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MITP - Summer School

Outline - Part 0

Part 0

Markov Chain Monte Carlo

Hybrid Monte Carlo algorithm

Part 1

Linear solvers, Krylov subspace solvers

Preconditioners, smoothers and coarse grid

Part 3
Fermions in simulations

Parts of the talk is based on Mattia Della Brida's constribution from 2021
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Goal: Evaluation of pathintegral

Compute

Deterministic integration methods not feasible!

Current lattice QCD simulations can have 

Monte Carlo: evaluates integral by sampling the integrand at points selected via probability
under the integration measure

Basic idea

1. Generate sequence of field configurations with probability

1. Evaluate
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< O >= ∫Dϕ O(ϕ) Dϕ = d e. g. ϕ = U, , ψ1
Z

e−S(ϕ) ∏
i=1

M
ϕi ψ¯ ¯¯̄ ¯

●

M = O( )109

●

P( ) =ϕ(t) 1
Z

e−S( )ϕt

= O( )O¯ ¯¯̄ ¯
1
N ∑t=1

N
ϕ(t)
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Monte Carlo integration

Consider: an integral of dimension 

Compute: An estimate is given by

where  are random numbers uniformly distributed within  . This requires a solid random number generator.

Central limit theorem:

with 

Uncertainty is of statistical nature and rather not systematic
Error scales as  independently of the dimension  (not the case for other integral approximations like
Simpson-rule)
Rate of convergence depends on 
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d

⟨f⟩ = dx f(x) x = ( ,… , ) D = [0, 1 :∫D
x1 xd ]d

= f( ) = ( ,… )f¯¯̄N
1
N ∑

N

k=1
x(k) x(k) x(k)

1 x(k)
d

x(k)
i [0, 1]

P( ) exp [− ] with var(f) = ⟨(f − ⟨f⟩ ⟩f¯¯̄N ∝N→∞ 1
2

( − ⟨f⟩f¯¯̄N )2

var(f)/N
)2

− ⟨f⟩ = (O)(1/ )f¯¯̄N N−−√

●
● 1/ N−−√ d

● var(f)
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Uniformly sampling is effective

for approximately constant functions;

here:  is small

in contrast:

Sampling of more complicated functions is
more difficult

here:

Using uniformly distributed random
numbers can easily require large values of

 to reach a good precision.

Monte Carlo integration
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Importance sampling

Consider: adding a distribution  which can be sampled

with

Compute

with  random vectors distributed according to 
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p(x)

⟨f⟩ = dx p(x) [ ] = ⟨g with  p(x) > 0 and dx p(x) = 1∫D

f(x)
p(x)

⟩p ∫D

g(x) = f(x)
p(x)

= g( (k)) = ( ,… )ḡ̄̄̄N
1
N ∑

N

k=1
x x(k) x(k)

1 x(k)
d

x(k) p(x)
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Importance sampling

Central limit theorem: is modified (  and )

with

Choice of  can signicantly affect convergence:

however optimal  would solve the integral (trivial)
Mostly relatively simple distributions  can be directly sampled via inverse transform or hit-
and-miss, which decrease efficiency
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→f̄N ḡN var(f) → var(g)

P( ) exp [− ] with var(f) = ⟨(g − ⟨f⟩ḡN ∝N→∞ 1
2

( − ⟨f⟩ḡ̄̄̄N )2

var(g)/N
)2⟩p

⟨f⟩ = ± σ( ) and σ( ) =ḡ̄̄̄N ḡ̄̄̄N ḡ̄̄̄N var(g)/N− −−−−−−√
p(x)

● p(x) = f(x)
● p(x)
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Effective

A better sampling distribution allows for

sampling more frequently the regions with
larger contribution to the integral

 faster convergence

However

If the sampling distribution and the function
to integrate have little overlap,

there is an overlap problem

 very ineffective sampling

Importance sampling
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Importance sampling

Application to lattice field theory:

Sharply peaked around configurations of minimal action

Far too complicated distribution for a direct sampling (large dimensionality, complex action
, normalisation unknown )

Require a method which can handle relative probabilities

to avoid computation of partion function  / normalization
Usually done independently of  but is not necessarily optimal for all cases

could result in some large variances
Using Monte Carlo method requires  to be real (and bounded)

Otherwise results in sign-problem (unknown to solve without an overlap problem )
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⟨O⟩ = ∫Dϕ (ϕ)O(ϕ) (ϕ) =PS PS
1
Z

e−S(ϕ)

●

●
S

● Z
● O(x)

–
● S(ϕ)

–
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Markov Chain Monte Carlo

To build a method with relative probabilities: (discrete) Markov chain is a sequence of random variables

which probability of extraction is given by a transition probability  (t is referred to as Markov time)

Properties

1. Markovian

2. Time-homogeneous

3. Probability (density)

4. Ergodic (& irreducible)

A chain is completely specified by the starting distribution  and transition probability 
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→ → ⋯ → → ⋯ ⋯ → ϕ(t) ∈ Ω ← state spaceϕ(0) ϕ(1) ϕ(t) ϕ(N)

T(ϕ → )ϕ′

T(ϕ → ) only depends on the current (ϕ) and future ( ) stateϕ′ ϕ′

T(ϕ → ) is constant along the chain, i.e. t-independentϕ′

∫D T(ϕ → ) = 1 and T(ϕ → ) >= 0ϕ′ ϕ′ ϕ′

T(ϕ → ) > 0 ∀ϕ, ∈ Ωϕ′ ϕ′

( )P0 ϕ(0) T(ϕ → )ϕ′
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Why Markov chains ?

Now we can define a stability condition:

with  where  is a linear map:  and  is the linear space of real functions on .

Equilibrium distribution:

Given an ergodic Markov chain with transition probability T, the limit

exits, is unique and independent on  in . In particular,  is the unique fixed point of the chain, i.e.
 .

Remark:

This is the consequence that  has a unique eigenvalue  and
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( ) = (T )( ) = ∫Dϕ (ϕ)T(ϕ → )Pn+1 ϕ′ Pn ϕ′ Pn ϕ′

∈P(n) PΩ T T : H → H H Ω

= = Π ∈lim
t→∞

P(t) lim
t→∞

T tP(0) PΩ

P(0) PΩ Π
(TP) = P ⇔ P = Π

T = 1λ0

> | | ≥ | | ≥ … , where T = and = Πλ0 λ1 λ2 vn λnvn v0

= Π + ( Π + O( ) = 1/ln| |P(t) ∑
n>0

ct,n λn)nvn =t→∞ e−t/τexp τexp λ1
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Detailed balance condition

How can we find a  that has the desired distribution  as equilibrium distribution ?

If  is ergodic, a sufficient (but not necessary) condition is detailed balance

Proof: Integrate both sides over  and use .

This gives the stability or fix point condition

Since T is ergodic, its fixed point is unique and corresponds to its equilibrium distribution

Remarks:

If  satisfies detailed balance or stability but is not ergodic, the convergence for large  is not guaranteed

Transition probabilities can be combined:

with  not ergodic but satisfies detailed balance and such that  is ergodic.  will automatically satisfy the
stability condition and converge to .
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T Π

T

Π( )T( → ϕ) = Π(ϕ)T(ϕ → )ϕ′ ϕ′ ϕ′

ϕ ∫ Dϕ T( → ϕ) = 1ϕ′

Π( ) = (TΠ)( )ϕ′ ϕ′

● T t

●

T = ∘ ∘ … ,T1 T2

Ti T T
Π
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Metropolis-Hastings algorithm

A simple way to satisfy detailed balance is given by

A candidate  is proposed from  with probability 

 is accepted as the next step in the chain with probability 

If  is rejected,  is the next element (repeated in the chain)

Acceptance probability: We can ensure detailed balance for any choice of  by taking

If  (symmetric proposal)

Other definitions of  are in principle possible but have lower acceptance.
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T(ϕ → ) = (ϕ → ) (ϕ → )ϕ′ PC ϕ′ PA ϕ′

● ϕ′ ϕ PC

● ϕ′ PA

● ϕ′ ϕ

PC

(ϕ → ) = min [1, ]PA ϕ′ Π( ) ( → ϕ)ϕ′ PC ϕ′

Π(ϕ) (ϕ → )PC ϕ′

(ϕ → ) = ( → ϕ)PC ϕ′ PC ϕ′

(ϕ → ) = min [1, ]PA ϕ′
Π( )ϕ′

Π(ϕ)

PA
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In practice there are
challenges

in assuring that  is ergodic

 this can lead to improper
sampling and biased results

Metropolis-Hastings algorithm

Remarks:

only the relative probabilities  are needed to construct 

 no need for normalization of 

We cannot use Markov chains to compute integrals directly, only ratios
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● Π( )/Π(ϕ)ϕ′ T

⇒ Π

●

⟨O⟩ =
∫ Dϕ Π(ϕ)O(ϕ)

∫ Dϕ Π(ϕ)

T

→
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Simulating lattice -theory

Action

Accept-reject step

1. Set 

2. Propose  and 

3. Accept  or keep  according to

4. Repeat 2. & 3. for all points , which defines a sweep

5. Skip  sweeps (thermalization) so that
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ϕ4

S = [ ( ) + (x) + (x)]∑
x
∑
D−1

µ=0

1
2

ϕ(x + ) − ϕ(x)µ̂
a

m2
0

2
ϕ2 g0

4!
ϕ4

ϕ(x) = (x)ϕ0

Δ > 0, r ∈ [0, 1) (x) = ϕ(x) + Δ(r − )ϕ′ 1
2

ϕ′ ϕ

= min [1, ] where δS = S( ) − S(ϕ)  only involves (x), ϕ(x), ϕ(x ± )PA e−δS ϕ′ ϕ′ µ̂

x

k

P( ) ∝ ⇒ = O( ) ⇒ = ⟨O⟩ + O(1/ )ϕ(t) e−S( )ϕ(t)
O¯ ¯¯̄ ¯

1
N ∑

t=k+1

N+k
ϕ(t) O¯ ¯¯̄ ¯ N−−√
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Autocorrelations

Subsequent states in a Markov chain are correlated

The error on time-averages

Integrated autocorrelation time is given by

and the autocorrelation function 

Error scales via 

for time-homogeneous chains the function only depends on the distance in Markov time
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⟨⟨ ⟩⟩ ≠ ⟨⟨ ⟩⟩⟨⟨ ⟩⟩ O ≡ O( ) ⟨⟨⋅⟩⟩ ≡ avg. indep. chainsO(k)O(l) O(k) O(l) ϕ(k)

( ) = ⟨⟨( − ⟨O⟩ ⟩⟩ = ⟨⟨ ⟩⟩ − ⟨O [⟨⟨ ⟩⟩ = ⟨O⟩]σ2 O¯ ¯¯̄ ¯ O¯ ¯¯̄ ¯ )2 1
N2 ∑

N

k,l=1
O(k)O(l) ⟩2 O(k)

can be written as ( ) = with var(O) = ⟨ ⟩ − ⟨Oσ2 O¯ ¯¯̄ ¯ 2 var(O)τint,O

N
O2 ⟩2

= [1 + 2 ]τint,O 1
2 ∑

N−1

t=1

(t)Γ (O)

(0)Γ (O)

= ⟨⟨ ⟩⟩ − ⟨OΓ (O(t)) O(t+i)O(i) ⟩2

● N/2τint

●
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Autocorrelations

Spectral decomposition

 only depends on the properties of the Markov chain   is the "slowest" mode to
decorrelate

 determines the coupling of  to the -th mode  it can vary significantly among
observables

Estimate of the autocorrelation function

Estimate of the integrated autocorrelation time

Relative error on the autocorrelation function grows exponentially  we must choose a cutoff 

and find a compromise between statistical and systematic error
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(t) = = −1/ln| | [λ eignv. of T]Γ (O) ∑
n>0

bn,Oe−t/τn τn λn

● τn ⇒ =τexp τ1

● bn,O O n ⇒

(t) = [( − )( − )]Γ¯ ¯̄
(O) 1

N − t ∑
N−t

i=1
O(i+t) O¯ ¯¯̄ ¯ O(i) O¯ ¯¯̄ ¯

→ W

= [1 + 2 ]τint,O,W 1
2 ∑

W

t=1

(t)Γ (O)

(0)Γ (O)
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Autocorrelations (AC) are unavoidable in
Markov Chain Monte Carlo (MCMC)
A proper estimate of AC is curical

no proper AC estimate  no proper
error  no proper result

Ideal:

Length of simulation > 
For thermalization 

but resources are compute and time limited

Risks: incomplete thermalization:

wrong sampling and a biased result
wrong estimation of AC, underestimation of
errors

Autocorrelations

Estimation of :

Look for the observable  with the largest AC, i.e. is very sensitive to slow modes: take
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●

●
– →

→

● O(100) ∗ τexp

– O(10) ∗ τexp

●
●

τexp

Oslow

∼τexp τint,Oslow
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Simulating Lattice QCD

Feynman Pathintegral

pure gauge theory: quenched simulation with 

Action local : requires  operations for a single link U update

Heat-bath
Overrelaxation

Action non-local: requires O(V) operations for a single link update

Global update

Global update must be coherent otherwise
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⟨O⟩ = ∫DU D Dψ ⋅ O[U, , ψ] 1
Z

ψ¯ ¯¯̄ ¯ e−Sg[U]e− D[u]ψψ¯ ¯¯̄ ¯ ψ¯ ¯¯̄ ¯

= ∫DU det(D[U]) ⋅ O[U, , ψ]1
Z e−Sg[U] ψ¯ ¯¯̄ ¯

● detD = 1

● O(1)

–
–

●

–

●

δS ∝ V ⟹ ∝ exp(−δS) ∼ 0PA
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Hybrid Monte Carlo

Add auxiliarry momentas:

Hamiltonian system:

Now, we can use Molecular dynamics to update:

using Hamiltons equations:  and  with

Note that  and  are equivalent for sampling 
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π(x,µ) = (x,µ) ∈ su(3) (π, π) = | (x,µ)T aπa ∑
x,µ,a

πa |2

⟨O⟩ = ∫DUDπ with ∫Dπ = 1
1
Z e−S[U]e−(π,π)/2 e−(π,π)/2

= ∫DUDπ with H = (π, π) + S[U]1
Z e−H[π,U] 1

2

U(x,µ) → U(x,µ)(t) π(x,µ) → π(x,µ)(t)

U(x, t) = π(x,µ)U(x,µ)∂t π(x,µ) = −F(x,µ)∂t

F(x,µ = ∂x,µ S[U] and [ x,µU(y, ν) = δxy δµν U(x,µ)])a ∂a T a

∝ exp[−H]PH ∝ exp[−S]PS O(U)
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Hybrid Monte Carlo

Ideal HMC algorithm

1. Start from a gauge-field 

2. Sample a momentum field ) from the Gaussian distribution

3. Solver Hamilton equations for a time 

4. Repeat 2. and 3. taking 
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U(0)

P(0

Pπ = /Ze(π,π)/2

τ

(π(0), U(0)) → (π(τ), U(τ))

U(0) = U(t)
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In practice

Hamilton equations can not be solved exactly (use numerical
integration)

 is not conserved (bias in equilibrium distribution)

Hybrid Monte Carlo

Ergodicity:

First step is given by a heat-bath for the momenta's

but the step is not ergodic in the total phase-space (only in the momentum part)

Second step is given by the Hamilton evolution

it follows  but is also not ergodic 

However, the combination of first and second step is assumed to be ergodic  has a
fixed point and  is equilibrium distribution
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=PπPH PH

PMD((π, U) → ( , )) = δ( − π(τ))δ( − U(τ))π′ U′ π′ U′

PMD =PH PH (H = const. )

T = (PMD )Pπ
PH

●

● H
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Hybrid Monte Carlo on the computer

HMC algorithm [Duane et al. 87]

1. Start from a gauge-field 

2. Sample a momentum field  from the Gaussian distribution

3. Solve Hamilton equations numerically for a time 

4. Accept the configuration  with probability

If reject: continue from the initial state with 

5. Repeat 2. - 4. taking  and iterate
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U(0)

P(0)

Pπ = /Ze(π,π)/2

t

( , ) = (π(0), U(0)) → (π(τ), U(τ)) = ( , )π(i) U(i) π(f) U(f)

= U(t)U′

= min[1, ] with δH ≡ H( , ) − H( , )PA eδH π(f) U(f) π(i) U(i)

= U(0)U′

U(i) = U′
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Hybrid Monte Carlo on the computer

The numerical solution of Hamilton equations is used as a proposal in a Metropolis step

the accept-reject step guarantees that PH is the equilibrium distribution, even if

For the correctness of the HMC, the numerical integrator must preserve two key properties of
Hamilton dynamics

Time-reversibility

this guarantes a symmetric proposal

Phase-space measure preservation

otherwise change of measure has to be taken into account.

In conjuction with time reversibility this guarantes detailed balance
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●

●

δH ≠ 0

●

–

PMD((π, U) → ( , )) = PMD((− , ) → (−π, U))π′ U′ π′ U′

–

Dπ(0) DU(0) = Dπ(τ)DU(τ)
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Molecular Dynamics integration

Integrable steps: with time evolution operators involving  and 

Measure preserving/Volume preserving

 and  are exactly integrable for any 

can be combined to built symplectic integrators i.e. time-reversible and measure preserving

Leap Frog:  which is reversible by construction and volume

preserving
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=T̂ T ′ ∂
∂q = −Ŝ S′ ∂

∂p

: f(p, q) → f(p, q + τ (p))eτT̂ T ′

: f(p, q) → f(p − τ (q), q)eτŜ S′

J( ) = = det [ ] = 1eτT̂ ∂ (p, q)eτT̂

∂(p, q)
1
0

τ (p)T ″

1

J( ) = = det [ ] = 1eτŜ ∂ (p, q)eτŜ

∂(p, q)
1

−τ (q)S″
0
1

● exp(τ )T̂ exp(τ )Ŝ τ

●

[ (h) =ILPFR ]n ( )e
h
2
ŜehT̂ e

h
2
Ŝ

n

25 / 34



29.07.25, 11:17Algorithms // MITP - Summer 25 - part 0 // July 2025

Page 26 of 34file:///Users/jacobfinkenrath/Documents/docs/teaching/MITP_Mainz_2025/MITP_lecture_00.html#34

Integration error of symplectic integrators

Using Baker-Campbell-Hausdorff (BCH) formula

the first error terms can be calculated:

Higher order integrators can be contructed:

by adding more terms with parameters and eliminating higher oder terms 
usually fourth order sufficient
higher order integrator become more unstable and due to that not effective in regions with
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ln( ) = (A + B) + [A, B] + ([A, [A, B]] − [B, [A, B]]) + …eAeB 1
2

1
12

[ (h) = /hILPFR ]n (exp[( + )h − ([ , [ , ]] + 2[ , [ , ]]) + O( )])T̂ Ŝ 1
24

Ŝ Ŝ T̂ T̂ Ŝ T̂ h3 h5
τ

= (exp[τ(( + ) − ([ , [ , ]] + 2[ , [ , ]]) + O( ))])T̂ Ŝ
1
24

Ŝ Ŝ T̂ T̂ Ŝ T̂ h2 h4

≡ exp(τ ) = exp(τ( + ) + O( ))H̃ T̂ Ŝ h2

● O( )hn

●
●

∼ 90Pacc
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Shadow Hamiltonian

Shadow Hamiltonian of Leap frog : stays invariant under integration

with

Remarks:

existence of a conserved Hamiltonian  along the trajectory means

 is independent from the trajectory length 
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Δ = [(S, (S, T) + 2(T, (S, T) ] + O( )HLPFR
1
24

)p )p h2 h4

= − ( (q) − 2 (q)) + O( )1
24

S′2 p2S″ h2 h4

(q) = and (q) =S′2 F2 S″ F′

● H̃

δH = ( − ) − ( − ) = (Δ − ) = O( )H(f) H̃(f) H(i) H̃(i) H(f) ΔH(i) h2

δH τ
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Generalization of MD integrators

Second minimal norm scheme (OMF2)

with

Minimizing  gives 

Fourth order integrator (OMF4) with 11 stages

Remarks

Measuring  in simulations and minimizing it allows for a systematic optimization
[Clark et al. 11]

higher order integrator can be defined utilizing the force-gradient term 

variants are implemented in openQCD, see [Schaefers, J.F. et al. 2024]
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IOMF2(h) = eλhŜeh/2T̂ e(1−2λ)hŜeh/2T̂ eλhŜ

ΔHOMF2 = ( (λ)(S, (S, T) + (λ)(T, (S, T) ) + O( )c1 )p c2 )p h2 h4

+c2
1 c2

2 λ ≈ 0.19

IOMF4(h) = ⋯ and ΔHOMF4 = O( )e hr0 Ŝ e hr0 Ŝ h4

● var(ΔH)

● (S, (S, T))

●
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Multiple time-scale integration

Multiple actions

If  it may be convenient to use different step sizes h

Nested integrators [Sexton, Weingarten 92]

Shadow Hamiltonian

Remarks

Correlation term between  and  is not suppressed by   efficiency depends on
correlation between forces

in lattice QCD,  but it opposite for their cost  natural cost ordering
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H(p, q) = + (q) + (q) || || ≪ || ||1
2

p2 S1 S2 F2 F1

Cost( ) ≫ Cost( )F2 F1

I(h) = e
h
2
S2̂( )e

h
2m

S1̂e
h
m T̂ e

h
2m

S1̂

m
e

h
2
S2̂

ΔH = [α + β + β + (α + β )] + O( )F2
2 F′2 F1F2

1
m2

F2
1 F′1 h2 h4

● F1 F2 m →

● ||FG|| ≫ ||FF, 1|| ⟶
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Some Remarks on MD integration

Gauge group integration

Measure preservation:

Reversibility:

with

is violated by rounding errors.
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: U(x,µ) → U(x,µ) and π(x,µ) → π(x,µ)ehT̂ ehπ(x,µ)

: U(x,µ) → U(x,µ) and π(x,µ) → π(x,µ) − hF(x,µ)ehŜ

⟨ ⟩ = 1 δH = −e−δH H(f) H(i)

Δ = || − U|| ( , ) = F ∘ [I(h) ∘ F ∘ [I(h) (π, U)U′ π′ U′ ]n ]n

F(π, U) = (−π, U)
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Remarks on MD integration

Acceptance probability:

With

To tune the algorithm:

Select stable integrator, see [Schaefers, J.F. et al. 2025]

Minimize cost per trajectory at constant acceptance rate

Requires stable integrator
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= ⟨min[1, ]⟩ erfc( )Pacc e−δH =V→∞ (δH)/8σ2
− −−−−−−
√

(δH) = ⟨(δH ⟩ − ⟨δH ∝ Vσ2 )2 ⟩2 h2n

●

●

–

= const. ⟹ = const. ⟹ h ∝Pacc σ2 V −1/2n

●
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Molecular Dynamics integration

Hamiltonian

Time-evolution operator

(taylor expansion). We can write

Hamiltonian vector field

It follows
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H(p, q) = + S(q) = T(p) + S(q)
1
2

p2

exp(τ ) f(p(t), q(t)) = f(p(t + τ), q(t + τ))d
dt

exp(τ ) = exp(τ [ + ]) = exp(τ [− + ])≡ exp (τ )d
dt

dp
dt

∂
∂t

dq
dt

∂
∂t

∂H
∂q

∂
∂t

∂H
∂p

∂
∂t

Ĥ

= [ − ] = +Ĥ
∂H
∂p

∂
∂t

∂H
∂q

∂
∂t

T̂ Ŝ

exp(τ )H = H ⇒ H = 0 and = and = −Ĥ ∂t T̂ T ′
∂
∂q

Ŝ S′
∂
∂p
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Shadow Hamiltonian

The commutator of two Hamiltonian vector fields is a Hamiltonian vector field

Symplectic intergrators exactly conserve a shadow Hamiltonian

It holds

and its follows

Now to find the shadow Hamiltonian, replace the commutators with Poisson brackets

Shadow Hamiltonian of Leap frog : stays invariant under integration
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= −H̃
∂H̃
∂p

∂
∂q

∂H̃
∂q

∂
∂p

[ , ] =Ĥ1 Ĥ2 Ĥ3

= ( , = −H3 H1 H2)p
∂H1

∂p
∂H2

∂q
∂H1

∂q
∂H2

∂p

Δ = [(S, (S, T) + 2(T, (S, T) ] + O( )HLPFR
1
24

)p )p h2 h4
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