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EFT & Running

e EFT Approach: Standard Model as the low-energy description of a more fundamental theory
emerging at a large energy scale A

C; 12
LEpT = Z 7[\[0:]_4 0;.
P A4 1. MATCHING ()

e Running: The Wilson coefficients ¢;

need to be evolved from the scale A q ,V(NZ)‘ RUNNING

down to the experimental scale. n=q ~ Aletd)
e EFT Anomalous Dimensions are crucial

iy 3. MAPPING
for interpreting experimental results. mT ci(m)
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On-Shell Methods for Renormalization

Core Features:

e Unitarity Cuts: Anomalous dimensions are derived from discontinuities of scattering
amplitudes.

e Phase-Space Integration: Lorentz-invariant phase-space integrals replace full Feynman
integrals.

e Advantages:

— Avoid complexities of standard loop calculations by focusing on physical, on-shell states.
— Gauge invariance is automatic.

— Explain zeroes in anomalous dimensions ~~ Nonrenormalization Theorems based on
o HELICITY; [Cheung, Shen (15)]
o LENGTH; [Bern, Parra-Martinez, Sawyer (20)]
o ANGULAR MOMENTUM. [Jiang, Shu, Xiao, Zheng (21)]

2/1


https://arxiv.org/abs/1505.01844
https://arxiv.org/abs/1910.05831
https://arxiv.org/abs/2001.04481

Limitations and Generalizations

e Originally applied only to massless particles and operators with same dimensions.

e Generalized to include Leading Mass Effects via the Higgs low-energy theorem:

N
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e Extended to handle the most General Operator Mixing:
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S-Matrix and Dilatation Operator

e Form Factor associated with a local, gauge-invariant operator O;:

. 1 _
Fi(ii;q) = AOI4 (11| Oi(q)[0) -
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https://arxiv.org/abs/2005.06983
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S-Matrix and Dilatation Operator

e Form Factor associated with a local, gauge-invariant operator O;:

Fi(i;q) = AOI4 (11| Oi(q)[0) -
e Exploiting the fundamental relations [Elias-Mir6, Ingoldby, Riembau (20)]
© Analyticity: Fr({sij —ie}) = Fi({sij +i€})
< Unitarity: dIl, |n)n| =1, dll, = - d3pi[ !
y Z/ ] =1, I Gam
© CPT Theorem: (it; out|O; (2)]0) = (0|0 (—x)|; in
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it is possible to show that [caron-Huot, Wilhelm (16)]

e=imD [ (i7) = (SFF)(7) (: Z/dﬂm (7] S|m) Fi*(m)>

where S =1+ iM is the S-matrixand D = ), p; - /0p; is the Dilatation Operator.
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Master Formulae

Linear operator mixing
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Master Formulae

Linear operator mixing

1 1 0 1 1
('Yi(e)j - 5ij’7¢(,1)R) R = —;(MFj)\i :
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Nonlinear operator mixing
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The extension for multiple operator insertions ;. ;, .. ;. is straightforward.
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Leading Mass Effects

The amplitude requires N fermion mass
insertions not to vanish

4

Consider an equivalent amplitude entailing
IN extra massless Higgs fields
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EFT for Axion-Like Particles

Most general CP-violating and SU(3). X U(1)en invariant dimension-5 Lagrangian:

[ C C -
LepT = XW¢FF+ XQ¢GG+y;3¢fistj + XW¢FF+ X9¢GG+ysj¢f¢fj-
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EFT for Axion-Like Particles

Most general CP-violating and SU(3). x U(1)ey, invariant dimension-5 Lagrangian:

Cyo m Cyn i = C C -
Lerr = XW¢FF+ XQ¢GG+yﬁ¢fistj + XW¢FF+ XQ¢GG+3)5]¢fifj~

Let’s consider ¢ﬁfj «— ¢FF:weneed N = (4 — [¢ff]) + ([6FF] — 4) = 1 mass insertion.
¢ f; [ is substituted with 2o f; f;.
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EFT for Axion-Like Particles

Most general CP-violating and SU(3). X U(1)en invariant dimension-5 Lagrangian:

[ C C -
LepT = XW¢FF+ XQ¢GG+y;3¢fistj + XW¢FF+ XQ¢GG—|—3}SJ¢fifj~

Let’s consider ¢ f; f; < ¢FF:weneed N = (4 — [¢f f]) + ([¢pF'F] — 4) = 1 mass insertion.
¢ f; [ is substituted with 2o f; f;.

1. The 1st contribution is zero by setting the off-shell momentum ¢ = 0: g; = 0.
2. The integrand of the 2nd contribution is

4 50 i <1y>2<2x>2
g2 = e QY0 ———— .
TN T 1) 2y (ay)
3. The 3rd is recast from the 2nd: [ dll; g5 = — [ dII5 ga|1cs0. 21



Phase-Space Integral via Stokes Theorem

Efficient way to perform the integral [Mastrolia (09)]:
1. Parameterize the internal spinors as:

(o)== (L 1) () = wen = oo ey
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Phase-Space Integral via Stokes Theorem

Efficient way to perform the integral [Mastrolia (09)]:
1. Parameterize the internal spinors as:

(o)== (L 1) () = wen = oo ey

2. Integrate in z, keeping only rational contributions:

2(34222)(12) — (1 +222)(24)
22(1 4 2z)?

o _ 92(2,2) 2 5 5
Gorat(2,2) = /dz Utemp2 Ae Q7yid .
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Phase-Space Integral via Stokes Theorem

Efficient way to perform the integral [Mastrolia (09)]:
1. Parameterize the internal spinors as:

(o)== (L 1) () = wen = oo ey

2. Integrate in z, keeping only rational contributions:

2(34222)(12) — (1 +222)(24)
22(1 4 2z)?

N _ 92(2,2) 2 5 5
GQrat(sz) —/dZ <1+22)2 - Ae nylé

3. Apply Residue Theorem by summing over the z-poles Pg, of G2 yar:

1 - 3¢*Q7 ij
/dﬂz 92 = —g- Z ;; Res (2 2)=(z0,20) G2rat (2, 2) = — A Y67 (12).
0€PG,
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(12) 1 3e°Q7
Vs =~ [ A2 (g1 + g2 +g3) = S50V (12)
3¢202 . 4y 3¢2Q2 1.
— VSijey = 27r2ffz5” - [ d,uS D Y55, 69Cy = 27r2fxdwcv.

The CP-counterpart ¢ fiivs f; < $FF comes for free!

{FPA (1;,2}:,3(,)):—1‘&.,( 70 27:30)
F5(15,27,34) = iF, (15,27, 34)

v ey

- Pypij(—:/ = _’YSiJ%—'y .
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Conclusions

Summary:
e Derived a master formula for general operator mixings up to 2-loop order.
e Leading mass effects included in massless limit via Higgs low-energy theorem.

Implemented Stokes integration as an efficient tool for phase-space cut-integrals.

Established a connection between anomalous dimensions of CP-dual operators.

Validated findings by reproducing established results in popular EFTs.
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Established a connection between anomalous dimensions of CP-dual operators.

Validated findings by reproducing established results in popular EFTs.

Future Prospects:

e Future experimental advances will improve limits on low-energy observables
(e.g. flavor-violating processes and electric dipole moments) by orders of magnitude.

e Higher-order contributions are crucial for the precise assessment of new physics effects.

e While this is a very challenging task when approached with standard techniques, on-shell and
unitarity-based methods offer a simpler, more efficient, and elegant way to reach this goal.
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Thank you for your attention!
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Selection Rules: Dimension-6 Operators

| 22 | Fou? | D2t | D2y | wt | oy | o0
F3 X1 ) X5 Xo X5 || %3 |1x3
P*F? @ |2
Foy? X1 (X8
D?¢* X1 | X
D¢y xp |3
wt @ |®
Py’ (2)
9

Table: From [Bern, Parra-Martinez, Sawyer (20)].
Dimension-6 operator mixing pattern. Operators
labeling the rows are renormalized by the
operators labeling the columns.

e X 1.: length selection rules apply at L-loop
order

e (L): no diagrams before L loops, but
renormalization is possible at that order

e Light-gray: zero at one loop due to helicity
selection rules
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Spinor-Helicity Formalism

The 4-momentum of an on-shell state is mapped onto a 2 x 2 matrix
0. ,3 1 _ ;2
w0 . da _ gaagu _ (PP pw)
p' = (p",p) P LD (p1+lp2 O )
where 6+ 9% = (1, —&)%?. If the particle is massless then
p? = det(pdo‘) =m?2=0 — P = NI\

where \, \are commuting Weyl spinors known as helicity spinors.
The angle and square inner products are Lorentz invariant

(i) = AN o = €apAfNT = —(j i), [i7] = AiaAd = —e AN = —[51].
The Mandelstam invariants can thus be written as

sij = (pi +p;)° =2pi - p; = (i)[j1].
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Dilatation Operator & Complex Rotations

The Dilatation Operator

- -
=" T Si ; 8
"4 “,~~ .] D — E pl . 87
e AN . Di
e s i
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’ “ .
H . generates the Complex Rotations:
1 . .
3 R ’ pi = €p; = Fo —PFo.
) 1
\) 1
AY o e . . .
\ S For o« = 7 their infinitesimal
s, . . .
. v imaginary part e changes sign:
~~§~ f"
~~~~~ - . i D .
T Fo({sij —ie}) = e Fo({si; +ie}).
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Nonperturbative Relations

S&D Relation
(7P — 1)F} = i(MF})

e In dimensional regularization and in absence of masses, D ~ —u 0/0u, which implies
Callan-Symanzik Equation

0B 0
DF; = <8f —0ijVir + 51‘;‘5989) F;
J

e Can be combined and expanded, e.g. at one-loop

k+1

k+2

351-(1) 1) n 0 ©) 1 )
(acj§ij7i,IR+5ijﬁé )879 F = 7;('/\/11?].)( )

"k
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IR Anomalous Dimensions

e In theories with massless fields, IR singularities originate from configurations where loop
momenta become soft or collinear.

e The IR anomalous dimension only depends on the external state (77|

VIR ({si}n) = 4 Y ZTaTa log + Z% coll.

1<j

e Since the stress-energy tensor 1), is UV protected, g can be computed as

o1 _
i By (7) = —(MPFr,, )V (7).
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