
30.07.25, 13:19Algorithms // MITP - Summer 25 - part 1 // July/August 2025

Page 1 of 33file:///Users/jacobfinkenrath/Documents/docs/teaching/MITP_Mainz_2025/MITP_lecture_1.html#29

Algorithms

MITP - Summer school
July 30, 2025

J. Finkenrath

1 / 32

30.07.25, 13:19Algorithms // MITP - Summer 25 - part 1 // July/August 2025

Page 2 of 33file:///Users/jacobfinkenrath/Documents/docs/teaching/MITP_Mainz_2025/MITP_lecture_1.html#29

1 / 32

30.07.25, 13:19Algorithms // MITP - Summer 25 - part 1 // July/August 2025

Page 3 of 33file:///Users/jacobfinkenrath/Documents/docs/teaching/MITP_Mainz_2025/MITP_lecture_1.html#29

MITP - Summer School

Outline - Part 1

Part 0

Markov Chain Monte Carlo

Hybrid Monte Carlo algorithm

Part 1

Linear solvers, Krylov subspace solvers

Preconditioners, smoothers and coarse grid

Part 3
Fermions in simulations
...

parts are based on Gustavo Ramirez-Hildalgo's Lattice Practice 2024 and Yousef Saad book
'Iterative Methods for Sparse Linear systems'

Algo - 1 :" 30 July 2025𝚝𝚑

●

–

–

●

–

–

●
–
–

2 / 32

30.07.25, 13:19Algorithms // MITP - Summer 25 - part 1 // July/August 2025

Page 4 of 33file:///Users/jacobfinkenrath/Documents/docs/teaching/MITP_Mainz_2025/MITP_lecture_1.html#29

Linear systems in lattice QCD

Most computing time in lattice QCD is spend in solving linear equation of the type

 it is of utmost importance to find efficient /most efficient solvers

Solving the Dirac equation is required

during MCMC simulations
calculation of propagators

Discretatization of Dirac operator and use cases

 is sparse (e.g. Wilson) or dense (e.g. overlap)
a solution is only required for one right hand sides (rhs) or many

this influence the choice of the linear solver

Algo - 1 :" 30 July 2025𝚝𝚑

D ⋅ x = b

⇒

●
●

● D
●

3 / 32

30.07.25, 13:19Algorithms // MITP - Summer 25 - part 1 // July/August 2025

Page 5 of 33file:///Users/jacobfinkenrath/Documents/docs/teaching/MITP_Mainz_2025/MITP_lecture_1.html#29

Discretization of the Dirac operator

Discretisations by covariant finite-differences

Wilson discretization (adding Wilson term):

Typical discretizations yield linear systems with:

 is non-hermitian (), yet

 is in the right half complex-plane , so that the matrix is positive definite

 is very large (e.g. small lattice has M unknowns)

 is sparse, i.e. contains only next neighbor couplings, thats non-zeros per row

Matrix-vector operations are relative cheap

Lattice QCD solver libraries come (usually) with highly optimized implementations for
(Dslash-operator)

Algo - 1 :" 30 July 2025𝚝𝚑

dµψx = (Uµ(x − a)ψ(x − a) − (U (x)ψ(x − a))1
a µ̂ µ̂ µ

† µ̂

= (γµdµ + µ) ∈DW ∑
4

a−1d2 ℂ12 ×12L3
sLt L3

sLt

Dx = b

● D A ≠ A† (D = Dγ5)† γ5

● spec(D)
Ax > 0, x ≠ 0x†

● D × 64323 25

● D ∼ 100

O() = O(V)L3
sLt

D ⋅ x

4 / 32

30.07.25, 13:19Algorithms // MITP - Summer 25 - part 1 // July/August 2025

Page 6 of 33file:///Users/jacobfinkenrath/Documents/docs/teaching/MITP_Mainz_2025/MITP_lecture_1.html#29

Direct methods

Idea: Solve linear system by row-/column-manipulations

Usually based on factorizing the system matrix

Methods based on Gaussian elimination

: LU factorization

 : Collesky factorization (hermitian)

Direct methods are very expensive (for dense matrices)

methods exploting sparsity exists, reducing complexity but still have a large memory and
computational footprint

In general iterative methods are more efficient

Algo - 1 :" 30 July 2025𝚝𝚑

Ax = b

A

●

– A = LU

– A = LDL† A

O()n3

●

5 / 32

30.07.25, 13:19Algorithms // MITP - Summer 25 - part 1 // July/August 2025

Page 7 of 33file:///Users/jacobfinkenrath/Documents/docs/teaching/MITP_Mainz_2025/MITP_lecture_1.html#29

Iterative solvers

Given:

with solutions and matrix is a sparse matrix

Find: Approximations

1. How do we measure convergence of ?

require a "computable" measures ("stopping criteria")

is this possible by having a monotonic convergence ?

1. How we can find an iterate such that
the iterative process converges, namely ?
we can define a "simple" update formula for ?
each iteration requires only the one (or a few) operation of on a vector

minimal application of Dslash = Ax , which requires operations

Algo - 1 :" 30 July 2025𝚝𝚑

Ax = b

x̂ A

, k = 1, 2,… , such that →x(k) x(k) x̂

→x(k) x̂

●

●

x(k)

● →x(k) x̂
● x(k+1)

● A
– O(V)

6 / 32

30.07.25, 13:19Algorithms // MITP - Summer 25 - part 1 // July/August 2025

Page 8 of 33file:///Users/jacobfinkenrath/Documents/docs/teaching/MITP_Mainz_2025/MITP_lecture_1.html#29

How do we measure convergence ?

Given: Iterate in the th iteration

Using the error:

in most cases the error is not readily computable (solution not known)

Using the residual:

The residual is a computable quantity.

Note that:

from now on, we define

Algo - 1 :" 30 July 2025𝚝𝚑

x(k) k

● = − = b −e(k) x̂ x(k) A−1 x(k)

→ ⟹ || || → 0x(k) x̂ e(k)

● = b − Ar(k) x(k)

→ ⟹ || || → 0x(k) x̂ r(k)

= b − A = A − A = Ar(k) x(k) x̂ x(k) e(k)

= 0x(0)

7 / 32

30.07.25, 13:19Algorithms // MITP - Summer 25 - part 1 // July/August 2025

Page 9 of 33file:///Users/jacobfinkenrath/Documents/docs/teaching/MITP_Mainz_2025/MITP_lecture_1.html#29

How do we find a suitable iterate $x^{(k)}

Task: Given find , such that or

Start: Solver for for each . Note, that if our residual gets smaller, we are closer
to our solution

 Idea: Set entry of to zero:

Jacobi iteration for

Gauss-Seidel iteration

This sets entry of to zero using also updated previous values of iterate

Algo - 1 :" 30 July 2025𝚝𝚑

b x Ax = b

aij = , i = 1,… , n∑
n

j=1
xj bi

xi i r = b − Ax

⟹ r(k+1)
i (b − Ax = 0)i

● i = 1,… , b

= + (− aij)xk+1
i xk

i
1
aii

bi ∑
n

j=1
x(k)

j

●

= + (− aij − aij)xk+1
i xk

i
1
aii

bi ∑
i−1

j=1
x(k+1)

j ∑
n

j=i
x(k)

j

r(k+1)
i x

8 / 32

30.07.25, 13:19Algorithms // MITP - Summer 25 - part 1 // July/August 2025

Page 10 of 33file:///Users/jacobfinkenrath/Documents/docs/teaching/MITP_Mainz_2025/MITP_lecture_1.html#29

Spliting methods

Spliting methods use the additive decomposition of

Jacobi:
Gauss-Seidel:
SOR: (Successive Over Relaxation)

General splitting method: (recall: error is given by)

Convergent if

splitting methods are often used as preconditioners

Algo - 1 :" 30 July 2025𝚝𝚑

A = L + D + U

● = +x(k+1) x(k) D−1r(k)

● = + (D + Lx(k+1) x(k))−1r(k)

● = + (D + Lx(k+1) x(k) 1
ω)−1r(k)

A = M + N = − =ek x̂ xk A−1r(k)

= + ⟹ = − Ax(k+1) x(k) M−1r(k) e(k+1) e(k) M−1 e(k)

||I − A|| < 1M−1

●

9 / 32

30.07.25, 13:19Algorithms // MITP - Summer 25 - part 1 // July/August 2025

Page 11 of 33file:///Users/jacobfinkenrath/Documents/docs/teaching/MITP_Mainz_2025/MITP_lecture_1.html#29

Projection methods

Idea: Find solution within a smaller subspace. Lets defined spaces and

Now, our iterate and its residual fullfills

Note, that we want to exploit the inital guess, such that

We can write and for the residual follows

Gauss-Seidel can be defined by a projection step with

Note: is called Petrov-Galerkin condition

Algo - 1 :" 30 July 2025𝚝𝚑

K L ∈ ℂn

x̃ r̃

∈ K and = b − A ⊥ Lx̃ r̃ x̄

∈ + Kx̃ x0

= + δx̃ x0

b − A(+ δ) = − Aδ ⊥ Lx0 r0

● K = L = span()ei

r ⊥ L

10 / 32

30.07.25, 13:19Algorithms // MITP - Summer 25 - part 1 // July/August 2025

Page 12 of 33file:///Users/jacobfinkenrath/Documents/docs/teaching/MITP_Mainz_2025/MITP_lecture_1.html#29

One-Dimensional Projection Processes

One dimensional projection processes:

with two vectors and . By imposing the Petrov-Galerkin condition, it follows:

gives

Steepest Descent converges if A is positive symmetric. We set and . It follows

requires one matrix-vector application per iteration

Algo - 1 :" 30 July 2025𝚝𝚑

K = span(v) and L = span(w)

v w

x ← x + αv and r − Aδ ⊥ w

α =
(r, w)
Av, w

v = r w = r

r ← b − Ax

α ← (r, r)/(Ar, r)

x ← x + αr

11 / 32

30.07.25, 13:19Algorithms // MITP - Summer 25 - part 1 // July/August 2025

Page 13 of 33file:///Users/jacobfinkenrath/Documents/docs/teaching/MITP_Mainz_2025/MITP_lecture_1.html#29

One-Dimensional projections

One dimensional projection processes we set the spaces to

Steepest Descent: ,

converges for positive symmetric matrices
each step minimizes in the direction

Minimal Residual (MR) Iteration: ,

converges for positive definite matrices
each step minimizes in the direction

Residual Norm Steepest Descent: ,

converges for non-singular matrices
each step minimizes in the direction

Algo - 1 :" 30 July 2025𝚝𝚑

K = span(v) and L = span(w)

v = r w = r

●
● ||x − |x̂ |2A −∇f

v = r w = Ar

●
● f(x) = ||b − Ax||2 r

v = rA† w = Ar

●
● f(x) = ||b − Ax||2 −∇f

12 / 32

30.07.25, 13:19Algorithms // MITP - Summer 25 - part 1 // July/August 2025

Page 14 of 33file:///Users/jacobfinkenrath/Documents/docs/teaching/MITP_Mainz_2025/MITP_lecture_1.html#29

Krylov Space

Generalization of projection methods:

 is an solution from the affine subspace by imposing the Petrov-Garlerkin condition

A Krylov subspace method is based on the Krylov subspace

Note, an approximated solution from can be writen as a polynome of order

the inverse of the matrix can be writeen as a matrix function
useful for proof/understand convergence etc.

Algo - 1 :" 30 July 2025𝚝𝚑

xm +x0 Km

b − A ⊥xm Lm

(A,) = span(, A ,… ,)Km r0 r0 r0 Am−1r0

Km m − 1

b ≈ = + qm − 1(A)A−1 xm x0 r0

●
●

13 / 32

30.07.25, 13:19Algorithms // MITP - Summer 25 - part 1 // July/August 2025

Page 15 of 33file:///Users/jacobfinkenrath/Documents/docs/teaching/MITP_Mainz_2025/MITP_lecture_1.html#29

Arnoldi methods

Arnoldi's method is an orthogonal projection onto

Arnoldi method is introduced as a method to reduce a dense matrix on a Hessenberg matrix:

Its based on writing:

with

the coefficients of the Hessenberg matrix can be calculated via Gram-Schmidt
orthogonalization

Algo - 1 :" 30 July 2025𝚝𝚑

Km

●

A = + = Vm + 1Vm VmHm wmeT
m H̄m

h[i][j] Hm

14 / 32

30.07.25, 13:19Algorithms // MITP - Summer 25 - part 1 // July/August 2025

Page 16 of 33file:///Users/jacobfinkenrath/Documents/docs/teaching/MITP_Mainz_2025/MITP_lecture_1.html#29

GMRES

Generalized Minimum Residual Method (GMRES) is a projection method based on

so that the residual is minimized over the space

Basic algorithm:

r0 = b-A*x0, beta = |$r0|$, v1=r0/beta # Starting conditions
forforforfor j=1,..&,m dodododo
 w = A *v[j] # Increase Krylov space j -) j+1

 forforforfor i=1,..&,j dodododo # Arnoldi Gram-Schmidt orthogonalization
 h[i,j] = (w,v[j]) # calculate elements of Hessenberg matrix
 w = w-h[i,j]*v[j] # orthogonalize w wrt v[j]
 end forforforfor

 h[j+1,j] = |$w|$ # lower diagonal of Hessenberg
 v[j+1] = w/h[j+1,j]
end forforforfor

Define Vm =[v[1],.,v[m]], H={h[i,j]}
Solve ym = argmin |$beta*e1 - H*y|$ #Impose Petrov-Garlekin condition (can be done via LU)
x0=x0+Vm*ym # update iterate

if is not sufficient, restart GMRES (if to large breakdown of orthogonality)

Algo - 1 :" 30 July 2025𝚝𝚑

K = and L = AKm Km

+x0 Km

x0 m

15 / 32

30.07.25, 13:19Algorithms // MITP - Summer 25 - part 1 // July/August 2025

Page 17 of 33file:///Users/jacobfinkenrath/Documents/docs/teaching/MITP_Mainz_2025/MITP_lecture_1.html#29

Krylov-solver methods

GMRES: and

requires calculation of in each iteration

converges for non-hermitian positive definite matrices

mathematical equivalent to GCR

FOM: and (Full Orthogonalization Method)

converges for positive definite hermitian matrices

mathematical equivalent to CG (Conjugate Gradient) solver

CG is an elegant form which utilize the orthogonality of hermitian matrices. Hessenberg
matrix becomes tri-diagonal resulting from the three-term Lanczos recurrence

CG is often the standart algorithm, but need a hermitian/symmetric matrix

more variants / Zoo of Krylov subspace solvers like BiCGstab, Block Krylov solvers,
communication avoiding variants ..

Algo - 1 :" 30 July 2025𝚝𝚑

K = Km L = AKm

● A ∗ v

●

●

K = Km L = Km

●

●

–

–

Dx = b ⇒ Dx = DbD†

16 / 32

30.07.25, 13:19Algorithms // MITP - Summer 25 - part 1 // July/August 2025

Page 18 of 33file:///Users/jacobfinkenrath/Documents/docs/teaching/MITP_Mainz_2025/MITP_lecture_1.html#29

Optimal methods

Kryloc subspace methods are all-duty solvers

"Optimal" methods for any application

fast (short-recurrence) solvers for many applications, like CG

Convergence dependents on conditioning of

in case of Conjugate Gradient solver

How to improve convergence of Krylov subspace methods ?

1. Preconditioning
2. Deflation

Algo - 1 :" 30 July 2025𝚝𝚑

●

●

● A

–

|| | ≤ 2 || | , κ =e(k) |A ()− 1κ−−√
+ 1κ−−√

k

e(0) |A
λmax(A)
λmin(A)

17 / 32

30.07.25, 13:19Algorithms // MITP - Summer 25 - part 1 // July/August 2025

Page 19 of 33file:///Users/jacobfinkenrath/Documents/docs/teaching/MITP_Mainz_2025/MITP_lecture_1.html#29

Scaling issues in Numerical Simulations

Numerical simulation of partial differential equations (PDEs)

Discretization of on lattice with spacing yields

Depending on PDE order and order of discretiation

Increasing accuracy of discretization ()

Performance of Krylov methods deteriorates when

 critical slowing down of linear solvers

Algo - 1 :" 30 July 2025𝚝𝚑

Lψ = ϕ

L a

Lx = f

●

κ(L) ∼ , σ ∈a−σ ℕ+

● a → 0

κ(L) → ∞ (a → 0)

a → 0

⟶

18 / 32

30.07.25, 13:19Algorithms // MITP - Summer 25 - part 1 // July/August 2025

Page 20 of 33file:///Users/jacobfinkenrath/Documents/docs/teaching/MITP_Mainz_2025/MITP_lecture_1.html#29

Preconditioning

Idea: Improve conditioning of in

instead of solving consider solving

with preconditioners , , so that

Consider the cases

: original setting

: and (ideal)

: hermitian but

In order to speed up convergence the preconditioner should

 should approximate and be cheap/ or lead to a good iteration count vs. work trade-off

Algo - 1 :" 30 July 2025𝚝𝚑

A Ax = b

● Ax = b

A y = bSl Sr Sl

x = ySr

Sl Sr κ(A) ≪ κ(A)Sl Sr

● S = I ⟹ SA = A

● S = A−1 ⟹ SA = I κ(SA) = 1

● S = A† ⟹ SA = AA† κ(SA) = κ(A)2

S

● S A−1

19 / 32

30.07.25, 13:19Algorithms // MITP - Summer 25 - part 1 // July/August 2025

Page 21 of 33file:///Users/jacobfinkenrath/Documents/docs/teaching/MITP_Mainz_2025/MITP_lecture_1.html#29

Preconditioning - GMRES

Preconditioned GMRES

if is constant, GMRES can be easily adapted
possible to modify also other solvers like CG, but here hermiticity has to be satisfied

r0 = S*(b-A*x0), beta = |$r0|$, v1=r0/beta # Starting conditions, modified by an application of S
forforforfor j=1,..&,m dodododo
 w = S* A *v[j] # Increase Krylov space j -) j+1
 # modified by application of S

 forforforfor i=1,..&,j dodododo # Arnoldi Gram-Schmidt orthogonalization
 h[i,j] = (w,v[j]) # calculate elements of Hessenberg matrix
 w = w-h[i,j]*v[j] # orthogonalize w wrt v[j]
 end forforforfor

 h[j+1,j] = |$w|$ # lower diagonal of Hessenberg
 v[j+1] = w/h[j+1,j]
end forforforfor

Define Vm =[v[1],.,v[m]], H={h[i,j]}
Solve ym = argmin |$beta*e1 - H*y|$ #Impose Petrov-Garlekin condition (can be done via LU)
x0=x0+Vm*ym # update iterate

Algo - 1 :" 30 July 2025𝚝𝚑

● S
●

20 / 32

30.07.25, 13:19Algorithms // MITP - Summer 25 - part 1 // July/August 2025

Page 22 of 33file:///Users/jacobfinkenrath/Documents/docs/teaching/MITP_Mainz_2025/MITP_lecture_1.html#29

Selection of preconditioners

Aims for the construction of preconditioners

1. to get speed-up
2. should be computational efficient, iteration count reduction vs work trade off

Classes of preconditioners:

splitting-bassed preconditioners
structural preconditioners
multi-grid preconditioners
domain decomposition preconditioners ...

Recap: Splitting methods

Jacobi: with
Gauss-Seidel: with
SOR: with

Algo - 1 :" 30 July 2025𝚝𝚑

S

S ≈ A−1

S

●
●
●
●

● = +x(k+1) x(k) D−1r(k) S = D−1

● = + (D + Lx(k+1) x(k))−1r(k) S = (D + L)−1

● = + (D + Lx(k+1) x(k) 1
ω)−1r(k) S = (D + L1

ω)−1

21 / 32

30.07.25, 13:19Algorithms // MITP - Summer 25 - part 1 // July/August 2025

Page 23 of 33file:///Users/jacobfinkenrath/Documents/docs/teaching/MITP_Mainz_2025/MITP_lecture_1.html#29

Nodes are odd or even

Ordering by odd-even

with diagonal and

, trivial
odd and even decoupled

Solve first even then odd

Now with , the solution of
 is given by

Odd-Even Reduction

Iteratively solving odd-
even preconditioner

If has constant diagonal
is easier than solving

Since is cheap (diagonal). Cost for
Cost for

Odd-even preconditioning

Discretizations on lattice with next neighbor coupling

Algo - 1 :" 30 July 2025𝚝𝚑

A = []
Aoo

Aeo

Aoe

Aee

Aoo Aee

● ooA−1
eeA−1

●

= Aee − Aeo ooAoeSc A−1

Ax = b

= ooyo A−1 bo

Solve = − AeoScxe be yo

= − ooAoexo yo A−1 xe

● = − AeoScxe be yo ⟹

● A κ() < κ(A)Sc ⟹ Sc
A

● ooA−1 ⇒ Sc ≈
A

22 / 32

30.07.25, 13:19Algorithms // MITP - Summer 25 - part 1 // July/August 2025

Page 24 of 33file:///Users/jacobfinkenrath/Documents/docs/teaching/MITP_Mainz_2025/MITP_lecture_1.html#29

Canonical injection

Restriction of onto

Restriction of onto

Domain Decomposition

Idea:

Split the computational domain into subdomains

Solve system interatively on each subdomain

Algo - 1 :" 30 July 2025𝚝𝚑

● Bi

●

– Ij

=Ij ei eBj
i

– x Bj

= xxBj I†
j

– A Bj

= AABj I†
j Ij

23 / 32

30.07.25, 13:19Algorithms // MITP - Summer 25 - part 1 // July/August 2025

Page 25 of 33file:///Users/jacobfinkenrath/Documents/docs/teaching/MITP_Mainz_2025/MITP_lecture_1.html#29

Additive Schwarz:

Solve each block independently from each
other:

forforforfor k=0,1,..& dodododo
 r[k] = b - A*x[k]
 forforforfor j=1,2..&,nb dodododo
 #applied on Block j
 x[k+1] = x[k] + inv(Bj)r[k]
 end forforforfor
end forforforfor

Block Jacobi-method
embarrassingly parallel

Multiplicative Schwarz

Update residual during iteration

Block-Gauss-Seidel-method
Sequential (coloring)
SAP is using only two kind of blocks (red-
black)

Schwarz methods in general are:

data parallel
computational parallel

Additive and Multiplicative Schwarz

forforforfor k=0,1,..& dodododo
 forforforfor j=1,2..&,nb dodododo
 # update residual before each block application
 r = b - Ax
 #applied on Block j
 x[k+1] = x[k] + inv(Bj)r[k]
 end forforforfor
end forforforfor

Algo - 1 :" 30 July 2025𝚝𝚑

●
●

●
● →
●

●
●

24 / 32

30.07.25, 13:19Algorithms // MITP - Summer 25 - part 1 // July/August 2025

Page 26 of 33file:///Users/jacobfinkenrath/Documents/docs/teaching/MITP_Mainz_2025/MITP_lecture_1.html#29

Multigrid

Algo - 1 :" 30 July 2025𝚝𝚑 25 / 32

30.07.25, 13:19Algorithms // MITP - Summer 25 - part 1 // July/August 2025

Page 27 of 33file:///Users/jacobfinkenrath/Documents/docs/teaching/MITP_Mainz_2025/MITP_lecture_1.html#29

Given

Iterative method ("smoother")

Needed

Hierarchy of systems of levels (finest , coarsest
level)

inter-grid transfer operators

Smoother: "High modes" Interpolation: "Low modes"

(Algebraic) Multigrid

Algo - 1 :" 30 July 2025𝚝𝚑

● Ax = b

● S

● L + 1 l = 0
l = L

= , l = 0,… , LAlxl bl

●

Projection from l to l+1: : →Pl,l+1 ℂnl+1 ℂnl

Restriction from l+1 to l: : →Pl+1,l ℂnl ℂ +1nl

: →Sl ℂnl ℂnl : →Pl,l+1 ℂnl+1 ℂnl

26 / 32

30.07.25, 13:19Algorithms // MITP - Summer 25 - part 1 // July/August 2025

Page 28 of 33file:///Users/jacobfinkenrath/Documents/docs/teaching/MITP_Mainz_2025/MITP_lecture_1.html#29

Generic Multigrid Algorithm -

Preconditioner with smoothing and coarse-grid correction

ifififif l=L thenthenthenthen
 x_L = inv(A_L) b_L
elseelseelseelse
 x_l = 0
 forforforfor i=1, ..& v1 dodododo
 x_l = Sl(x_l,b_l) # Pre-smoothing

 end forforforfor

 x_l+1 = MG(A_l+1, R_l,l+1(b_l-Ax_l)
 x_l = x_l + P_l,l+1 * x_l+1 # Coarse-grid corrections

 forforforfor i=1, ..& v2 dodododo
 x_l = Sl(x_l,b_l) # Post-smoothing
 end forforforfor
end ifififif

The preconditioner might be an iterative process by itself

 will change in every iteration. There is no longer a Krylov subspace defined by

 algorithmic have to be modified, namely flexible

Algo - 1 :" 30 July 2025𝚝𝚑

M (,)Gl Al bl

● S

(SA, b) = (n, SAb, (SA b,… , (SA b)Kl)2)k−1

→

27 / 32

30.07.25, 13:19Algorithms // MITP - Summer 25 - part 1 // July/August 2025

Page 29 of 33file:///Users/jacobfinkenrath/Documents/docs/teaching/MITP_Mainz_2025/MITP_lecture_1.html#29

Flexible GMRES

Preconditioner similar to before, but the projection of the iterate has to be modified

whilewhilewhilewhile not converged dodododo
 r0 = S(b-A*x0), beta = |$r0|$, v1=r0/beta # modified starting conditions
 forforforfor j=1,..&,m dodododo
 z[j] = Sj * y[j] # application of Preconditioner
 w = A *z[j] # Increase Krylov space j -) j+1

 forforforfor i=1,..&,j dodododo # Arnoldi Gram-Schmidt orthogonalization
 h[i,j] = (w,v[j]) # calculate elements of Hessenberg matrix
 w = w-h[i,j]*v[j] # orthogonalize w wrt v[j]
 end forforforfor

 h[j+1,j] = |$w|$ # lower diagonal of Hessenberg
 v[j+1] = w/h[j+1,j]
 end forforforfor

 Define Zm =[z[1],.,z[m]], H={h[i,j]} # Use Z here instead of v
 Solve ym = argmin |$beta*e1 - H*y|$ #Impose Petrov-Garlekin condition (can be done via LU)
 x0=x0+Zm*ym # update iterate
end whilewhilewhilewhile

Note: GCR doesn't need to be modified to be flexible, flexible per definition

note that inexact deflation can be converted into a 2 lvl-MG with a GCR

Algo - 1 :" 30 July 2025𝚝𝚑

Zm

●

28 / 32

30.07.25, 13:19Algorithms // MITP - Summer 25 - part 1 // July/August 2025

Page 30 of 33file:///Users/jacobfinkenrath/Documents/docs/teaching/MITP_Mainz_2025/MITP_lecture_1.html#29

Computational cost of conventional solvers
rapidly grows with , system is
quickly ill conditioned

Multi-grid solvers are pratically solving this
issues

lead to a speed up of O(10) - O(100)

Challenges

multi-grid solver are parameter rich

some are performance critical like
blocking size, projection size

some are less performance critical
smoothing applications, iterations

Usually main computational challenge:

[Luscher, 2007]

Conclusion and outlook

multi-grid is computational limited by

less scalable (coarse grid boundary surface becomes large)
memory bound

... more ..

Algo - 1 :" 30 July 2025𝚝𝚑

●
(amq)−1

●

–

●
–

●
–

●
●

29 / 32

30.07.25, 13:19Algorithms // MITP - Summer 25 - part 1 // July/August 2025

Page 31 of 33file:///Users/jacobfinkenrath/Documents/docs/teaching/MITP_Mainz_2025/MITP_lecture_1.html#29

Reference

Gustavo Ramirez Lattice Practice 2024 which is partly based also on Input by Andreas
Frommer and Karsten Kahl

Yousef Saad, Iterative Methods for Sparse Linear systems, Society for Industrial and Applied
Mathematics, 2nd edition, 2003.

A. Greenbaum, Iterative Methods for Solving Linear Systems, volume 17 of Frontiers in
Applied Mathematics. Society for Industrial and Applied Mathematics, 1997.
M. Hestenes and E. Stiefels. Methods of conjugate gradients for solving linear systems. Journal
of Research of the National Bureau of Standards, Section B, 49, 1952.
C. Jagels and L. Reichel. A fast minimal residual algorithm for shifted unitary matrices.
Numer. Linear Algebra Appl., 1, 1994.

Algo - 1 :" 30 July 2025𝚝𝚑

●

●

●

●

●

30 / 32

30.07.25, 13:19Algorithms // MITP - Summer 25 - part 1 // July/August 2025

Page 32 of 33file:///Users/jacobfinkenrath/Documents/docs/teaching/MITP_Mainz_2025/MITP_lecture_1.html#29

Notations

Linear systems of equations:

Euclidian inner product:

Adjoint of w.r.t

For complex matrices: hermitian , For real matrices: is symmetric

 hermitian positive definite

Algo - 1 :" 30 July 2025𝚝𝚑

aij = , i = 1,… , n∑
j

n
xj bi

Ax = b, A ∈ , x ∈ , b ∈ℂn×n ℂn ℂn

⟨x, y = x =⟩2 y† ∑
n

i=1
ȳixi

A† A ⟨…⟩2

⟨Ax, y = ⟨x, y⟩2 A† ⟩2

A ⇔ = AA† A ⇔
= AAT

A

= A and Ax > 0, x ≠ 0A† x†

31 / 32

30.07.25, 13:19Algorithms // MITP - Summer 25 - part 1 // July/August 2025

Page 33 of 33file:///Users/jacobfinkenrath/Documents/docs/teaching/MITP_Mainz_2025/MITP_lecture_1.html#29

Preconditioners - Summary

Preconditioning improves convergence if

There is a wide variety of preconditioners available

most of them require knowledge about or its origins

Goals when constructing preconditioners are

 and needs to be computatinal affordable

In general Preconditioning makes Krylos subspace methods more robust

Reducing helps controlling the error , since

: If results based on can be unreliable

: If a preconditioner becomes necessary

Algo - 1 :" 30 July 2025𝚝𝚑

κ(SA) ≪ κ(A)

● A

S

● S ≈ A−1 S

● κ(A) e(k)

||e| ≤ cκ(A ||r||2)−1 |2

⟹ κ(A) ≫ 1 ||r||2

⟹ κ(A) ≫ 1

32 / 32

