Algorithms

MITP - Summer school July 29,30, 2025

J. Finkenrath

MITP - Summer School

Outline - Part 0

- Part 0
 - Markov Chain Monte Carlo
 - Hybrid Monte Carlo algorithm
- Part 1
 - Linear solvers, Krylov subspace solvers
 - Preconditioners, smoothers and coarse grid
- Part 3
 - Fermions in simulations

Parts of the talk is based on Mattia Della Brida's constribution from 2021

Goal: Evaluation of pathintegral

Compute

$$=rac{1}{Z}\int D\varphi e^{-S(\varphi)}O(\varphi)$$
 $D\varphi=\prod_{i=1}^{M}d\varphi_{i}$ e.g. $\varphi=U,\overline{\psi},\psi$

• Deterministic integration methods not feasible!

Current lattice QCD simulations can have $M = O(10^9)$

 Monte Carlo: evaluates integral by sampling the integrand at points selected via probability under the integration measure

Basic idea

1. Generate sequence of field configurations with probability

$$P(\phi^{(t)}) = \frac{1}{Z}e^{-S(\phi^t)}$$

1. Evaluate

$$\overline{O} = \frac{1}{N} \sum_{t=1}^{N} O(\phi^{(t)})$$

Monte Carlo integration

Consider: an integral of dimension d

$$\langle f \rangle = \int_{D} dx \ f(x)$$
 $x = (x_1, ..., x_d) \ D = [0, 1]^d$:

Compute: An estimate is given by

$$\overline{f}_N = \frac{1}{N} \sum_{k=1}^{N} f(x^{(k)}) \qquad x^{(k)} = (x_1^{(k)}, \dots x_d^{(k)})$$

where $\chi_i^{(k)}$ are random numbers uniformly distributed within [0,1] . This requires a solid random number generator.

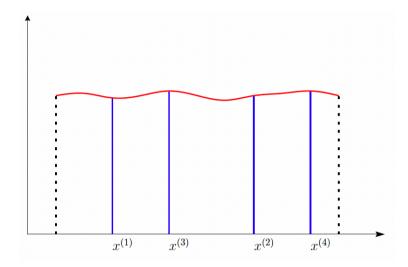
Central limit theorem:

$$P(\overline{f}_N) \overset{N \to \infty}{\propto} exp \left[-\frac{1}{2} \frac{(\overline{f}_N - \langle f \rangle)^2}{var(f)/N} \right] \quad \text{with} \quad var(f) = \langle (f - \langle f \rangle)^2 \rangle$$

with
$$\overline{f}_N - \langle f \rangle = (O)(1/\sqrt{N})$$

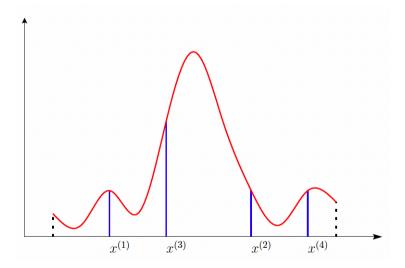
- Uncertainty is of statistical nature and rather not systematic
- Error scales as $1/\sqrt{N}$ independently of the dimension d (not the case for other integral approximations like Simpson-rule)
- Rate of convergence depends on var(f)

Monte Carlo integration



for approximately constant functions;

here: var(f) is small



in contrast:

Sampling of more complicated functions is more difficult

here:

Using uniformly distributed random numbers can easily require large values of N to reach a good precision.

Consider: adding a distribution p(x) which can be sampled

$$\langle f \rangle = \int_D dx \, p(x) \left[\frac{f(x)}{p(x)} \right] = \langle g \rangle_p \quad \text{with} \quad p(x) > 0 \quad \text{and} \quad \int_D dx \, p(x) = 1$$

with

$$g(x) = \frac{f(x)}{p(x)}$$

Compute

$$\overline{g}_{N} = \frac{1}{N} \sum_{k=1}^{N} g(x(k))$$
 $x^{(k)} = (x_{1}^{(k)}, ..., x_{d}^{(k)})$

with $\boldsymbol{x}^{(k)}$ random vectors distributed according to $\boldsymbol{p}(\boldsymbol{x})$

Central limit theorem: is modified $(\bar{f}_N \to \bar{g}_N \text{ and } \nu \alpha r(f) \to \nu \alpha r(g))$

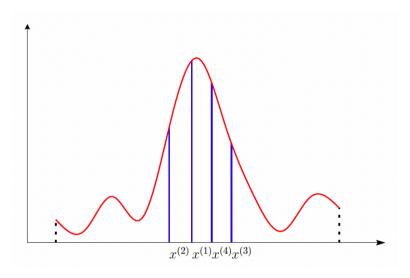
$$P(\bar{g}_N) \overset{N \to \infty}{\propto} exp \left[-\frac{1}{2} \frac{(\bar{g}_N - \langle f \rangle)^2}{var(g)/N} \right] \quad \text{with} \quad var(f) = \langle (g - \langle f \rangle)^2 \rangle_p$$

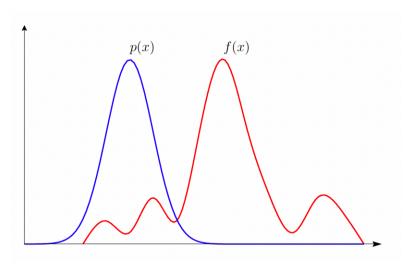
with

$$\langle f \rangle = \overline{g}_N \pm \sigma(\overline{g}_N)$$
 and $\sigma(\overline{g}_N) = \sqrt{var(g)/N}$

Choice of p(x) can significantly affect convergence:

- however optimal p(x) = f(x) would solve the integral (trivial)
- Mostly relatively simple distributions p(x) can be directly sampled via inverse transform or hitand-miss, which decrease efficiency





Effective

A better sampling distribution allows for sampling more frequently the regions with larger contribution to the integral

 \Rightarrow faster convergence

However

If the sampling distribution and the function to integrate have little overlap,

there is an overlap problem

 \Rightarrow very ineffective sampling

Application to lattice field theory:

$$\langle O \rangle = \int D \Phi P_S(\Phi) O(\Phi) \qquad P_S(\Phi) = \frac{1}{Z} e^{-S(\Phi)}$$

- Sharply peaked around configurations of minimal action
- Far too **complicated distribution** for a direct sampling (large dimensionality, complex action S, normalisation unknown)

Require a method which can handle relative probabilities

- to avoid computation of partion function Z / normalization
- Usually done independently of O(x) but is not necessarily optimal for all cases
 - could result in some large variances
- Using Monte Carlo method requires $S(\phi)$ to be real (and bounded)
 - Otherwise results in sign-problem (unknown to solve without an overlap problem)

Markov Chain Monte Carlo

To build a method with relative probabilities: (discrete) Markov chain is a sequence of random variables

$$\varphi^{(0)} \to \varphi^{(1)} \to \cdots \to \varphi^{(t)} \to \cdots \cdots \to \varphi^{(N)} \qquad \varphi(t) \in \Omega \leftarrow state \ space$$

which probability of extraction is given by a transition probability $T(\varphi \to \varphi')$ (t is referred to as Markov time)

Properties

1. Markovian

$$T(\varphi \to \varphi')$$
 only depends on the current (φ) and future (φ') state

2. Time-homogeneous

$$T(\varphi \to \varphi')$$
 $\,$ is constant along the chain, i.e. t-independent

3. Probability (density)

$$\int D\varphi' T(\varphi \to \varphi') = 1 \quad \text{and} \quad T(\varphi \to \varphi') >= 0$$

4. Ergodic (& irreducible)

$$T(\phi \rightarrow \phi') > 0 \quad \forall \phi, \phi' \in \Omega$$

A chain is completely specified by the starting distribution $P_0(\varphi^{(0)})$ and transition probability $T(\varphi \to \varphi')$

Why Markov chains?

Now we can define a stability condition:

$$P_{n+1}(\varphi') = (TP_n)(\varphi') = \int D\varphi P_n(\varphi) T(\varphi \to \varphi')$$

with $P^{(n)} \in P_{\Omega}$ where T is a linear map: $T: H \to H$ and H is the linear space of real functions on Ω .

Equilibrium distribution:

Given an ergodic Markov chain with transition probability T, the limit

$$\underset{t\to\infty}{\lim}P^{(t)}=\underset{t\to\infty}{\lim}T^{t}P^{(0)}=\Pi\in P_{\Omega}$$

exits, is unique and independent on $P^{(0)}$ in P_{Ω} . In particular, Π is the unique fixed point of the chain, i.e. $(TP) = P \Leftrightarrow P = \Pi$.

Remark:

This is the consequence that T has a unique eigenvalue $\lambda_0=1$ and

$$|\lambda_0>|\lambda_1|\geqslant |\lambda_2|\geqslant ..., \ where \ T\nu_n=\lambda_n\nu_n \ and \ \nu_0=\Pi$$

$$P^{(t)} = \Pi + \sum_{n>0} c_{t,n} (\lambda_n)^n \nu_n \stackrel{t\to\infty}{=} \Pi + O(e^{-t/\tau^{exp}}) \quad \tau^{exp} = 1/ln|\lambda_1|$$

Detailed balance condition

How can we find a T that has the desired distribution T as equilibrium distribution ?

If T is ergodic, a sufficient (but not necessary) condition is detailed balance

$$\Pi(\varphi')T(\varphi'\to\varphi)=\Pi(\varphi)T(\varphi\to\varphi')$$

Proof: Integrate both sides over φ and use $\int D\varphi T(\varphi' \to \varphi) = 1$.

This gives the stability or fix point condition

$$\Pi(\Phi') = (T\Pi)(\Phi')$$

Since T is ergodic, its fixed point is unique and corresponds to its equilibrium distribution

Remarks:

- If T satisfies detailed balance or stability but is not ergodic, the convergence for large t is not guaranteed
- Transition probabilities can be combined:

$$T = T_1 \circ T_2 \circ \dots$$

with T_i not ergodic but satisfies detailed balance and such that T is ergodic. T will automatically satisfy the stability condition and converge to Π .

Metropolis-Hastings algorithm

A simple way to satisfy detailed balance is given by

$$T(\phi \to \phi') = P_C(\phi \to \phi')P_A(\phi \to \phi')$$

- A candidate ϕ' is proposed from ϕ with probability P_C
- ϕ' is accepted as the next step in the chain with probability P_A
- If ϕ' is rejected, ϕ is the next element (repeated in the chain)

Acceptance probability: We can ensure detailed balance for any choice of P_C by taking

$$P_{A}(\phi \to \phi') = \min \left[1, \frac{\Pi(\phi')P_{C}(\phi' \to \phi)}{\Pi(\phi)P_{C}(\phi \to \phi')}\right]$$

If $P_C(\phi \to \phi') = P_C(\phi' \to \phi)$ (symmetric proposal)

$$P_A(\phi \to \phi') = \min \left[1, \frac{\Pi(\phi')}{\Pi(\phi)}\right]$$

Other definitions of P_A are in principle possible but have lower acceptance.

Metropolis-Hastings algorithm

Remarks:

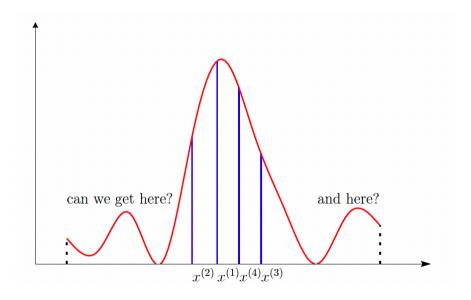
- only the relative probabilities $\Pi(\phi')/\Pi(\phi)$ are needed to construct T
 - \Rightarrow no need for normalization of Π
- We cannot use Markov chains to compute integrals directly, only ratios

$$\langle O \rangle = \frac{\int D\varphi \, \Pi(\varphi)O(\varphi)}{\int D\varphi \, \Pi(\varphi)}$$

In practice there are challenges

in assuring that T is ergodic

→ this can lead to improper sampling and biased results



Simulating lattice ϕ^4 -theory

Action

$$S = \sum_{x} \left[\sum_{\mu=0}^{D-1} \frac{1}{2} \left(\frac{\varphi(x + \hat{\mu}) - \varphi(x)}{\alpha} \right) + \frac{m_0^2}{2} \varphi^2(x) + \frac{g_0}{4!} \varphi^4(x) \right]$$

Accept-reject step

- 1. Set $\phi(x) = \phi_0(x)$
- 2. Propose $\Delta > 0$, $r \in [0, 1)$ and $\varphi'(x) = \varphi(x) + \Delta(r \frac{1}{2})$
- 3. Accept ϕ' or keep ϕ according to

$$P_A = \min \left[1, e^{-\delta S} \right]$$
 where $\delta S = S(\phi') - S(\phi)$ only involves $\phi'(x), \phi(x), \phi(x \pm \hat{\mu})$

- 4. Repeat 2. & 3. for all points x, which defines a **sweep**
- 5. Skip k sweeps (thermalization) so that

$$P(\varphi^{(t)}) \propto e^{-S(\varphi^{(t)})} \quad \Rightarrow \overline{O} = \frac{1}{N} \sum_{t=k+1}^{N+k} O(\varphi^{(t)}) \quad \Rightarrow \overline{O} = \langle O \rangle + O(1/\sqrt{N})$$

Autocorrelations

Subsequent states in a Markov chain are correlated

$$\langle\langle O^{(k)}O^{(l)}\rangle\rangle\neq\langle\langle O^{(k)}\rangle\rangle\langle\langle O^{(l)}\rangle\rangle \qquad O\equiv O(\varphi^{(k)}) \qquad \quad \langle\langle\cdot\rangle\rangle\equiv \text{avg. indep. chains}$$

The error on time-averages

$$\sigma^2(\overline{O}) = \langle \langle (\overline{O} - \langle O \rangle)^2 \rangle \rangle = \frac{1}{N^2} \sum_{k,l=1}^N \langle \langle O^{(k)} O^{(l)} \rangle \rangle - \langle O \rangle^2 \qquad [\langle \langle O^{(k)} \rangle \rangle = \langle O \rangle]$$

can be written as $\sigma^2(\overline{O}) = \frac{2\tau^{\text{int},O} var(O)}{N}$ with $var(O) = \langle O^2 \rangle - \langle O \rangle^2$

Integrated autocorrelation time is given by

$$\tau^{\text{int,O}} = \frac{1}{2} \left[1 + 2 \sum_{t=1}^{N-1} \frac{\Gamma^{(O)}(t)}{\Gamma^{(O)}(0)} \right]$$

and the autocorrelation function $\Gamma^{(O(t))} = \langle \langle O^{(t+i)}O^{(i)} \rangle \rangle - \langle O \rangle^2$

- Error scales via $N/2\tau^{int}$
- for time-homogeneous chains the function only depends on the distance in Markov time

Autocorrelations

Spectral decomposition

$$\Gamma^{(O)}(t) = \sum_{n>0} b_{n,O} e^{-t/\tau_n} \qquad \tau_n = -1/\ln|\lambda_n| \qquad [\lambda \text{ eignv. of T}]$$

- τ_n only depends on the properties of the Markov chain $\Rightarrow \tau^{exp} = \tau_1$ is the "slowest" mode to decorrelate
- $b_{n,O}$ determines the coupling of O to the n-th mode \Rightarrow it can vary significantly among observables

Estimate of the autocorrelation function

$$\overline{\Gamma}^{(O)}(t) = \frac{1}{N-t} \sum_{i=1}^{N-t} [(O^{(i+t)} - \overline{O})(O^{(i)} - \overline{O})]$$

Estimate of the integrated autocorrelation time

Relative error on the autocorrelation function grows exponentially ightarrow we must choose a cutoff W

$$\tau^{\text{int,O,W}} = \frac{1}{2} \left[1 + 2 \sum_{t=1}^{W} \frac{\Gamma^{(O)}(t)}{\Gamma^{(O)}(0)} \right]$$

and find a compromise between statistical and systematic error

Autocorrelations

- Autocorrelations (AC) are unavoidable in Markov Chain Monte Carlo (MCMC)
- A proper estimate of AC is curical
 - no proper AC estimate \rightarrow no proper error \rightarrow no proper result

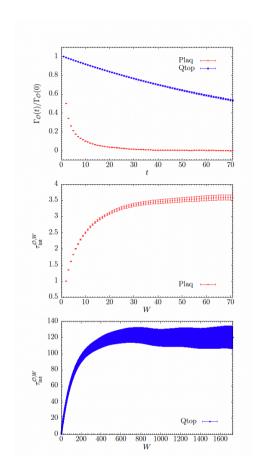
Ideal:

- Length of simulation > $O(100) * \tau^{exp}$
 - For thermalization $O(10) * \tau^{exp}$

but resources are compute and time limited

Risks: incomplete thermalization:

- wrong sampling and a biased result
- wrong estimation of AC, underestimation of errors



Estimation of τ^{exp} :

Look for the observable O^{slow} with the largest AC, i.e. is very sensitive to slow modes: take $\tau^{exp} \sim \tau^{int,O^{slow}}$

Simulating Lattice QCD

Feynman Pathintegral

$$\langle O \rangle = \frac{1}{Z} \int DU \, D\overline{\psi} \, D\psi \, e^{-Sg[U]} e^{-\overline{\psi}D[u]\psi} \cdot O[U, \overline{\psi}, \psi]$$
$$= \frac{1}{Z} \int DU e^{-Sg[U]} \det(D[U]) \cdot O[U, \overline{\psi}, \psi]$$

- pure gauge theory: quenched simulation with detD = 1
- ullet Action local: requires O(1) operations for a single link U update
 - Heat-bath
 - Overrelaxation
- Action non-local: requires O(V) operations for a single link update
 - Global update
- Global update must be coherent otherwise

$$\delta S \propto V \implies P_A \propto exp(-\delta S) \sim 0$$

Hybrid Monte Carlo

Add auxiliarry momentas:

$$\pi(\mathbf{x}, \mathbf{\mu}) = \mathsf{T}^{\mathfrak{a}} \pi^{\mathfrak{a}}(\mathbf{x}, \mathbf{\mu}) \in \mathfrak{su}(3) \qquad (\pi, \pi) = \sum_{\mathbf{x}, \mathbf{\mu}, \mathbf{a}} |\pi^{\mathfrak{a}}(\mathbf{x}, \mathbf{\mu})|^{2}$$

Hamiltonian system:

$$\begin{split} \langle O \rangle &= \frac{1}{Z} \int DUD\pi \, e^{-S[U]} e^{-(\pi,\pi)/2} \qquad \text{with} \qquad \int D\pi e^{-(\pi,\pi)/2} = 1 \\ &= \frac{1}{Z} \int DUD\pi \, e^{-H[\pi,U]} \qquad \text{with} \qquad H = \frac{1}{2}(\pi,\pi) + S[U] \end{split}$$

Now, we can use Molecular dynamics to update:

$$U(x, \mu) \rightarrow U(x, \mu)(t)$$
 $\pi(x, \mu) \rightarrow \pi(x, \mu)(t)$

using Hamiltons equations: $\partial_t U(x,t) = \pi(x,\mu) U(x,\mu)$ and $\partial_t \pi(x,\mu) = -F(x,\mu)$ with

$$F(x,\mu)^{\mathfrak{a}} = \mathfrak{d}_{x,\mu} S[U] \qquad \text{and} \qquad [\mathfrak{d}^{\mathfrak{a}}{}_{x,\mu} U(y,\nu) = \delta_{xy} \, \delta_{\mu\nu} T^{\mathfrak{a}} U(x,\mu)]$$

Note that $P_H \propto exp[-H]$ and $P_S \propto exp[-S]$ are equivalent for sampling O(U)

Hybrid Monte Carlo

Ideal HMC algorithm

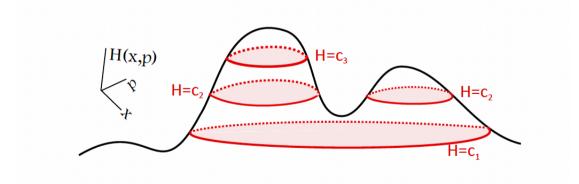
- 1. Start from a gauge-field U(0)
- 2. Sample a momentum field P(0) from the Gaussian distribution

$$P_{\pi} = e^{(\pi,\pi)/2}/Z$$

3. Solver Hamilton equations for a time τ

$$(\pi(0), U(0)) \to (\pi(\tau), U(\tau))$$

4. Repeat 2. and 3. taking U(0) = U(t)



Hybrid Monte Carlo

Ergodicity:

First step is given by a heat-bath for the momenta's

$$P_{\pi}P_{H}=P_{H}$$

but the step is not ergodic in the total phase-space (only in the momentum part)

Second step is given by the Hamilton evolution

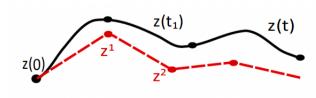
$$\mathsf{P}_{\mathsf{MD}}((\pi,\mathsf{U})\to(\pi',\mathsf{U}'))=\delta(\pi'-\pi(\tau))\delta(\mathsf{U}'-\mathsf{U}(\tau))$$

it follows $P_{MD}P_H = P_H$ but is also not ergodic (H = const.)

However, the combination of first and second step is assumed to be ergodic $T=(P_{\text{MD}}P_{\pi})$ has a fixed point and P_H is equilibrium distribution

In practice

- Hamilton equations can not be solved exactly (use numerical integration)
- H is not conserved (bias in equilibrium distribution)



Hybrid Monte Carlo on the computer

HMC algorithm [Duane et al. 87]

- 1. Start from a gauge-field U(0)
- 2. Sample a momentum field P(0) from the Gaussian distribution

$$P_{\pi} = e^{(\pi,\pi)/2}/Z$$

3. Solve Hamilton equations numerically for a time t

$$(\pi^{(i)}, U^{(i)}) = (\pi(0), U(0)) \to (\pi(\tau), U(\tau)) = (\pi^{(f)}, U^{(f)})$$

4. Accept the configuration U' = U(t) with probability

$$P_A = min[1, e^{\delta H}]$$
 with $\delta H \equiv H(\pi^{(f)}, U^{(f)}) - H(\pi^{(i)}, U^{(i)})$

If reject: continue from the initial state with U' = U(0)

5. Repeat 2. - 4. taking U(i) = U' and iterate

Hybrid Monte Carlo on the computer

- The numerical solution of Hamilton equations is used as a proposal in a Metropolis step
- the accept-reject step guarantees that PH is the equilibrium distribution, even if

$$\delta H \neq 0$$

- For the correctness of the HMC, the numerical integrator must preserve two **key properties** of Hamilton dynamics
 - Time-reversibility

$$\mathsf{P}_{\mathsf{MD}}((\pi,\mathsf{U}) o (\pi',\mathsf{U}')) = \mathsf{P}_{\mathsf{MD}}((-\pi',\mathsf{U}') o (-\pi,\mathsf{U}))$$

this guarantes a symmetric proposal

- Phase-space measure preservation

$$D\pi(0) DU(0) = D\pi(\tau)DU(\tau)$$

otherwise change of measure has to be taken into account.

In conjuction with time reversibility this guarantes detailed balance

Molecular Dynamics integration

Integrable steps: with time evolution operators involving $\hat{T} = T' \frac{\partial}{\partial q}$ and $\hat{S} = -S' \frac{\partial}{\partial p}$

$$e^{\tau \hat{T}}: f(p,q) \to f(p,q+\tau T'(p))$$

$$e^{\tau \hat{S}}: f(p,q) \to f(p-\tau S'(q),q)$$

Measure preserving/Volume preserving

$$J(e^{\tau \hat{T}}) = \frac{\partial e^{\tau \hat{T}}(p,q)}{\partial (p,q)} = \det \begin{bmatrix} 1 & \tau T''(p) \\ 0 & 1 \end{bmatrix} = 1$$

$$J(e^{\tau \hat{S}}) = \frac{\partial e^{\tau \hat{S}}(p,q)}{\partial (p,q)} = \det \begin{bmatrix} 1 & 0 \\ -\tau S''(q) & 1 \end{bmatrix} = 1$$

- $exp(\tau \hat{T})$ and $exp(\tau \hat{S})$ are exactly integrable for any τ
- can be combined to built symplectic integrators i.e. time-reversible and measure preserving

Leap Frog: $[I_{LPFR}(h)]^n = \left(e^{\frac{h}{2}\hat{S}}e^{h\hat{T}}e^{\frac{h}{2}\hat{S}}\right)^n$ which is reversible by construction and volume preserving

Integration error of symplectic integrators

Using Baker-Campbell-Hausdorff (BCH) formula

$$ln(e^{A}e^{B}) = (A + B) + \frac{1}{2}[A, B] + \frac{1}{12}([A, [A, B]] - [B, [A, B]]) + ...$$

the first error terms can be calculated:

$$\begin{split} [I_{LPFR}(h)]^n &= \left(exp[(\hat{T} + \hat{S})h - \frac{1}{24}([\hat{S}, [\hat{S}, \hat{T}]] + 2[\hat{T}, [\hat{S}, \hat{T}]])h^3 + O(h^5)] \right)^{\tau}/h \\ &= \left(exp[\tau((\hat{T} + \hat{S}) - \frac{1}{24}([\hat{S}, [\hat{S}, \hat{T}]] + 2[\hat{T}, [\hat{S}, \hat{T}]])h^2 + O(h^4))] \right) \\ &\equiv exp(\tau \tilde{H}) = exp(\tau(\hat{T} + \hat{S}) + O(h^2)) \end{split}$$

Higher order integrators can be contructed:

- by adding more terms with parameters and eliminating higher oder terms $O(h^n)$
- usually fourth order sufficient
- higher order integrator become more unstable and due to that not effective in regions with $P^{acc} \sim 90$

Shadow Hamiltonian

Shadow Hamiltonian of Leap frog: stays invariant under integration

$$\Delta H_{LPFR} = \frac{1}{24} [(S, (S, T))_p + 2(T, (S, T))_p] h^2 + O(h^4)$$
$$= -\frac{1}{24} (S'^2(q) - 2p^2 S''(q)) h^2 + O(h^4)$$

with

$$S'^2(q) = F^2$$
 and $S''(q) = F'$

Remarks:

ullet existence of a conserved Hamiltonian $ilde{H}$ along the trajectory means

$$\delta H = (H^{(f)} - \tilde{H}^{(f)}) - (H^{(i)} - \tilde{H}^{(i)}) = (\Delta H^{(f)} - \Delta H^{(i)}) = O(h^2)$$

 δH is independent from the trajectory length au

Generalization of MD integrators

Second minimal norm scheme (OMF2)

$$I_{\text{OMF2}}(h) = e^{\lambda h \hat{S}} e^{h/2\hat{T}} e^{(1-2\lambda)h \hat{S}} e^{h/2\hat{T}} e^{\lambda h \hat{S}}$$

with

$$\Delta H_{\text{OMF2}} = (c_1(\lambda)(S, (S, T))_p + c_2(\lambda)(T, (S, T))_p)h^2 + O(h^4)$$

Minimizing $c_1^2 + c_2^2$ gives $\lambda \approx 0.19$

Fourth order integrator (OMF4) with 11 stages

$$I_{\text{OMF4}}(h) = e^{r_0 h \hat{S}} \cdots e^{r_0 h \hat{S}}$$
 and $\Delta H_{\text{OMF4}} = O(h^4)$

Remarks

- Measuring $var(\Delta H)$ in simulations and minimizing it allows for a systematic optimization [Clark et al. 11]
- higher order integrator can be defined utilizing the force-gradient term (S,(S,T))
- variants are implemented in openQCD, see [Schaefers, J.F. et al. 2024]

Multiple time-scale integration

Multiple actions

$$H(p,q) = \frac{1}{2}p^2 + S_1(q) + S_2(q)$$
 $||F_2|| \ll ||F_1||$

If $Cost(F_2) \gg Cost(F_1)$ it may be convenient to use different step sizes h

Nested integrators [Sexton, Weingarten 92]

$$I(h) = e^{\frac{h}{2}\hat{S}_2} \left(e^{\frac{h}{2m}\hat{S}_1} e^{\frac{h}{m}\hat{T}} e^{\frac{h}{2m}\hat{S}_1} \right)^m e^{\frac{h}{2}\hat{S}_2}$$

Shadow Hamiltonian

$$\Delta H = [\alpha F_2^2 + \beta F_2' + \beta F_1 F_2 + \frac{1}{m^2} (\alpha F_1^2 + \beta F_1')]h^2 + O(h^4)$$

Remarks

- ullet Correlation term between F_1 and F_2 is not suppressed by m o efficiency depends on correlation between forces
- in lattice QCD, $||F_G|| \gg ||F_{F,1}||$ but it opposite for their cost \longrightarrow natural cost ordering

Some Remarks on MD integration

Gauge group integration

$$e^{h\widehat{T}}:U(x,\mu)\to e^{h\pi(x,\mu)}U(x,\mu)$$
 and $\pi(x,\mu)\to\pi(x,\mu)$

$$e^{h\hat{S}}: U(x,\mu) \to U(x,\mu)$$
 and $\pi(x,\mu) \to \pi(x,\mu) - hF(x,\mu)$

Measure preservation:

$$\langle e^{-\delta H} \rangle = 1 \quad \delta H = H^{(f)} - H^{(i)}$$

Reversibility:

$$\Delta = ||\mathbf{U}' - \mathbf{U}|| \quad (\pi', \mathbf{U}') = \mathbf{F} \circ [\mathbf{I}(\mathbf{h})]^{\mathbf{n}} \circ \mathbf{F} \circ [\mathbf{I}(\mathbf{h})]^{\mathbf{n}} (\pi, \mathbf{U})$$

with

$$F(\pi, U) = (-\pi, U)$$

is violated by rounding errors.

Remarks on MD integration

Acceptance probability:

$$P^{acc} = \langle \min[1, e^{-\delta H}] \rangle \stackrel{V \to \infty}{=} erfc(\sqrt{\sigma^2(\delta H)/8})$$

With

$$\sigma^2(\delta H) = \langle (\delta H)^2 \rangle - \langle \delta H \rangle^2 \propto Vh^{2n}$$

To tune the algorithm:

- Select stable integrator, see [Schaefers, J.F. et al. 2025]
- Minimize cost per trajectory at constant acceptance rate
 - Requires stable integrator

$$P^{acc} = const.$$
 \Longrightarrow $\sigma^2 = const.$ \Longrightarrow $h \propto V^{-1/2n}$

lacktriangle

References

• Part of the lecture is based on Mattia Della Brida's Lattice Practice Contribution of 2021

Other references:

- M. Lüscher, Computational Strategies in Lattice QCD, in Les Houches Summer School: Session 93: Modern perspectives in lattice QCD: Quantum field theory and high performance computing, pp. 331–399, 2, 2010, 1002.4232.
- A. D. Kennedy, Algorithms for dynamical fermions, hep-lat/0607038.
- S. Schaefer, Simulations with the hybrid Monte Carlo algorithm: Implementation and data analysis, in Les Houches Summer School: Session 93: Modern perspectives in lattice QCD: Quantum eld theory and high performance computing, pp. 401–422, 8, 2009.
- S. Schaefer, Simulation Algorithms, Lattice Practices 2018
- S. Schaefer, Status and challenges of simulations with dynamical fermions, PoS LATTICE2012 (2012) 001, [1211.5069].
- S. Duane, A. D. Kennedy, B. J. Pendleton and D. Roweth, Hybrid Monte Carlo, Phys. Lett. B 195 (1987) 216–222.
- A. Barp, F.-X. Briol, A. D. Kennedy and M. Girolami, Geometry and Dynamics for Markov Chain Monte Carlo, 1705.0289
- ALPHA collaboration, U. Wolff, Monte Carlo errors with less errors, ComputPhys. Commun. 156 (2004) 143–153, [hep-lat/0306017].
- ALPHA collaboration, S. Schaefer, R. Sommer and F. Virotta, Critical slowingdown and error analysis in lattice QCD simulations, Nucl. Phys. B 845 (2011) 93–119, [1009.5228].

Molecular Dynamics integration

Hamiltonian

$$H(p,q) = \frac{1}{2}p^2 + S(q) = T(p) + S(q)$$

Time-evolution operator

$$\exp\left(\tau \frac{d}{dt}\right) f(p(t), q(t)) = f(p(t+\tau), q(t+\tau))$$

(taylor expansion). We can write

$$exp\left(\tau\frac{d}{dt}\right) = exp\left(\tau\left[\frac{dp}{dt}\frac{\partial}{\partial t} + \frac{dq}{dt}\frac{\partial}{\partial t}\right]\right) = exp\left(\tau\left[-\frac{\partial H}{\partial q}\frac{\partial}{\partial t} + \frac{\partial H}{\partial p}\frac{\partial}{\partial t}\right]\right) \equiv exp\left(\tau\hat{H}\right)$$

Hamiltonian vector field

$$\hat{H} = \left[\frac{\partial H}{\partial p} \frac{\partial}{\partial t} - \frac{\partial H}{\partial q} \frac{\partial}{\partial t} \right] = \hat{T} + \hat{S}$$

It follows

$$exp(\tau \hat{H})H = H \quad \Rightarrow \quad \partial_t H = 0 \qquad \text{and} \qquad \hat{T} = T' \frac{\partial}{\partial q} \quad \text{and} \quad \hat{S} = -S' \frac{\partial}{\partial p}$$

Shadow Hamiltonian

The commutator of two Hamiltonian vector fields is a Hamiltonian vector field

$$\tilde{H} = \frac{\partial \tilde{H}}{\partial p} \frac{\partial}{\partial q} - \frac{\partial \tilde{H}}{\partial q} \frac{\partial}{\partial p}$$

Symplectic intergrators exactly conserve a shadow Hamiltonian

It holds

$$[\hat{H}_1, \hat{H}_2] = \hat{H}_3$$

and its follows

$$H_3 = (H_1, H_2)_p = \frac{\partial H_1}{\partial p} \frac{\partial H_2}{\partial q} - \frac{\partial H_1}{\partial q} \frac{\partial H_2}{\partial p}$$

Now to find the shadow Hamiltonian, replace the commutators with Poisson brackets

Shadow Hamiltonian of Leap frog: stays invariant under integration

$$\Delta H_{LPFR} = \frac{1}{24} [(S, (S, T))_p + 2(T, (S, T))_p] h^2 + O(h^4)$$