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Outline

biased selection of examples

o   Gaussian restricted Boltzmann machines

o   detection of phase transitions

o   inverse renormalisation group

o   (sign problem and diffusion models)

o   outlook
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Restricted Boltzmann Machine: generative network

o   energy-based method

o   probability distribution

o   binary or continuous d.o.f.
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Scalar field RBM as a generative network 
o   input data: MNIST  à  28 x 28 images  à  each image is a vector with 784 components

o   encoded in the variable      on the visible layer

o    train Gaussian RBM to model/learn the probability distribution

o   kernel    depends on the weight matrix     : determine optimal

o   generate new images
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o   take MNIST data set (28 x 28 images)

o   compute spectrum of two-point 
      correlator

o   inverse spectrum

o   this spectrum should be 
      reproduced by RBM kernel

MNIST kernel: two-point function
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Scalar field RBM

o   distribution:

o              w.     weight matrix

o   induced distribution on visible layer

o    all information is stored in quadratic operator                , with spectrum (use SVD)
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o  spectrum  

o  what if                 ? not all eigenvalues can be reproduced 

o  role of hyperparameter       ? if chosen  too low, not all eigenvalues can be reproduced

o   both        and       act as ultraviolet regulators 
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Scalar field RBM as an ultraviolet regulator
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o   

o   fixed RBM mass 

o   spectrum regulated

o   infrared modes learned   
     approximately correctly
     (see below)

MNIST with fixed RBM mass
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what is the effect of
including incomplete 
spectrum?

removal of 
ultraviolet modes 
affects 
generative power

MNIST with 𝑁! ≤ 𝑁"
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o   simplest case of Gaussian RBM: two scalar fields with bilinear interaction
  
o   when phrased as a LFT: spectrum, IR and UV cutoffs

o   role of hyperparameters understood as UV regulators of spectrum

o   even this simple case has good generative power
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Summary RBM
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Classification of phases of matter

> 1700 citations since 2017 (Google Scholar)

arXiv:1605.01735v1 [cond-mat.str-el]
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https://arxiv.org/abs/1605.01735v1


Classification of phases of matter

o  matter can exist in different phases
o  prototype: 2d Ising model -> ordered/disordered or cold/hot phases
o  task: determine phase a configuration is in, determine critical coupling or temperature

ordered  -- ? -- disordered
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ML excels in pattern finding
• supervised learning problem: 
    use sets of configurations deep in the ordered and in the disordered phase
• input: configurations  < -- >  output: ordered/disordered 
• “train the ML algorithm”, i.e. adjust parameters in the neural network so that it 

reproduces the correct classification for the training set

• new, unseen configurations -- > determine probability to be (dis)ordered

14



Carrasquilla-Melko

o two-dimensional Ising model

o feed-forward network with one hidden layer

o output layer: phase 1 or phase 2

o precision improves with increasing volume

o no need to identify order parameter

o extended to square ice and Ising gauge models
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First application in LFT

o Unsupervised learning of phase transitions: 
     From principal component analysis to variational 
     autoencoders

 S Wetzel, PRE 96 (2017) 2, 022140

o Machine learning of explicit order parameters: 
     from the Ising model to SU(2) lattice gauge theory

     S Wetzel and M Scherzer
     PRB 96 (2017) 18, 184410 
 [1705.05582 [cond-mat.stat-mech]] thermal transition in SU(2) LGT
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https://arxiv.org/abs/1705.05582


Output of NN as a physical observable

o  well-established procedure, what can one add?
o  interpret output from a NN as an observable in a statistical system
o  input: configurations, distributed according to Boltzmann weight
o  output: observable, “order parameter” in statistical system
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Output of NN as physical observable

• opens up possibility to use “standard” numerical/statistical methods
   histogram reweighting: extrapolation to other parameter values
• starting from computation at given 𝛽!: extrapolate to other 𝛽 values 

ü filled diamond at 𝛽!
ü line obtained by reweighting in 𝛽
ü open diamonds are independent
     cross checks 
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2d Ising model: finite-size scaling
o  𝑍 = Tr	𝑒"#$    with 𝐸 = −∑%&'( 𝑠&𝑠'       (𝑠& =	±1) 

o  critical coupling or inverse temperature 𝛽)  

o  correlation length 𝜉, magnetic susceptibility 𝜒	diverge at transition

o  critical exponents      𝜉~|𝑡|"*	 𝜒~|𝑡|"+  reduced temperature 

o   𝜈 = 1, 	 ⁄𝛾 𝜈 = ⁄7 4 , 	 𝛽) =
,
-
ln(1 + 2) ≈ 0.440687

o  finite-size scaling       𝜒	~	𝐿 ⁄+ * 
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Critical behaviour from NN observables

determine 𝐿 dependent susceptibility 𝛿𝑃 and its maximum at 𝛽)(𝐿)

extract critical properties 
from NN observables only 
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Transfer learning with histogram reweighting 

o    NN has learned patterns in 2d Ising model
o    are these sufficiently universal to predict the structure of phase transitions in other systems?
o    what about universality class, order of transition, type of degrees of freedom? 

o    apply to 𝑞-state Potts model (with 𝑞 = 3,… , 7) and 𝜑/	scalar field theory

transfer learning
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Transfer learning
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Transfer learning: 𝑞-state Potts model

o training on Ising model, not Potts model
o continuous lines using histogram reweighting
o vertical dashed lines indicate expected transition at 𝛽) = ln 1 + 𝑞
o 𝑞 = 3, 4: 2nd order transition, 𝑞 = 5, 6, 7: 1st order transition  
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𝜑#	scalar field theory 

• reweight in mass parameter, 𝜇-

• identify regions where phase is clear
• retrain NN using 𝜇- < −1.0 and  𝜇- > −0.9 
• repeat finite-size scaling analysis as in 2d Ising model

symmetry-broken            symmetric

• same universality class as 2d Ising model
• critical mass in agreement with results 
    obtained with standard methods 
    (Binder cumulant, susceptibility)
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Under the hood: activation functions in NN

mean activation functions in the 64 neurons in the fully connected (FC1) layer of 2d Ising-
trained neural network, for:

o 2d Ising model 
o 𝑞 = 3 and 𝑞 = 5 Potts model
o 𝜑/	scalar field theory

disordered

ordered

universal features distinguish 
ordered and disordered phases, 
irrespective of e.g. order of transition   

25



Summary: detection of phase transitions

o   train on simplistic systems to study more complicated models

o   combine with reweighting to scan parameter space

o   reconstruct effective order parameters and locate (unknown) phase transitions

o   study infinite-volume limit to make accurate predictions
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Renormalisation Group (RG)

o   standard renormalisation group: coarse-graining, 
     blocking transformation, integrating out degrees of freedom, …

o   Ising model: Kadanoff block spin
o   majority rule
o   reduction of degrees of freedom
o   study critical scaling 

o   not invertible: semi-group
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Renormalisation group

o   generates flow in parameter space
o   due to repeated blocking: run out of degrees of freedom
o   need to start with large system to
      apply RG step multiple times
o   large systems, close to a transition,
      suffer from critical slowing down
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Inverse renormalisation group

o   what if we could invert the RG? 
o   add degrees of freedom, fill in the ‘details’
o   inverse flow in parameter space
o   can be applied arbitrary number of steps
o   evade critical slowing down

for Ising model: Inverse Monte Carlo Renormalization 
Group Transformations for Critical Phenomena, 
D. Ron, R. Swendsen, A. Brandt, Phys. Rev. Lett. 89, 275701 (2002)
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How to devise an inverse transformation?

§  new degrees of freedom should be introduced
§  learn a set of transformations (transposed convolutions) to invert a standard RG step
§  minimise difference between original and constructed configuration
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Inverse renormalisation group

§  local transformation
§  apply inverse transformations iteratively
§  evade critical slowing down
§  generate flow in parameter space
§  invariance at critical point
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Application to 𝜑#	
scalar field theory 
§  repeated steps
§  locking in on critical point
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Application to 𝜑#	scalar field theory 

o   start with lattice of size 32- and apply IRG steps repeatedly
o   32- → 64- → 128- → 256- → 512-

o   IRG flow towards critical point 
o   extract critical exponents
     𝛾/𝜐 and 𝛽/𝜐 from comparison 
     between two volumes
o   constructed a large (512-) lattice 
     very close to criticality 
     without critical slowing down
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Summary: inverse RG
o   flow to critical point without critical slowing down  
o   reach large lattices from easy-to-simulate lattice sizes

some related recent work:

§  Super-resolving normalising flows for lattice field theories

     M Bauer, R Kapust, J Pawlowski, F Temmen, 2412.12842 [hep-lat]

§  Multilevel generative samplers for investigating critical phenomena
     A Singha, E Cellini, K Nicoli, K Jansen, S Kühn, S Nakajima, 2503.08918 [cs.LG]

§  Dreaming up scale invariance via inverse renormalization group
     A Rançon, U Rançon, T Ivek, I Balog, 2506.04016 [cond-mat.stat-mech]
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Stochastic quantisation: complex actions

o   stochastic quantisation not limited to real-valued distributions/actions
o   extend Langevin process to complex manifold: complex Langevin dynamics (Parisi 1981)

o   complexify degrees of freedom

o   consider dynamics in complex plane or complexified manifold 

o   convergence not guaranteed, no general solution of Fokker-Planck equation
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(Complex) Langevin dynamics

o   observables

o   Langevin equation and drift

o   Fokker-Planck equation (FPE)

o   what if weight is complex? drift is complex, FPE only formal

o   complexify degrees of freedom

o   consider dynamics in complex plane or complexified manifold 
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Complex Langevin dynamics

o   complexify degrees of freedom
o   Langevin equation and drift in analytically continued variables 

o   observables
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Complex Langevin dynamics

o   FPE

o   cannot be solved, non-integrable

o   formal justification

o   relation (cannot be verified in practice)

o   instead, a posteriori criteria for correctness

GA, E Seiler, IO Stamatescu, Phys. Rev. D 81 (2010) 054508 [0912.3360]
GA, F James, E Seiler, IO Stamatescu, Eur. Phys. J. C 71 (2011) 1756 [1101.3270] 

introductory lectures 
on QCD and the sign 
problem: GA,  
1512.05145 [hep-lat]

https://arxiv.org/abs/1512.05145


Complex Langevin distributions

o   FPE

o   want to describe/understand this distribution
o  further sampling
o  criteria for correctness
o  (modify process)

o   use diffusion model, learn from CL generated data
o   diffusion model does not care what the origin of the data is
o   note: no solution to the sign problem if CL fails

real noise:



Quartic model

o   simple model with quartic coupling

o   detailed analysis in GA, Giudice, Seiler, Annals Phys. 337 (2013) 238 [1306.3075]

o   CL converges, provided     , dynamics is contained inside a strip,

o   this follows from CL drift

o   FPE can be solved (approximately) using double expansion in Hermite polynomials

o   train diffusion model on CL generated data 
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Quartic model

43

solution of FPE using double expansion in Hermite 
polynomials

GA, Giudice, Seiler, Annals Phys. 337 (2013) 238 [1306.3075]

solution obtained by sampling 
from trained diffusion model
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Comparison

cumulants in the quartic model

expectation values at the end of the backward process

note: diffusion model learns from CL data, not the “exact” value



Trained diffusion model: quartic model
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two very different processes

complex Langevin:
o non-integrable drift
o noise in real direction
o attractor at origin

diffusion model:
o integrable score
o noise in both directions
o saddle at origin

to explore further

different Fokker-Planck equations

yet same distributions are created for data generation

have obtained access to 

complex Langevin drift  diffusion model score



Summary and outlook

o   machine learning offers a fascinating playground for (theoretical) physicists
o   applicable to address research questions, including in lattice field theory
o   scope to apply theoretical physics knowledge to gain insight into ML algorithms

o   many directions to explore
o   after learning the basics, first steps are relatively easy

next challenge: 
o   impose the rigour we are used to from LFT
o   improve upon well-established approaches    
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