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MITP - Summer School

Outline - Part 1

Part 0

Markov Chain Monte Carlo

Hybrid Monte Carlo algorithm

Part 1

Linear solvers, Krylov subspace solvers

Preconditioners, smoothers and coarse grid

Part 3
Fermions in simulations
...

parts are based on Gustavo Ramirez-Hildalgo's Lattice Practice 2024 and Yousef Saad book
'Iterative Methods for Sparse Linear systems'
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Linear systems in lattice QCD

Most computing time in lattice QCD is spend in solving linear equation of the type

 it is of utmost importance to find efficient /most efficient solvers

Solving the Dirac equation is required

during MCMC simulations
calculation of propagators

Discretatization of Dirac operator and use cases

 is sparse (e.g. Wilson) or dense (e.g. overlap)
a solution is only required for one right hand sides (rhs) or many

this influence the choice of the linear solver
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Discretization of the Dirac operator

Discretisations by covariant finite-differences

Wilson discretization (adding Wilson term):

Typical discretizations yield linear systems  with:

 is non-hermitian ( ), yet 

 is in the right half complex-plane , so that the matrix is positive definite

 is very large (e.g. small lattice  has  M unknowns)

 is sparse, i.e. contains only next neighbor couplings, thats  non-zeros per row

Matrix-vector operations are relative cheap 

Lattice QCD solver libraries come (usually) with highly optimized implementations for 
(Dslash-operator)
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dµψx = (Uµ(x − a )ψ(x − a ) − (U (x)ψ(x − a ))1
a µ̂ µ̂ µ

† µ̂

= (γµdµ + µ) ∈DW ∑
4

a−1d2 ℂ12 ×12L3
sLt L3

sLt

Dx = b

● D A ≠ A† ( D = Dγ5 )† γ5

● spec(D)
Ax > 0, x ≠ 0x†

● D × 64323 25

● D ∼ 100

O( ) = O(V)L3
sLt

D ⋅ x
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Direct methods

Idea: Solve linear system  by row-/column-manipulations

Usually based on factorizing the system matrix 

Methods based on Gaussian elimination

: LU factorization

 : Collesky factorization (  hermitian)

Direct methods are very expensive (  for dense matrices)

methods exploting sparsity exists, reducing complexity but still have a large memory and
computational footprint

In general iterative methods are more efficient
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Ax = b

A
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Iterative solvers

Given:

with solutions  and matrix is a  sparse matrix

Find: Approximations

1. How do we measure convergence of  ?

require a "computable" measures ("stopping criteria")

is this possible by having a monotonic convergence ?

1. How we can find an iterate  such that
the iterative process converges, namely  ?
we can define a "simple" update formula for  ?
each iteration requires only the one (or a few) operation of  on a vector

minimal application of Dslash = Ax , which requires  operations
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Ax = b

x̂ A

, k = 1, 2,… , such that →x(k) x(k) x̂

→x(k) x̂

●

●

x(k)

● →x(k) x̂
● x(k+1)

● A
– O(V)
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How do we measure convergence ?

Given: Iterate  in the th iteration

Using the error: 

in most cases the error is not readily computable (solution not known)

Using the residual: 

The residual is a computable quantity.

Note that:

from now on, we define 
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x(k) k

● = − = b −e(k) x̂ x(k) A−1 x(k)

→ ⟹ || || → 0x(k) x̂ e(k)

● = b − Ar(k) x(k)

→ ⟹ || || → 0x(k) x̂ r(k)

= b − A = A − A = Ar(k) x(k) x̂ x(k) e(k)

= 0x(0)
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How do we find a suitable iterate $x^{(k)}

Task: Given  find , such that  or

Start: Solver for  for each . Note, that if our residual  gets smaller, we are closer
to our solution

 Idea: Set entry of  to zero: 

Jacobi iteration for 

Gauss-Seidel iteration

This sets entry of  to zero using also updated previous values of iterate 
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b x Ax = b

aij = , i = 1,… , n∑
n

j=1
xj bi

xi i r = b − Ax

⟹ r(k+1)
i (b − Ax = 0)i

● i = 1,… , b

= + ( − aij )xk+1
i xk

i
1
aii

bi ∑
n

j=1
x(k)

j

●

= + ( − aij − aij )xk+1
i xk

i
1
aii

bi ∑
i−1

j=1
x(k+1)

j ∑
n

j=i
x(k)

j

r(k+1)
i x
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Spliting methods

Spliting methods use the additive decomposition of 

Jacobi: 
Gauss-Seidel: 
SOR:  (Successive Over Relaxation)

General splitting method:  (recall: error is given by )

Convergent if 

splitting methods are often used as preconditioners
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A = L + D + U

● = +x(k+1) x(k) D−1r(k)

● = + (D + Lx(k+1) x(k) )−1r(k)

● = + ( D + Lx(k+1) x(k) 1
ω )−1r(k)

A = M + N = − =ek x̂ xk A−1r(k)

= + ⟹ = − Ax(k+1) x(k) M−1r(k) e(k+1) e(k) M−1 e(k)

||I − A|| < 1M−1

●
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Projection methods

Idea: Find solution within a smaller subspace. Lets defined spaces  and 

Now, our iterate  and its residual  fullfills

Note, that we want to exploit the inital guess, such that 

We can write  and for the residual follows

Gauss-Seidel can be defined by a projection step with 

Note:  is called Petrov-Galerkin condition
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K L ∈ ℂn

x̃ r̃

∈ K and = b − A ⊥ Lx̃ r̃ x̄

∈ + Kx̃ x0

= + δx̃ x0

b − A( + δ) = − Aδ ⊥ Lx0 r0

● K = L = span( )ei

r ⊥ L
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One-Dimensional Projection Processes

One dimensional projection processes:

with two vectors  and . By imposing the Petrov-Galerkin condition, it follows:

gives

Steepest Descent converges if A is positive symmetric. We set  and . It follows

requires one matrix-vector application per iteration
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K = span(v) and L = span(w)

v w

x ← x + αv and r − Aδ ⊥ w

α =
(r, w)
Av, w

v = r w = r

r ← b − Ax

α ← (r, r)/(Ar, r)

x ← x + αr
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One-Dimensional projections

One dimensional projection processes we set the spaces to

Steepest Descent: , 

converges for positive symmetric matrices
each step minimizes  in the direction 

Minimal Residual (MR) Iteration: , 

converges for positive definite matrices
each step minimizes  in the direction 

Residual Norm Steepest Descent: , 

converges for non-singular matrices
each step minimizes  in the direction 
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K = span(v) and L = span(w)

v = r w = r

●
● ||x − |x̂ |2A −∇f

v = r w = Ar

●
● f(x) = ||b − Ax||2 r

v = rA† w = Ar

●
● f(x) = ||b − Ax||2 −∇f

12 / 32



30.07.25, 13:19Algorithms // MITP - Summer 25 - part 1 // July/August 2025

Page 14 of 33file:///Users/jacobfinkenrath/Documents/docs/teaching/MITP_Mainz_2025/MITP_lecture_1.html#29

Krylov Space

Generalization of projection methods:

 is an solution from the affine subspace  by imposing the Petrov-Garlerkin condition

A Krylov subspace method is based on the Krylov subspace

Note, an approximated solution from  can be writen as a polynome of order 

the inverse of the matrix can be writeen as a matrix function
useful for proof/understand convergence etc.
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xm +x0 Km

b − A ⊥xm Lm

(A, ) = span( , A ,… , )Km r0 r0 r0 Am−1r0

Km m − 1

b ≈ = + qm − 1(A)A−1 xm x0 r0

●
●
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Arnoldi methods

Arnoldi's method is an orthogonal projection onto 

Arnoldi method is introduced as a method to reduce a dense matrix on a Hessenberg matrix:

Its based on writing:

with

the coefficients  of the Hessenberg matrix  can be calculated via Gram-Schmidt
orthogonalization
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Km

●

A = + = Vm + 1Vm VmHm wmeT
m H̄m

h[i][j] Hm
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GMRES

Generalized Minimum Residual Method (GMRES) is a projection method based on

so that the residual is minimized over the space 

Basic algorithm:

r0 = b-A*x0, beta = |$r0|$, v1=r0/beta # Starting conditions 
forforforfor j=1,..&,m dodododo
    w = A *v[j]          # Increase Krylov space j -) j+1 

  forforforfor i=1,..&,j dodododo              # Arnoldi Gram-Schmidt orthogonalization
      h[i,j] = (w,v[j])            # calculate elements of Hessenberg matrix
      w = w-h[i,j]*v[j]            # orthogonalize w  wrt v[j]
     end forforforfor

     h[j+1,j] = |$w|$               # lower diagonal of Hessenberg 
     v[j+1] = w/h[j+1,j]
end forforforfor

Define Vm =[v[1],.,v[m]], H={h[i,j]}
Solve ym = argmin |$beta*e1 - H*y|$  #Impose Petrov-Garlekin condition (can be done via LU)
x0=x0+Vm*ym     # update iterate

if  is not sufficient, restart GMRES (if  to large breakdown of orthogonality)
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K = and L = AKm Km

+x0 Km

x0 m
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Krylov-solver methods

GMRES:  and 

requires calculation of  in each iteration

converges for non-hermitian positive definite matrices

mathematical equivalent to GCR

FOM:  and  (Full Orthogonalization Method)

converges for positive definite hermitian matrices

mathematical equivalent to CG (Conjugate Gradient) solver

CG is an elegant form which utilize the orthogonality of hermitian matrices. Hessenberg
matrix becomes tri-diagonal resulting from the three-term Lanczos recurrence

CG is often the standart algorithm, but need a hermitian/symmetric matrix

more variants / Zoo of Krylov subspace solvers like BiCGstab, Block Krylov solvers,
communication avoiding variants ..
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K = Km L = AKm

● A ∗ v

●

●

K = Km L = Km

●

●

–

–

Dx = b ⇒ Dx = DbD†
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Optimal methods

Kryloc subspace methods are all-duty solvers

"Optimal" methods for any application

fast (short-recurrence) solvers for many applications, like CG

Convergence dependents on conditioning of 

in case of Conjugate Gradient solver

How to improve convergence of Krylov subspace methods ?

1. Preconditioning
2. Deflation
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●

●

● A

–

|| | ≤ 2 || | , κ =e(k) |A ( )− 1κ−−√
+ 1κ−−√

k

e(0) |A
λmax(A)
λmin(A)
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Scaling issues in Numerical Simulations

Numerical simulation of partial differential equations (PDEs)

Discretization of  on lattice with spacing  yields

Depending on PDE order and order of discretiation

Increasing accuracy of discretization ( )

Performance of Krylov methods deteriorates when 

 critical slowing down of linear solvers
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Lψ = ϕ

L a

Lx = f

●

κ(L) ∼ , σ ∈a−σ ℕ+

● a → 0

κ(L) → ∞ (a → 0)

a → 0

⟶
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Preconditioning

Idea: Improve conditioning of  in 

instead of solving  consider solving

with preconditioners , , so that 

Consider the cases

:   original setting

:   and  (ideal)

:   hermitian but 

In order to speed up convergence the preconditioner  should

 should approximate  and be cheap/ or lead to a good iteration count vs. work trade-off
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A Ax = b

● Ax = b

A y = bSl Sr Sl

x = ySr

Sl Sr κ( A ) ≪ κ(A)Sl Sr

● S = I ⟹ SA = A

● S = A−1 ⟹ SA = I κ(SA) = 1

● S = A† ⟹ SA = AA† κ(SA) = κ(A)2

S

● S A−1
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Preconditioning - GMRES

Preconditioned GMRES

if  is constant, GMRES can be easily adapted
possible to modify also other solvers like CG, but here hermiticity has to be satisfied

r0 = S*(b-A*x0), beta = |$r0|$, v1=r0/beta # Starting conditions, modified by an application of S 
forforforfor j=1,..&,m dodododo
    w = S* A *v[j]          # Increase Krylov space j -) j+1 
                                                    # modified by application of S

  forforforfor i=1,..&,j dodododo              # Arnoldi Gram-Schmidt orthogonalization
      h[i,j] = (w,v[j])            # calculate elements of Hessenberg matrix
      w = w-h[i,j]*v[j]            # orthogonalize w  wrt v[j]
     end forforforfor

     h[j+1,j] = |$w|$               # lower diagonal of Hessenberg 
     v[j+1] = w/h[j+1,j]
end forforforfor

Define Vm =[v[1],.,v[m]], H={h[i,j]}
Solve ym = argmin |$beta*e1 - H*y|$  #Impose Petrov-Garlekin condition (can be done via LU)
x0=x0+Vm*ym     # update iterate
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● S
●
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Selection of preconditioners

Aims for the construction of preconditioners 

1.  to get speed-up
2.  should be computational efficient, iteration count reduction vs work trade off

Classes of preconditioners:

splitting-bassed preconditioners
structural preconditioners
multi-grid preconditioners
domain decomposition preconditioners ...

Recap: Splitting methods

Jacobi:  with 
Gauss-Seidel:  with 
SOR:  with 
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S

S ≈ A−1

S

●
●
●
●

● = +x(k+1) x(k) D−1r(k) S = D−1

● = + (D + Lx(k+1) x(k) )−1r(k) S = (D + L)−1

● = + ( D + Lx(k+1) x(k) 1
ω )−1r(k) S = ( D + L1

ω )−1
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Nodes are odd or even

Ordering by odd-even

with diagonal  and 

,  trivial
odd and even decoupled

Solve first even then odd

Now with , the solution of
 is given by

Odd-Even Reduction

Iteratively solving   odd-
even preconditioner

If  has constant diagonal   
is easier than solving 

Since  is cheap (diagonal).  Cost for  
Cost for 

Odd-even preconditioning

Discretizations on lattice with next neighbor coupling
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A = [ ]
Aoo

Aeo

Aoe

Aee

Aoo Aee

● ooA−1
eeA−1

●

= Aee − Aeo ooAoeSc A−1

Ax = b

= ooyo A−1 bo

Solve = − AeoScxe be yo

= − ooAoexo yo A−1 xe

● = − AeoScxe be yo ⟹

● A κ( ) < κ(A)Sc ⟹ Sc
A

● ooA−1 ⇒ Sc ≈
A
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Canonical injection 

 

Restriction of  onto 

 

Restriction of  onto 

Domain Decomposition

Idea:

Split the computational domain into subdomains 

Solve system interatively on each subdomain
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● Bi

●

– Ij

=Ij ei eBj
i

– x Bj

= xxBj I†
j

– A Bj

= AABj I†
j Ij
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Additive Schwarz:

Solve each block independently from each
other:

forforforfor k=0,1,..& dodododo
    r[k] = b - A*x[k]
    forforforfor j=1,2..&,nb dodododo
        #applied on Block j
        x[k+1] = x[k] + inv(Bj)r[k]    
    end forforforfor
end forforforfor

Block Jacobi-method
embarrassingly parallel

Multiplicative Schwarz

Update residual during iteration

Block-Gauss-Seidel-method
Sequential (  coloring)
SAP is using only two kind of blocks (red-
black)

Schwarz methods in general are:

data parallel
computational parallel

Additive and Multiplicative Schwarz

forforforfor k=0,1,..& dodododo
    forforforfor j=1,2..&,nb dodododo
        # update residual before each block application
        r = b - Ax 
        #applied on Block j
        x[k+1] = x[k] + inv(Bj)r[k]
    end forforforfor
end forforforfor
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●
●

●
● →
●

●
●
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Multigrid
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Given

Iterative method  ("smoother")

Needed

Hierarchy of systems of  levels (finest , coarsest
level  )

inter-grid transfer operators

Smoother: "High modes" Interpolation: "Low modes"

(Algebraic) Multigrid
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● Ax = b

● S

● L + 1 l = 0
l = L

= , l = 0,… , LAlxl bl

●

Projection from l to l+1: : →Pl,l+1 ℂnl+1 ℂnl

Restriction from l+1 to l: : →Pl+1,l ℂnl ℂ +1nl

: →Sl ℂnl ℂnl : →Pl,l+1 ℂnl+1 ℂnl
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Generic Multigrid Algorithm - 

Preconditioner with smoothing and coarse-grid correction

ifififif l=L thenthenthenthen
    x_L = inv(A_L) b_L
elseelseelseelse
    x_l = 0
    forforforfor i=1, ..& v1 dodododo
        x_l = Sl(x_l,b_l)    # Pre-smoothing

    end forforforfor

    x_l+1 = MG(A_l+1, R_l,l+1(b_l-Ax_l)
    x_l = x_l + P_l,l+1 * x_l+1     # Coarse-grid corrections

  forforforfor i=1, ..& v2 dodododo
        x_l = Sl(x_l,b_l)    # Post-smoothing
    end forforforfor
end ifififif

The preconditioner might be an iterative process by itself

 will change in every iteration. There is no longer a Krylov subspace defined by

 algorithmic have to be modified, namely flexible
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Flexible GMRES

Preconditioner similar to before, but the projection of the iterate has to be modified 

whilewhilewhilewhile not converged dodododo
  r0 = S(b-A*x0), beta = |$r0|$, v1=r0/beta # modified starting conditions 
  forforforfor j=1,..&,m dodododo
    z[j] = Sj * y[j]     # application of Preconditioner
    w = A *z[j]          # Increase Krylov space j -) j+1 

    forforforfor i=1,..&,j dodododo              # Arnoldi Gram-Schmidt orthogonalization
      h[i,j] = (w,v[j])            # calculate elements of Hessenberg matrix
      w = w-h[i,j]*v[j]            # orthogonalize w  wrt v[j]
    end forforforfor

    h[j+1,j] = |$w|$               # lower diagonal of Hessenberg 
    v[j+1] = w/h[j+1,j]
  end forforforfor

  Define Zm =[z[1],.,z[m]], H={h[i,j]}  # Use Z here instead of v
  Solve ym = argmin |$beta*e1 - H*y|$  #Impose Petrov-Garlekin condition (can be done via LU)
  x0=x0+Zm*ym     # update iterate
end whilewhilewhilewhile

Note: GCR doesn't need to be modified to be flexible, flexible per definition

note that inexact deflation can be converted into a 2 lvl-MG with a GCR
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Computational cost of conventional solvers
rapidly grows with , system is
quickly ill conditioned

Multi-grid solvers are pratically solving this
issues

lead to a speed up of O(10) - O(100)

Challenges

multi-grid solver are parameter rich

some are performance critical like
blocking size, projection size

some are less performance critical
smoothing applications, iterations

Usually main computational challenge:

[Luscher, 2007]

Conclusion and outlook

multi-grid is computational limited by

less scalable (coarse grid boundary surface becomes large)
memory bound

... more ..
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Notations

Linear systems of equations:

Euclidian inner product:

Adjoint  of  w.r.t 

For complex matrices:  hermitian  ,  For real matrices:  is symmetric 

 hermitian positive definite
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aij = , i = 1,… , n∑
j

n
xj bi

Ax = b, A ∈ , x ∈ , b ∈ℂn×n ℂn ℂn

⟨x, y = x =⟩2 y† ∑
n

i=1
ȳixi

A† A ⟨…⟩2

⟨Ax, y = ⟨x, y⟩2 A† ⟩2

A ⇔ = AA† A ⇔
= AAT

A

= A and Ax > 0, x ≠ 0A† x†
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Preconditioners - Summary

Preconditioning improves convergence if

There is a wide variety of preconditioners available

most of them require knowledge about  or its origins

Goals when constructing preconditioners  are

 and  needs to be computatinal affordable

In general Preconditioning makes Krylos subspace methods more robust

Reducing  helps controlling the error , since

: If  results based on  can be unreliable

: If  a preconditioner becomes necessary
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κ(SA) ≪ κ(A)

● A

S

● S ≈ A−1 S

● κ(A) e(k)

||e| ≤ cκ(A ||r||2 )−1 |2

⟹ κ(A) ≫ 1 ||r||2

⟹ κ(A) ≫ 1
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