then
p2 = det

(
pα̇α

)
= m2 = 0 =⇒ pα̇α = λ̃α̇λα ,

where λ, λ̃ are commuting Weyl spinors known as helicity spinors.The angle and square inner products are Lorentz invariant
⟨i j⟩ ≡ λα

i λj α = ϵαβλ
α
i λ

β
j = −⟨j i⟩ , [i j] ≡ λ̃i α̇λ̃

α̇
j = −ϵα̇β̇λ̃α̇

i λ̃
β̇
j = −[j i] .

The Mandelstam invariants can thus be written as
sij ≡ (pi + pj)

2 = 2pi · pj = ⟨i j⟩[j i] .
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Dilatation Operator & Complex Rotations

The Dilatation Operator

D =
∑

i

pi ·
∂

∂pi

generates the Complex Rotations:
pi → eiαpi =⇒ FO → eiαDFO .

Forα = π their infinitesimalimaginary part ϵ changes sign:
FO({sij− iϵ}) = eiπDFO({sij + iϵ}) .
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Nonperturbative Relations

S&D Relation

(e−iπD − 1)F ∗i = i(MF ∗i )

• In dimensional regularization and in absence of masses,D ≃ −µ∂/∂µ, which implies
Callan-Symanzik Equation

DFj =

(
∂βi

∂cj
− δijγi,IR + δijβg

∂

∂g

)
Fi

• Can be combined and expanded, e.g. at one-loop
(
∂β

(1)
i

∂cj
−δijγ(1)

i,IR+δijβ
(1)
g

∂

∂g

)
F

(0)
i = − 1

π
(MFj)

(1)

1
2

𝑘

𝑘 + 1

𝑘 + 2

𝑛

1′!!

2′!"

.

.

.

.

.

.
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IR Anomalous Dimensions

• In theories with massless fields, IR singularities originate from configurations where loopmomenta become soft or collinear.
• The IR anomalous dimension only depends on the external state ⟨n⃗|

γ
(1)
IR ({sij};µ) =

g2

4π2

∑

i<j

T a
i T

a
j log

µ2

−sij
+
∑

i

γ
(1)
i,coll. .

• Since the stress-energy tensor Tµν is UV protected, γIR can be computed as
γ
(1)
IR F

(0)
Tµν

(n⃗) =
1

π
(MFTµν

)(1)(n⃗) .
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