# Computational Tools and Methods in EFT

**Anders Eller Thomsen** 

 $u^{b}$ 

b UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS YOUNGST@RS — EFTs and Beyond Virtual, 3 December 2024



# Introduction

# EFTs beyond the Standard Model

### Direct searches for new physics

#### ATLAS Heavy Particle Searches\* - 95% CL Upper Exclusion Limits

Status: March 2022

ATLAS Preliminary

 $\int \mathcal{L} dt = (3.6 - 139) \text{ fb}^{-1}$   $\sqrt{s} = 8, 13 \text{ TeV}$ 

|                     | Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\ell, \gamma$                                                                                                                                     | Jets†                                                                                                                                                                          | $E_T^{miss}$                                | ∫£ dt[fb                                                                          | <sup>-1</sup> ] Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Reference                                                                                                                                                                         |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Extra dimensions    | $\begin{array}{l} \text{ADD } G_{KK} + g/q \\ \text{ADD non-resonant } \gamma\gamma \\ \text{ADD BH multijet} \\ \text{RS1} G_{KK} \rightarrow \gamma\gamma \\ \text{Bulk RS} G_{KK} \rightarrow WV \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WP \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\nu qq \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\mu q \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\mu q \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\mu q \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\mu q \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\mu q \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\mu q \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\mu q \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\mu q \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\mu q \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\mu q \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\mu$ | $\begin{array}{c} 0 \ e, \mu, \tau, \gamma \\ 2 \ \gamma \\ - \\ 2 \ \gamma \\ multi-channe \\ 1 \ e, \mu \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$ | 1 - 4j<br>-2j<br>$\ge 3j$<br>-3l<br>2j/1J<br>$\ge 1b, \ge 1J/2$<br>$\ge 2b, \ge 3j$                                                                                            | Yes<br>-<br>-<br>-<br>Yes<br>Yes<br>Yes     | 139<br>36.7<br>37.0<br>3.6<br>139<br>36.1<br>139<br>36.1<br>36.1<br>36.1          | $\label{eq:response} \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2102-10874<br>1707-04147<br>1703-09127<br>1512-02586<br>2102-13405<br>1808.02380<br>2004-14636<br>1804-10823<br>1803-09678                                                        |
| Gauge bosons        | $\begin{array}{l} \mathrm{SSM} Z' \to \ell\ell \\ \mathrm{SSM} Z' \to \tau \\ \mathrm{Leptophobic} Z' \to bb \\ \mathrm{Leptophobic} Z' \to tr \\ \mathrm{SSM} W' \to \ell\nu \\ \mathrm{SSM} W' \to \tau\nu \\ \mathrm{SSM} W' \to \tau\nu \\ \mathrm{SSM} W' \to \tau W \\ \mathrm{VT} W' \to WZ \to \ell\nu q \\ \mathrm{WT} W' \to WZ \to \ell\nu q \\ \mathrm{WT} W' \to WZ \to \ell\nu q \\ \mathrm{WT} W' \to WH \\ \mathrm{model} B \\ \mathrm{LRSM} W_{R} \to w N \\ \mathrm{R} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $2 e, \mu$<br>$2 \tau$<br>$0 e, \mu$<br>$1 e, \mu$<br>$1 \tau$<br>$B 1 e, \mu$<br>$1 c, \mu$<br>$0 e, \mu$<br>$2 \mu$                              | -<br>2b<br>≥1 b, ≥2 J<br>-<br>2 j / 1 J<br>2 j (VBF)<br>≥1 b, ≥2 J<br>1 J                                                                                                      | -<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes        | 139<br>36.1<br>36.1<br>139<br>139<br>139<br>139<br>139<br>139<br>139<br>139<br>80 | 2 mass         5.1 fe/<br>2 mass         5.1 fe/<br>2 mass         5.1 fe/<br>2 mass         7 mm           2 mass         2.4 T eV         1 fe/<br>3 mass         r/m = 1.2 fs/<br>4 mass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1903.06248<br>1709.07242<br>1805.08299<br>2005.06138<br>1906.05609<br>ATLAS-CONF-2021.025<br>ATLAS-CONF-2021.043<br>2004.14638<br>ATLAS-CONF-2022.005<br>2007.05233<br>1904.12679 |
| CI                  | Cl qqqq<br>Cl tl qq<br>Cl eebs<br>Cl µµbs<br>Cl tttt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 e,µ<br>2 e<br>2 µ<br>≥1 e,µ                                                                                                                      | 2 j<br>-<br>1 b<br>1 b<br>≥1 b, ≥1 j                                                                                                                                           | -<br>-<br>-<br>Yes                          | 37.0<br>139<br>139<br>139<br>36.1                                                 | Λ         21.6 TeV         σ <sub>1</sub> .           Λ         1.8 TeV         55.8 TeV         σ <sub>1</sub> .           Λ         2.0 TeV         ρ = 1         Λ         2.5 TeV         (c <sub>1</sub> ) - 4e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1703.09127<br>2006.12946<br>2105.13847<br>2105.13847<br>1811.02305                                                                                                                |
| MQ                  | Axial-vector med. (Dirac DM)<br>Pseudo-scalar med. (Dirac DM)<br>Vector med. Z'-2HDM (Dirac D)<br>Pseudo-scalar med. 2HDM+a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 e, μ, τ, γ<br>0 e, μ, τ, γ<br>II) 0 e, μ<br>multi-channe                                                                                         | 1 - 4 j<br>1 - 4 j<br>2 b                                                                                                                                                      | Yes<br>Yes<br>Yes                           | 139<br>139<br>139<br>139                                                          | m <sub>mat</sub> 2.1 TeV         ε <sub>1</sub> =0.25, ε <sub>1</sub> =1, α <sub>1</sub> (-)=1 GeV           m <sub>mat</sub> 376 GeV         ε <sub>1</sub> =1, ε <sub>2</sub> =1, α <sub>1</sub> (-)=1 GeV           m <sub>mat</sub> 360 GeV         3.1 TeV           tanβs1, ε <sub>1</sub> =2, α <sub>1</sub> , α <sub>1</sub> (-)=1 GeV         tanβs1, ε <sub>2</sub> =1, α <sub>1</sub> (-)=10 GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2102.10874<br>2102.10874<br>2108.13391<br>ATLAS-CONF-2021-036                                                                                                                     |
| 9                   | Scalar LQ 1 <sup>st</sup> gen<br>Scalar LQ 2 <sup>rd</sup> gen<br>Scalar LQ 3 <sup>rd</sup> gen<br>Scalar LQ 3 <sup>rd</sup> gen<br>Scalar LQ 3 <sup>rd</sup> gen<br>Scalar LQ 3 <sup>rd</sup> gen<br>Vector LQ 3 <sup>rd</sup> gen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 2 & e \\ 2 & \mu \\ 1 & \tau \\ 0 & e, \mu \\ \geq 2 & e, \mu, \geq 1 \\ 0 & e, \mu, \geq 1 \\ \tau \end{array}$                 | ≥2j<br>≥2j<br>≥2j, ≥2b<br>r≥1j, ≥1b<br>0-2j, 2b<br>2b                                                                                                                          | Yes<br>Yes<br>Yes<br>-<br>Yes<br>Yes<br>Yes | 139<br>139<br>139<br>139<br>139<br>139<br>139                                     | $\label{eq:constant} \begin{array}{c} 1.8  {\rm TeV} \\ 1.0  {\rm mas} \\ 1.2  {\rm TeV} \\ 1.2$ | 2006.05872<br>2006.05872<br>2108.07665<br>2004.14060<br>2101.11582<br>2101.12527<br>2108.07665                                                                                    |
| Heavy<br>quarks     | $\begin{array}{l} VLQ\; TT \rightarrow Zt + X \\ VLQ\; BB \rightarrow Wt/Zb + X \\ VLQ\; T_{5/3} T_{5/3} T_{5/3} \rightarrow Wt + X \\ VLQ\; T \rightarrow Ht/Zt \\ VLQ\; T \rightarrow Wb \\ VLQ\; P \rightarrow Wb \\ VLQ\; B \rightarrow Hb \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 2e/2\mu/{\geq}3e,\\ \text{multi-channe}\\ 2(SS)/{\geq}3e,\\ 1e,\mu\\ 1e,\mu\\ 0e,\mu \end{array}$                                | $\substack{a \ge 1 \ b, \ge 1 \ j} \\ a \ge 1 \ b, \ge 1 \ j} \\ \geq 1 \ b, \ge 1 \ j} \\ \ge 1 \ b, \ge 1 \ j} \\ \ge 1 \ b, \ge 1 \ j} \\ \ge 2 \ b, \ge 1 \ j, \ge 1 \ j}$ | -<br>Yes<br>Yes<br>IJ -                     | 139<br>36.1<br>36.1<br>139<br>36.1<br>139                                         | Trans         1.4 TeV         SU/2 social           Brans         1.34 TeV         SU/2 social           Trans         1.84 TeV         SU/2 social           Trans         1.64 TeV         SU/2 social           Trans         1.84 TeV         SU/2 social           Ymas         1.85 TeV         SU/2 social           Brans         2.0 TeV         SU/2 social                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ATLAS-CONF-2021-024<br>1808.02343<br>1807.11883<br>ATLAS-CONF-2021-040<br>1812.07343<br>ATLAS-CONF-2021-018                                                                       |
| Excited<br>fermions | Excited quark $q^* \rightarrow qg$<br>Excited quark $q^* \rightarrow q\gamma$<br>Excited quark $b^* \rightarrow bg$<br>Excited lepton $\ell^*$<br>Excited lepton $\nu^*$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1γ<br>3 e,μ<br>3 e,μ,τ                                                                                                                             | 2j<br>1j<br>1b,1j<br>-                                                                                                                                                         |                                             | 139<br>36.7<br>36.1<br>20.3<br>20.3                                               | strans         6.7 TeV         ord y 2 and 3. A = m(q')           q* mass         5.3 TeV         ord y 2 and 3. A = m(q')           Y* mass         2.6 TeV         ord y 2 and 3. A = m(q')           P* mass         3.0 TeV         A = 3.0 TeV           Y* mass         1.6 TeV         A = 1.6 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1910.08447<br>1709.10440<br>1805.09299<br>1411.2921<br>1411.2921                                                                                                                  |
| Other               | Type III Seesaw<br>LRSM Majorana v<br>Higgs triplet H <sup>++</sup> → W <sup>+</sup> W <sup>+</sup><br>Higgs triplet H <sup>++</sup> → ℓ ℓ<br>Higgs triplet H <sup>++</sup> → ℓ ℓ<br>Multi-charged particles<br>Magnetic monopoles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,3,4 e, µ<br>2 µ<br>2,3,4 e, µ (SS<br>2,3,4 e, µ (SS<br>3 e, µ, τ<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                | ≥2 j<br>2 j<br>3) various<br>5) -<br>-<br>-<br>-<br>√s = 13<br>full d                                                                                                          | Yes<br><br>Yes<br><br><br><br>5 TeV<br>ata  | 139<br>36.1<br>139<br>20.3<br>36.1<br>34.4                                        | M <sup>4</sup> mass         910 GeV         mm(Ws) = 4.1 TeV g = gs           M <sup>4</sup> mass         350 GeV         DV productors           M <sup>4</sup> mass         350 GeV         DV productors           M <sup>4</sup> mass         360 GeV         DV productors           Mic dragging pattion mass         1.22 TeV         DV productors, (H <sup>4</sup> = -(r - r) = 1           Mic dragging pattion mass         1.22 TeV         DV productors, (H <sup>4</sup> = -(r) = 1           10 <sup>-1</sup> 1         10         Mass excelor TTaV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2202.02039<br>1809.11105<br>2101.11961<br>ATLAS-CONF-2022.010<br>1411.2921<br>1812.03673<br>1905.10130                                                                            |

Anders Eller Thomsen (U. Bern)

# Lots of luminosity



Marginal increase in energy, but ~ 20× more int. luminosity!

Rather than looking for resonances, we can look for traces of new physics

#### Probing high-scales through precision

#### $W/U(2)^5$ flavor assumption



Figure from Allwicher et al. [2311.00020]

# Effective field theory

High-energy physics manifests as contact interactions in EFTs



# Effective field theory

High-energy physics manifests as contact interactions in EFTs



# **Effective field theory**

High-energy physics manifests as contact interactions in EFTs

#### Bottom–up:

- EFTs allow for **model-comprehensive** ("model-independent") analyses of deviations from the SM, quantifying possible deviations as an expansion in  $E/\Lambda$ 

 $\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{D=5} \sum_{k} \frac{C_{D,k}}{\Lambda^{D-4}} \mathcal{O}_{D,k}$ 

#### Top-down:

- Precision calculations necessitates the use of EFTs to separate the large BSM energy scales
- Many BSM models result in the same EFT and calculations can be recycled: you only need to compute once in the EFT

4

### **BSM EFT** workflow



Operators interfere and mix: it's difficult to confine analyses

Anders Eller Thomsen (U. Bern)

Computational Tools and Methods

### **BSM EFT** workflow



A lot of work must be redone when switching EFT

Anders Eller Thomsen (U. Bern)

Computational Tools and Methods

#### The case for automation



NASA's human computers

■ Proliferation of operators ⇒ proliferation of work

Tasks are repetitive and error prone and resources are limited

#### The case for automation



#### The (SM)EFT software project:

Upgrading from "computers" to computers

Anders Eller Thomsen (U. Bern)

6

# **Automating EFT calculations**

A tool for every occasion

# Automating EFT analysis



7

# Automating EFT analysis



7

# Automating EFT analysis



#### **SMEFT** status



- Determine what EFT you are working with
  - What are the relevant DOFs?
  - What is the counting? (mass dimension, derivatives, ...)

- Determine what EFT you are working with
  - What are the relevant DOFs?
  - What is the counting? (mass dimension, derivatives, ...)
- Determine an operator basis
  - Number of SMEFT generators (1 gen., dim. 6):

 $\underset{\text{Buchmüller, Wyler '86}}{80} (1986) \longrightarrow \underset{\text{Grzadkowski et al. [1008.4884]}}{59} (2017)$ 

- Counting operator has been "solved" with Hilbert-series techniques

Lehman, Martin [1503.07537]; Henning et al. [1507.07240]



- Determine what EFT you are working with
  - What are the relevant DOFs?
  - What is the counting? (mass dimension, derivatives, ...)
- Determine an operator basis
  - Number of SMEFT generators (1 gen., dim. 6):

 $\underset{\text{Buchmüller, Wyler '86}}{80} (1986) \longrightarrow \underset{\text{Grzadkowski et al. [1008.4884]}}{59} (2017)$ 

- Counting operator has been "solved" with Hilbert-series techniques

Lehman, Martin [1503.07537]; Henning et al. [1507.07240]

 $9:\psi^2 X^2 H + {\rm h.c.}$ 

 $9:\psi^2 X^2 H + {\rm h.c.}$ 

|                    |                                                                                |                               | +                                                                        |
|--------------------|--------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------|
| $Q^{(1)}_{leG^2H}$ | $(\bar{l}_p e_r) H G^A_{\mu\nu} G^{A\mu\nu}$                                   | $Q_{leWBH}^{\left( 1 ight) }$ | $(\bar{l}_p e_r) \tau^I H W^I_{\mu\nu} B^{\mu\nu}$                       |
| $Q^{(2)}_{leG^2H}$ | $(\bar{l}_p e_r) H \tilde{G}^A_{\mu\nu} G^{A\mu\nu}$                           | $Q^{(2)}_{leWBH}$             | $(\bar{l}_p e_r) \tau^I H \widetilde{W}^I_{\mu\nu} B^{\mu\nu}$           |
| $Q^{(1)}_{leW^2H}$ | $(\bar{l}_p e_r) H W^I_{\mu\nu} W^{I\mu\nu}$                                   | $Q_{leWBH}^{\left( 3 ight) }$ | $(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I H W^I_{\mu\rho} B_{\nu}{}^{ ho}$ |
| $Q^{(2)}_{leW^2H}$ | $(\bar{l}_p e_r) H \widetilde{W}^I_{\mu\nu} W^{I\mu\nu}$                       | $Q^{(1)}_{leB^2H}$            | $(\bar{l}_p e_r) H B_{\mu\nu} B^{\mu\nu}$                                |
| $Q^{(3)}_{leW^2H}$ | $\epsilon^{IJK}(\bar{l}_p\sigma^{\mu\nu}e_r)\tau^IHW^J_{\mu\rho}W^{K\rho}_\nu$ | $Q^{(2)}_{leB^2H}$            | $(\bar{l}_p e_r) H \widetilde{B}_{\mu\nu} B^{\mu\nu}$                    |
| $Q^{(1)}_{quG^2H}$ | $(\bar{q}_p u_r) \widetilde{H} G^A_{\mu\nu} G^{A\mu\nu}$                       | $Q^{(1)}_{qdG^2H}$            | $(ar{q}_p d_r) H G^A_{\mu u} G^{A\mu u}$                                 |
| $Q^{(2)}_{quG^2H}$ | $(\bar{q}_p u_r) \widetilde{H} \widetilde{G}^A_{\mu\nu} G^{A\mu\nu}$           | $Q^{(2)}_{qdG^2H}$            | $(ar{q}_p d_r) H \widetilde{G}^A_{\mu u} G^{A\mu u}$                     |
| $Q^{(3)}_{quG^2H}$ | $d^{ABC}(\bar{q}_pT^Au_r)\widetilde{H}G^B_{\mu\nu}G^{C\mu\nu}$                 | $Q^{(3)}_{qdG^2H}$            | $d^{ABC}(\bar{q}_pT^Ad_r)HG^B_{\mu\nu}G^{C\mu\nu}$                       |

Anders Eller Thomsen (U. Bern)

# Find a basis

Current situation: computer packages to automate the EFT basis construction





Harlander, Schaad [2309.15783]

Fonseca [1703.05221]

# Find a basis

Current situation: computer packages to automate the EFT basis construction





Harlander, Schaad [2309.15783]

Fonseca [1703.05221]

Additional complications

- Green's bases vs. on-shell basis
- Mapping between/reducing to bases (partial + upcoming routines of)





Evanescent operators: loop calculations required for basis transformations

### Simplification and basis reduction

$$\mathcal{L} = -\frac{1}{2}\phi\partial^2\phi - \frac{1}{2}m^2\phi^2 - \frac{\lambda}{24}\phi^4 + \frac{C_1}{\Lambda^2}\phi^6 + \frac{C_2}{\Lambda^2}\phi^3\partial^2\phi + \frac{C_3}{\Lambda^2}\phi^2(\partial_\mu\phi)^2$$

#### Simplification and basis reduction

$$\mathcal{L} = -\frac{1}{2}\phi\partial^2\phi - \frac{1}{2}m^2\phi^2 - \frac{\lambda}{24}\phi^4 + \frac{C_1}{\Lambda^2}\phi^6 + \frac{C_2}{\Lambda^2}\phi^3\partial^2\phi + \frac{C_3}{\Lambda^2}\phi^2(\partial_\mu\phi)^2$$

#### Exact simplification (linear):

IBP, Dirac algebra, group identities, commutation relations,...

$$\mathcal{L} = -\frac{1}{2}\phi\partial^2\phi - \frac{1}{2}m^2\phi^2 - \frac{\lambda}{24}\phi^4 + \frac{C_1}{\Lambda^2}\phi^6 + \frac{3C_2 - C_3}{3\Lambda^2}\phi^3\partial^2\phi$$

$$\mathcal{L} = -\frac{1}{2}\phi\partial^2\phi - \frac{1}{2}m^2\phi^2 - \frac{\lambda}{24}\phi^4 + \frac{C_1}{\Lambda^2}\phi^6 + \frac{C_2}{\Lambda^2}\phi^3\partial^2\phi + \frac{C_3}{\Lambda^2}\phi^2(\partial_\mu\phi)^2$$

Exact simplification (linear):

IBP, Dirac algebra, group identities, commutation relations,...

$$\mathcal{L} = -\frac{1}{2}\phi\partial^2\phi - \frac{1}{2}m^2\phi^2 - \frac{\lambda}{24}\phi^4 + \frac{C_1}{\Lambda^2}\phi^6 + \frac{3C_2 - C_3}{3\Lambda^2}\phi^3\partial^2\phi$$

**On-shell equivalence (non-linear):** 

Field redefinition: 
$$\phi \longrightarrow \phi + \frac{3C_2 - C_3}{3\Lambda^2}\phi^3$$
  
$$\mathcal{L} \longrightarrow -\frac{1}{2}\phi\partial^2\phi - \frac{1}{2}m^2\phi^2 - \left(\frac{\lambda}{24} + \frac{(3C_2 - C_3)m^2}{3\Lambda^2}\right)\phi^4 + \frac{18C_1 - \lambda(3C_2 - C_3)}{18\Lambda^2}\phi^6$$

- -

-

$$\mathcal{L} = -\frac{1}{2}\phi\partial^2\phi - \frac{1}{2}m^2\phi^2 - \frac{\lambda}{24}\phi^4 + \frac{C_1}{\Lambda^2}\phi^6 + \frac{C_2}{\Lambda^2}\phi^3\partial^2\phi + \frac{C_3}{\Lambda^2}\phi^2(\partial_\mu\phi)^2$$

Exact simplification (linear):

IBP, Dirac algebra, group identities, commutation relations,...

$$\mathcal{L} = -\frac{1}{2}\phi\partial^2\phi - \frac{1}{2}m^2\phi^2 - \frac{\lambda}{24}\phi^4 + \frac{C_1}{\Lambda^2}\phi^6 + \frac{3C_2 - C_3}{3\Lambda^2}\phi^3\partial^2\phi$$

**On-shell equivalence (non-linear):** 

Field redefinition: 
$$\phi \longrightarrow \phi + \frac{3C_2 - C_3}{3\Lambda^2}\phi^3$$

$$\mathcal{L} \longrightarrow -\frac{1}{2}\phi\partial^2\phi - \frac{1}{2}m^2\phi^2 - \left(\frac{\lambda}{24} + \frac{(3C_2 - C_3)m^2}{3\Lambda^2}\right)\phi^4 + \frac{18C_1 - \lambda(3C_2 - C_3)}{18\Lambda^2}\phi^6$$

Removal of evanescent operators: complicated but solved

Buras, Weisz '90; Dugan, Grinstein '91; Herrlich, Nierste [hep-ph/9412375]; Aebischer et al. [2211.01379]; AET et al. [2211.09144];...

Example: Integrating out heavy fermion in the fundamental representation of SU(3)

Example: Integrating out heavy fermion in the fundamental representation of SU(3)

$$\begin{array}{c} \displaystyle \frac{7}{540} \ h \ g^2 \ \frac{1}{Mg^2} \ \left( D_{\mu} G^{\mu\nu\Lambda} \right)^2 + \\ \\ \displaystyle \frac{1}{40} \ h \ g^2 \ \frac{1}{Mg^2} \ G^{\mu\nu\Lambda} \ D_2^2 G^{\mu\nu\Lambda} + \frac{7}{540} \ h \ g^2 \ \frac{1}{Mg^2} \ D_{\mu} G^{\mu\nu\Lambda} \ D_{\nu} G^{\mu\nu\Lambda} - \\ \\ \displaystyle \frac{1}{180} \ h \ g^2 \ \frac{1}{Mg^2} \ D_{\nu} G^{\mu\nu\Lambda} \ D_{\rho} G^{\mu\nu\Lambda} + \frac{1}{40} \ h \ g^2 \ \frac{1}{Mg^2} \ G^{\mu\nu\Lambda} \ D_{\nu} G^{\mu\nu\Lambda} + \\ \\ \displaystyle \frac{1}{40} \ h \ g^2 \ \frac{1}{Mg^2} \ G^{\mu\nu\Lambda} \ D_{\rho} D_{\nu} G^{\mu\nu\Lambda} - \\ \\ \end{array}$$

$$\mathcal{L}_{\mathsf{EFT}} = \sum_{i} C_{i} \mathcal{O}_{i} \in O$$



 $I \subseteq O$  is the space of all operator identities, e.g., IBP relations such as

$$\mathcal{O}_1 + 2\mathcal{O}_3 = 0$$

is interpreted as

$$\mathcal{O}_1+2\mathcal{O}_3\in I$$

Example: Integrating out heavy fermion in the fundamental representation of SU(3)

In[12]:= LEFT // NiceForm  
Dut[12]//NiceForm=  

$$\frac{\frac{7}{540} \hbar g^2}{\frac{1}{M\Psi^2}} (D_{\mu}G^{\mu\nu A})^2 + \frac{1}{40} \hbar g^2 \frac{1}{4\pi^2} G^{\mu\nu A} P^2 G^{\mu\nu A} + \frac{7}{540} \hbar g^2 \frac{1}{4\pi^2} G^{\mu\nu A} + \frac{1}{540} \hbar g^2 \frac{1}{540} G^{\mu\nu A} + \frac{1}{540} \hbar g^2 \frac{1}{540} G^{\mu\nu A}$$

$$\begin{array}{c} \displaystyle \frac{1}{40} ~ \hbar ~ g^2 ~ \frac{1}{M u^2} ~ G^{\mu\nu A} ~ D^2 G^{\mu\nu A} + \frac{7}{540} ~ \hbar ~ g^2 ~ \frac{1}{M u^2} ~ D_\rho G^{\mu\nu A} ~ D_\nu Q^{\mu\nu A} - \\ \displaystyle \frac{1}{180} ~ \hbar ~ g^2 ~ \frac{1}{M u^2} ~ D_\nu G^{\mu\nu A} ~ D_\rho G^{\mu\nu A} + \frac{1}{40} ~ \hbar ~ g^2 ~ \frac{1}{M u^2} ~ G^{\mu\nu A} ~ D_\nu D_\rho G^{\mu\nu A} + \\ \displaystyle \frac{1}{40} ~ \hbar ~ g^2 ~ \frac{1}{M u^2} ~ G^{\mu\nu A} ~ D_\rho D_\nu G^{\mu\rho A} - \\ \displaystyle \frac{1}{24} ~ \hbar ~ g^3 ~ \frac{1}{M u^2} ~ G^{\mu\nu A} ~ G^{\mu\nu$$

$$\mathcal{L}_{\mathsf{EFT}} = \sum_{i} C_{i} \mathcal{O}_{i} \in O$$



 $I \subseteq O$  is the space of all operator identities, e.g., IBP relations such as

$$\mathcal{O}_1+2\mathcal{O}_3=0$$

is interpreted as

$$\mathcal{O}_1 + 2\mathcal{O}_3 \in I$$

Example: Integrating out heavy fermion in the fundamental representation of SU(3)

$$\begin{array}{c} \displaystyle \frac{7}{540} \ h \ g^2 \ \displaystyle \frac{1}{Mu^2} \ \left( D_\mu G^{\mu\nu A} \right)^2 \ + \\ \\ \displaystyle \frac{1}{40} \ h \ g^2 \ \displaystyle \frac{1}{Mu^2} \ G^{\mu\nu A} \ D^2 G^{\mu\nu A} \ + \ \displaystyle \frac{7}{540} \ h \ g^2 \ \displaystyle \frac{1}{Mu^2} \ D_\mu G^{\mu\nu A} \ D_\nu G^{\mu\nu A} \ - \\ \\ \displaystyle \frac{1}{180} \ h \ g^2 \ \displaystyle \frac{1}{Mu^2} \ D_\nu G^{\mu\nu A} \ D_\rho G^{\mu\nu A} \ + \ \displaystyle \frac{4}{16} \ h \ g^2 \ \displaystyle \frac{1}{Mu^2} \ G^{\mu\nu A} \ D_\nu D_\rho G^{\mu\nu A} \ + \\ \\ \displaystyle \frac{1}{40} \ h \ g^2 \ \displaystyle \frac{1}{Mu^2} \ G^{\mu\nu A} \ D_\nu D_\rho G^{\mu\nu A} \ + \\ \\ \hline \end{array} \right)$$

$$\mathcal{L}_{\mathsf{EFT}} = \sum_{i} C_i \mathcal{O}_i \in O$$

With **linear algebra** on the basis of *I* we find a simple representative element for  $[\mathcal{L}_{EFT}] \in O/I$ :





 $I \subseteq O$  is the space of all operator identities, e.g., IBP relations such as

$$\mathcal{O}_1 + 2\mathcal{O}_3 = 0$$

is interpreted as

$$\mathcal{O}_1 + 2\mathcal{O}_3 \in I$$





$$-2\ln L \sim \sum_{\text{obs}} \left(\frac{O_{\text{exp}} - O_{\text{th}}(\{C_i\})}{\Delta O}\right)^2$$

- Implementation of 100(0)s of observables: theory prediction + exp. results
- Handling of theoretical and experimental errors (with non-trivial correlations)
- Observables across different energy scales













Anders Eller Thomsen (U. Bern)

### SMEFT in event generators



- SMEFT Feynman rules
- Generation of models to MC event generators (e.g. MadGraph5\_aMC@NLO)
- Input schemes and flavor structure



Slide from I. Brivio @ Higgs2021

# **One-Loop Matching**

# Automation and techniques

One-loop matching is often the **leading contribution** from high-scale physics

FCNCs in the SM



■ In BSM models: dipoles, FCNCs, EW precision, ...



# Matching weakly coupled theories



# Matching weakly coupled theories

 $\mathcal{L}_{\text{FET}}$  should reproduce the physics of  $\mathcal{L}_{\text{IV}}$  at energies  $E \ll \Lambda$ : Off-shell matching  $\mathcal{L}_{\mu\nu}(\Phi, \phi)$  $\mathcal{L}_{\scriptscriptstyle \mathsf{EFT}}(\phi)$ NP RO  $\Gamma_{\rm UV}[\widehat{\Phi}(\phi), \phi] \simeq \Gamma_{\rm EFT}[\phi] \left( \bigcap_{\rm EFT} \phi \right)$ Matching  $\mathcal{L}_{\text{EFT}}(\phi) = \mathcal{L}_{d=4}(\phi) + \sum_{d=5}^{\infty} \sum_{\ell=0}^{\infty} \sum_{k} \frac{C_{d,k}^{(\ell)}}{(16\pi^2)^{\ell} \Lambda^{d-4}} \mathcal{O}_{d,k}^{(\ell)}(\phi)$ RG SMEFT double expansion Matching Hard-region matching formula  $\frac{\delta \Gamma_{\rm UV}|_{\rm hard}}{\delta \Phi} [\widehat{\Phi}, \phi] = 0$  $S_{\text{FFT}}[\phi] = \Gamma_{\text{UV}}[\widehat{\Phi}, \phi]|_{\text{hand}},$ RG LEFT "hard" denotes the part without any soft loop momenta (it includes all tree-level contributions) Fuentes-Martin et al. [1607.02142]; Zhang [1610.00710]; Fuentes-Martin, Palavrić, AET [2311.13630]

# Matching weakly coupled theories

 $\mathcal{L}_{\text{FET}}$  should reproduce the physics of  $\mathcal{L}_{\text{IV}}$  at energies  $E \ll \Lambda$ : Off-shell matching  $\mathcal{L}_{UV}(\Phi, \phi)$  $\mathcal{L}_{ ext{eft}}(\phi)$  $\mathcal{L}_{UV}(\Phi, \phi)$ NP RO MATCHETE Matching  $\Gamma_{\rm UV}[\widehat{\Phi}(\phi), \phi] \simeq \Gamma_{\rm FFT}[\phi]$  $\mathcal{L}_{\text{EFT}}(\phi) = \mathcal{L}_{d=4}(\phi) + \sum_{d=5}^{\infty} \sum_{\ell=0}^{\infty} \sum_{k} \frac{C_{d,k}^{(\ell)}}{(16\pi^2)^{\ell} \wedge^{d-4}} \mathcal{O}_{d,k}^{(\ell)}(\phi)$ RG SMEFT double expansion Matching Hard-region matching formula  $\frac{\delta\Gamma_{\rm UV}|_{\rm hard}}{\delta\Phi}[\widehat{\Phi},\phi]=0$  $S_{\text{EFT}}[\phi] = \Gamma_{\text{UV}}[\widehat{\Phi}, \phi]|_{\text{bard}},$ RG LEFT "hard" denotes the part without any soft loop momenta (it includes all tree-level contributions) Fuentes-Martin et al. [1607.02142]; Zhang [1610.00710]; Fuentes-Martin, Palavrić, AET [2311.13630]

# Separation of scales

Mixed (heavy-light) loop example:



# Separation of scales

Mixed (heavy-light) loop example:



 Γ<sup>(1)</sup><sub>UV</sub>|<sub>soft</sub>: long-distance contributions included in 1-loop matrix elements of tree-level EFT operators

$$\left. \Gamma_{\rm UV}^{(1)} \right|_{\rm soft} = \Gamma_{\rm eft}^{(1)}$$

■  $\Gamma_{UV}^{(1)}|_{hard}$ : short-distance contributions going into the EFT operators Fuentes-Martin *et al.* [1607.02142]; Zhang [1610.00710]

$$\left. \Gamma_{\rm UV}^{\rm \scriptscriptstyle (1)} \right|_{\rm hard} = S_{\rm EFT}^{\rm \scriptscriptstyle (1)}$$





Anders Eller Thomsen (U. Bern)

#### Example: SM + Vector-like lepton

|            | Setup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|            | SM Lagrangian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| In[3]:=    | LSM = LoadModel["SN"];                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|            | Define new field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| In[4]:=    | DefineField[EE, Fermion, Charges → {U1Y[-1]}, Mass → {Heavy, ME}]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|            | Define new coupling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| In[5]:=    | DefineCoupling[yE, EFTOrder→0, Indices→ {Flavor}]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|            | Write interactions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| In[6]:=    | Lint = -yE[p] × Barel[i, p] ** PR ** EE[] × H[i] // PlusHc;<br>Lint // NiceForm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| /ut[/]//NI | $-\overline{y}E^{p} H_{1} \left(EE \cdot P_{L} \cdot 1^{1p}\right) - yE^{p} H^{1} \left(\overline{1}_{1}^{p} \cdot P_{R} \cdot EE\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|            | Define full UV Lagrangian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| In[8]:=    | LUV = LSM + FreeLag[EE] + Lint;<br>LUV // NiceForm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| ut[a]//Ni  | $\begin{split} &-\frac{1}{4} B^{\mu\nu2} - \frac{1}{4} G^{\mu\nuA2} - \frac{1}{4} W^{\mu\nu12} + D_{\mu}H_1 D_{\mu}H_1^i + \mu^2 H_1 H_1^i + i \left( \tilde{d}_{p}^{0} \cdot \gamma_{\mu} P_R \cdot D_{\mu} d^{0p} \right) + i \left( e^p \cdot \gamma_{\mu} P_R \cdot D_{\mu} e^p \right) + i \left( e^p \cdot \gamma_{\mu} P_R \cdot D_{\mu} e^p \right) + i \left( e^p \cdot \gamma_{\mu} P_R \cdot D_{\mu} d^{0p} \right) - i \left( E^p \cdot \gamma_{\mu} \cdot D_R \cdot D_R^i - H_1 \left( U_1^{0} \cdot \gamma_{\mu} P_L \cdot D_{\mu} U_1^{0} \right) \right) + i \left( e^p \cdot \gamma_{\mu} P_R \cdot D_{\mu} e^p \right) - \frac{1}{2} \lambda H_1 H_1 H_1^i H_1^j - \overline{V} \overline{d}^{pr} H_1 \left( \overline{d}_{p}^{0} \cdot P_L \cdot d_{\mu} U_1^{0} \right) - V \overline{e}^{pr} H_1 \left( e^r \cdot P_L \cdot U_1^{0} \right) - V \overline{e}^{pr} H_1 \left( U_1^{0} \cdot P_R \cdot e^r \right) - V \overline{d}^{pr} H_1 \left( \overline{d}_{p1}^i \cdot P_R \cdot d^{ar} \right) - V \overline{u}^{pr} H_1 \left( \overline{d}_{p1}^i \cdot P_R \cdot e^r \right) - V \overline{u}^{pr} H_1 \left( \overline{d}_{p1}^i \cdot P_R \cdot e^r \right) - V \overline{u}^{pr} H_1 \left( \overline{d}_{p1}^i \cdot P_R \cdot e^r \right) - V \overline{u}^{pr} H_1 \left( \overline{d}_{p1}^i \cdot P_R \cdot e^r \right) - V \overline{u}^{pr} H_1 \left( \overline{d}_{p1}^i \cdot P_R \cdot e^r \right) - V \overline{u}^{pr} H_1 \left( \overline{u}_{p1}^i \cdot P_R \cdot e^r \right) - V \overline{u}^{pr} H_1 \left( \overline{u}_{p1}^i \cdot P_R \cdot e^r \right) - V \overline{u}^{pr} H_1 \left( \overline{u}_{p1}^i \cdot P_R \cdot e^r \right) - V \overline{u}^{pr} H_1 \left( \overline{u}_{p1}^i \cdot P_R \cdot e^r \right) - V \overline{u}^{pr} H_1 \left( \overline{u}_{p1}^i \cdot P_R \cdot e^r \right) - V \overline{u}^{pr} H_1 \left( \overline{u}_{p1}^i \cdot P_R \cdot e^r \right) - V \overline{u}^{pr} H_1 \left( \overline{u}_{p1}^i \cdot P_R \cdot e^r \right) - V \overline{u}^{pr} H_1 \left( \overline{u}_{p1}^i \cdot P_R \cdot e^r \right) - V \overline{u}^{pr} H_1 \left( \overline{u}_{p1}^i \cdot P_R \cdot e^r \right) - V \overline{u}^{pr} H_1 \left( \overline{u}_{p1}^i \cdot P_R \cdot e^r \right) - V \overline{u}^{pr} H_1 \left( \overline{u}_{p1}^i \cdot P_R \cdot e^r \right) - V \overline{u}^{pr} H_1 \left( \overline{u}_{p1}^i \cdot P_R \cdot e^r \right) - V \overline{u}^{pr} H_1 \left( \overline{u}_{p1}^i \cdot P_R \cdot e^r \right) - V \overline{u}^{pr} H_1 \left( \overline{u}_{p1}^i \cdot P_R \cdot e^r \right) - V \overline{u}^{pr} H_1 \left( \overline{u}_{p1}^i \cdot P_R \cdot e^r \right) - V \overline{u}^{pr} H_1 \left( \overline{u}_{p1}^i \cdot P_R \cdot e^r \right) - V \overline{u}^{pr} H_1 \left( \overline{u}_{p1}^i \cdot P_R \cdot e^r \right) - V \overline{u}^{pr} H_1 \left( \overline{u}_{p1}^i \cdot P_R \cdot e^r \right) - V \overline{u}^{pr} H_1 \left( \overline{u}_{p1}^i \cdot P_R \cdot e^r \right) - V \overline{u}^{pr} H_1 \left( \overline{u}_{p1}^i \cdot P_R \cdot e^r \right) - V \overline{u}^{pr} H_1 \left( \overline{u}_{p1}^i \cdot P_R \cdot e^r \right) - V \overline{u}^{pr} H_1 \left( \overline{u}_{p1}^i \cdot P_R \cdot e^r \right) - V \overline{u}^{pr} H_1 \left( \overline{u}_{p1}^i \cdot P_R \cdot e^r \right) - V \overline{u}^{pr} H_1 \left( \overline{u}_{p1}^i \cdot P_R \cdot e^r \right) - V \overline{u}^{pr} H_1 \left( \overline{u}_{p1}^i \cdot$ |  |

Anders Eller Thomsen (U. Bern)

#### Example: SM + Vector-like lepton



Select Higgs-lepton current operator

In[12]:= SelectOperatorClass[LEFTOnShell, {e, Bar@e, H, Bar@H}, 1] // GreensSimplify // NiceForm

Out[12]//NiceForm=

$$\frac{\mathbf{i}}{\mathbf{360}} \, \hbar \frac{\mathbf{1}}{\mathbf{ME}^2} \left[ 48 \, \mathbf{g} \mathbf{Y}^4 \, \delta^{\mathbf{pr}} + 5 \, \overline{\mathbf{y}} \mathbf{E}^s \, \left( \mathbf{3} \, \mathbf{y} \mathbf{E}^t \, \overline{\mathbf{Y}} \mathbf{e}^{t\mathbf{r}} \, \mathbf{Y} \mathbf{e}^{s\mathbf{p}} \left[ \mathbf{1} + 6 \, \log \left[ \frac{\mu^2}{\mathbf{ME}^2} \right] \right] - 2 \, \mathbf{y} \mathbf{E}^s \, \mathbf{g} \mathbf{Y}^2 \, \left( \mathbf{13} + 6 \, \log \left[ \frac{\mu^2}{\mathbf{ME}^2} \right] \right) \, \delta^{\mathbf{pr}} \right) \right) \\ \left( - D_\mu H_1 \, \mathbf{H}^1 \, \left( \mathbf{e}^r \, \cdot \, \gamma_\mu \, \mathbf{P}_R \cdot \mathbf{e}^p \right) + H_1 \, D_\mu \, \mathbf{H}^1 \, \left( \mathbf{e}^r \, \cdot \, \gamma_\mu \, \mathbf{P}_R \cdot \mathbf{e}^p \right) \right)$$

$$Q_{He}^{pr} = (H^{\dagger}i\overleftrightarrow{D_{\mu}}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$$

### Example: SM + Vector-like lepton

#### Example: neutral triple gauge interactions

#### New physics in $Z(\gamma, Z)(\gamma^*, Z^*)$ ?



**22 BSM models** with dimension-8 SMEFT contributions to NTG analyzed using **Matchete** by *Cepedello*, *Esser*, *Hirsch*, *and Sanz* [2402.04306]

# Summary and outlook

- Broad range of dedicated EFT tools
- Computational tools enables phenomenological EFT analyses
- Software packages ⇒ new validation possibilities
- Goal: better interfaces between tools
- Goal: harder, better, faster, stronger!

# Summary and outlook

- Broad range of dedicated EFT tools
- Computational tools enables phenomenological EFT analyses
- Software packages ⇒ new validation possibilities
- Goal: better interfaces between tools
- Goal: harder, better, faster, stronger!

