Al applications in QFT Part III: Selected applications

Gert Aarts

Outline

biased selection of examples

- Gaussian restricted Boltzmann machines
- detection of phase transitions
- inverse renormalisation group
- (sign problem and diffusion models)

outlook

GA, B Lucini, **Chanju Park**, PRD **109** (2024) 034521 [2309.15002 [hep-lat]]

Dimitrios Bachtis, GA, B Lucini, PRE **102** (2020) 033303 [2004.14341 [cond-mat.stat-mech]] and PRE **102** (2020) 053306 [2007.00355 [cond-mat.stat-mech]]

Dimitrios Bachtis, GA, F di Renzo, B Lucini PRL **128** (2022) 081603 [2107.00466 [hep-lat]]

GA, Diaa Habibi, L Wang, K Zhou, PoS(Lattice 2024) [2412.01919 [hep-lat]]

Restricted Boltzmann Machine: generative network

- energy-based method
- probability distribution
- binary or continuous d.o.f.

$$p(\phi,h) = rac{1}{Z}e^{-S(\phi,h)}$$

$$Z = \int D\phi Dh \, e^{-S(\phi,h)}$$

Scalar field RBM as a generative network

- o input data: MNIST \rightarrow 28 x 28 images \rightarrow each image is a vector with 784 components
- \circ encoded in the variable ϕ on the visible layer
- train Gaussian RBM to model/learn the probability distribution

$$p(\phi) = \int Dh \, p(\phi, h) = \frac{1}{Z} \exp\left(-\frac{1}{2}\phi^T K \phi + J^T \phi\right)$$

- \circ kernel $K=\mu^2\mathbb{1}-\sigma_h^2WW^T$ depends on the weight matrix W : determine optimal W
- generate new images

MNIST kernel: two-point function

- take MNIST data set (28 x 28 images)
- o compute spectrum of two-point correlator $K_{ij}^{-1} = \langle \phi_i \phi_j
 angle_{
 m data}$
- o inverse spectrum $1/\kappa$
- o this spectrum should be reproduced by RBM kernel $K=\mu^2\mathbb{1}-\sigma_h^2WW^T$

Scalar field RBM

o distribution:
$$p(\phi,h) = \frac{1}{Z}e^{-S(\phi,h)} \qquad S(\phi,h) = \frac{1}{2}\mu^2\phi^T\phi + \frac{1}{2\sigma_h^2}(h-\eta)^T(h-\eta) - \phi^TWh$$

- $M imes N = N_v imes N_h$ weight matrix W
- o induced distribution on visible layer $p(\phi) = \int Dh \, p(\phi,h) = \frac{1}{Z} \exp\left(-\frac{1}{2}\phi^T K \phi + J^T \phi\right)$
- o all information is stored in quadratic operator $K=\mu^2\mathbb{1}-\sigma_h^2WW^T$, with spectrum (use SVD)

$$D_K = \operatorname{diag}(\underbrace{\mu^2 - \sigma_h^2 \xi_1^2, \mu^2 - \sigma_h^2 \xi_2^2, \dots, \mu^2 - \sigma_h^2 \xi_N^2}_{N}, \underbrace{\mu^2, \dots, \mu^2}_{M-N})$$

Scalar field RBM as an ultraviolet regulator

spectrum

$$D_K = \operatorname{diag}\left(\underbrace{\mu^2 - \sigma_h^2 \xi_1^2, \mu^2 - \sigma_h^2 \xi_2^2, \dots, \mu^2 - \sigma_h^2 \xi_{N_h}^2}_{N_h}, \underbrace{\mu^2, \dots, \mu^2}_{N_v - N_h}\right)$$

- \circ what if $N_h < N_v$? not all eigenvalues can be reproduced
- $_{\odot}$ role of hyperparameter μ^2 ? if chosen too low, not all eigenvalues can be reproduced
- \circ both N_h and μ^2 act as **ultraviolet regulators**

$$N_v = N_h = 784$$

- \circ fixed RBM mass $\mu^2=100$
- spectrum regulated
- infrared modes learned approximately correctly (see below)

MNIST with $N_h \leq N_v$

what is the effect of including incomplete spectrum?

removal of ultraviolet modes affects generative power

(a)
$$N_h = 784$$

(b) $N_h = 225$

(c) $N_h = 64$

(d)
$$N_h = 36$$

(e)
$$N_h = 16$$

(f)
$$N_h = 4$$

Summary RBM

- simplest case of Gaussian RBM: two scalar fields with bilinear interaction
- when phrased as a LFT: spectrum, IR and UV cutoffs
- o role of hyperparameters understood as UV regulators of spectrum
- even this simple case has good generative power

Outline

biased selection of examples

- Gaussian restricted Boltzmann machines
- detection of phase transitions
- inverse renormalisation group
- sign problem and diffusion models
- outlook

Classification of phases of matter

Published: 13 February 2017

Machine learning phases of matter

Juan Carrasquilla 2 & Roger G. Melko

Nature Physics 13, 431–434(2017) | Cite this article

arXiv:1605.01735v1 [cond-mat.str-el]

> 1700 citations since 2017 (Google Scholar)

Classification of phases of matter

- matter can exist in different phases
- prototype: 2d Ising model -> ordered/disordered or cold/hot phases
- o task: determine phase a configuration is in, determine critical coupling or temperature

ML excels in pattern finding

- supervised learning problem:
 - use sets of configurations deep in the ordered and in the disordered phase
- input: configurations < --> output: ordered/disordered
- "train the ML algorithm", i.e. adjust parameters in the neural network so that it reproduces the correct classification for the training set

new, unseen configurations -- > determine probability to be (dis)ordered

Carrasquilla-Melko

- two-dimensional Ising model
- feed-forward network with one hidden layer
- output layer: phase 1 or phase 2
- precision improves with increasing volume
- no need to identify order parameter
- extended to square ice and Ising gauge models

First application in LFT

 Unsupervised learning of phase transitions: From principal component analysis to variational autoencoders

S Wetzel, PRE 96 (2017) 2, 022140

 Machine learning of explicit order parameters: from the Ising model to SU(2) lattice gauge theory

S Wetzel and M Scherzer *PRB* 96 (2017) 18, 184410

[<u>1705.05582</u> [cond-mat.stat-mech]]

thermal transition in SU(2) LGT

Output of NN as a physical observable

- o well-established procedure, what can one add?
- o interpret output from a NN as an observable in a statistical system
- o input: configurations, distributed according to Boltzmann weight
- output: observable, "order parameter" in statistical system

Output of NN as physical observable

- opens up possibility to use "standard" numerical/statistical methods
 - histogram reweighting: extrapolation to other parameter values
- starting from computation at given β_0 : extrapolate to other β values

$$\langle P \rangle(\beta) = \frac{\sum P_i e^{-(\beta - \beta_0)E_i}}{\sum e^{-(\beta - \beta_0)E_i}}$$

- \checkmark filled diamond at β_0
- line obtained by reweighting in β
- ✓ open diamonds are independent cross checks

2d Ising model: finite-size scaling

o
$$Z = \operatorname{Tr} e^{-\beta E}$$
 with $E = -\sum_{\langle ij \rangle} s_i s_j$ $(s_i = \pm 1)$

- \circ critical coupling or inverse temperature β_c
- \circ correlation length ξ , magnetic susceptibility χ diverge at transition
- o critical exponents $\xi \sim |t|^{-\gamma}$ $\chi \sim |t|^{-\gamma}$

reduced temperature

$$t = \frac{\beta_c - \beta}{\beta_c}$$

$$\nu = 1, \qquad \gamma/\nu = 7/4, \qquad \beta_c = \frac{1}{2}\ln(1+\sqrt{2}) \approx 0.440687$$

o finite-size scaling
$$|t|=\Big|\frac{\beta_c-\beta_c(L)}{\beta_c}\Big|\sim \xi^{-\frac{1}{\nu}}\sim L^{-\frac{1}{\nu}}$$

$$\chi \sim L^{\gamma/\nu}$$

Critical behaviour from NN observables

determine L dependent susceptibility δP and its maximum at $\beta_c(L)$

Transfer learning with histogram reweighting

- NN has learned patterns in 2d Ising model
- o are these sufficiently universal to predict the structure of phase transitions in other systems?
- what about universality class, order of transition, type of degrees of freedom?

transfer learning

apply to q-state Potts model (with q=3,...,7) and φ^4 scalar field theory

Transfer learning

Transfer learning: q-state Potts model

- training on Ising model, not Potts model
- continuous lines using histogram reweighting
- o vertical dashed lines indicate expected transition at $eta_c = \ln(1+\sqrt{q})$
- o q = 3, 4: 2nd order transition, q = 5, 6, 7: 1st order transition

$arphi^4$ scalar field theory

- reweight in mass parameter, μ^2
- identify regions where phase is clear
- retrain NN using $\mu^2 < -1.0$ and $\mu^2 > -0.9$
- repeat finite-size scaling analysis as in 2d Ising model

- $\frac{\mu_c^2}{\text{CNN+Reweighting}} \frac{\nu}{-0.95225(54)} \frac{\nu}{0.99(34)} \frac{\gamma/\nu}{1.78(7)}$
 - same universality class as 2d Ising model
 - critical mass in agreement with results obtained with standard methods (Binder cumulant, susceptibility)

Under the hood: activation functions in NN

mean activation functions in the 64 neurons in the fully connected (FC1) layer of 2d Isingtrained neural network, for:

- 2d Ising model
- o q = 3 and q = 5 Potts model
- $\circ \varphi^4$ scalar field theory

universal features distinguish ordered and disordered phases, irrespective of e.g. order of transition

Summary: detection of phase transitions

- train on simplistic systems to study more complicated models
- combine with reweighting to scan parameter space
- reconstruct effective order parameters and locate (unknown) phase transitions
- study infinite-volume limit to make accurate predictions

Outline

biased selection of examples

- Gaussian restricted Boltzmann machines
- detection of phase transitions
- o inverse renormalisation group
- sign problem and diffusion models
- outlook

Renormalisation Group (RG)

standard renormalisation group: coarse-graining,
 blocking transformation, integrating out degrees of freedom, ...

Ising model: Kadanoff block spin

majority rule

- reduction of degrees of freedom
- study critical scaling

not invertible: semi-group

Renormalisation group

- generates flow in parameter space
- due to repeated blocking: run out of degrees of freedom
- need to start with large system to apply RG step multiple times
- large systems, close to a transition,
 suffer from critical slowing down

Inverse renormalisation group

- o what if we could invert the RG?
- add degrees of freedom, fill in the 'details'
- inverse flow in parameter space
- can be applied arbitrary number of steps
- evade critical slowing down

 $L_j = b^{(j-i)} L_i$

for Ising model: Inverse Monte Carlo Renormalization Group Transformations for Critical Phenomena, D. Ron, R. Swendsen, A. Brandt, Phys. Rev. Lett. 89, 275701 (2002)

How to devise an inverse transformation?

- new degrees of freedom should be introduced
- learn a set of transformations (transposed convolutions) to invert a standard RG step
- minimise difference between original and constructed configuration

Inverse renormalisation group

Transposed convolutions

- local transformation
- apply inverse transformations iteratively
- evade critical slowing down
- generate flow in parameter space
- invariance at critical point

Application to ϕ^4 scalar field theory

- repeated steps
- locking in on critical point

TABLE I. Values of the critical exponents γ/ν and β/ν . The original system has lattice size L=32 in each dimension and its action has coupling constants $\mu_L^2=-0.9515$, $\lambda_L=0.7$, and $\kappa_L=1$. The rescaled systems are obtained through inverse renormalization group transformations.

L_i/L_j	32/64	32/128	32/256	32/512	64/128	64/256	64/512	128/256	128/512	256/512
$\frac{\gamma/\nu}{\beta/\nu}$, ,	* *	* *	, ,	* *	* *	1.745(5) 0.126(2)	* *	• •

Application to φ^4 scalar field theory

- o start with lattice of size 32^2 and apply IRG steps repeatedly
- $32^2 \rightarrow 64^2 \rightarrow 128^2 \rightarrow 256^2 \rightarrow 512^2$
- IRG flow towards critical point
- extract critical exponents γ/υ and β/υ from comparison between two volumes
- constructed a large (512²) lattice very close to criticality without critical slowing down

Summary: inverse RG

- flow to critical point without critical slowing down
- reach large lattices from easy-to-simulate lattice sizes

Dimitrios Bachtis, GA, F di Renzo, B Lucini PRL **128** (2022) 081603 [2107.00466 [hep-lat]]

some related recent work:

- Super-resolving normalising flows for lattice field theories
 M Bauer, R Kapust, J Pawlowski, F Temmen, 2412.12842 [hep-lat]
- Multilevel generative samplers for investigating critical phenomena
 A Singha, E Cellini, K Nicoli, K Jansen, S Kühn, S Nakajima, 2503.08918 [cs.LG]
- Dreaming up scale invariance via inverse renormalization group
 A Rançon, U Rançon, T Ivek, I Balog, 2506.04016 [cond-mat.stat-mech]

Outline

biased selection of examples

- Gaussian restricted Boltzmann machines
- detection of phase transitions
- inverse renormalisation group
- o sign problem and diffusion models
- outlook

Stochastic quantisation: complex actions

- stochastic quantisation not limited to real-valued distributions/actions
- extend Langevin process to complex manifold: complex Langevin dynamics (Parisi 1981)
- o complexify degrees of freedom $z \rightarrow x + iy$
- consider dynamics in complex plane or complexified manifold

$$z \sim \rho(z) \in \mathbb{C} \quad \Rightarrow \quad x, y \sim P(x, y) \in \mathbb{R}$$

convergence not guaranteed, no general solution of Fokker-Planck equation

(Complex) Langevin dynamics

o observables
$$\langle O(x) \rangle = \int dx \, \rho(x) O(x) \qquad \rho(x) = \frac{1}{Z} \exp[-S(x)] \qquad Z = \int dx \, \rho(x) \, dx$$

- Comparison Langevin equation and drift $\dot{x}(t) = K[x(t)] + \eta(t)$ $K(x) = \frac{d}{dx}\log\rho(x) = -\frac{dS(x)}{dx}$
- o Fokker-Planck equation (FPE) $\partial_t \rho(x;t) = \partial_x \left[\partial_x K(x)\right] \rho(x;t)$
- what if weight is complex? drift is complex, FPE only formal
- o complexify degrees of freedom $z \to x + iy$
- consider dynamics in complex plane or complexified manifold

Complex Langevin dynamics

- complexify degrees of freedom
- Langevin equation and drift in analytically continued variables

$$\dot{x}(t) = K_x + \eta_x(t), \qquad K_x = \operatorname{Re}\frac{d}{dz}\log\rho(z), \qquad \langle \eta_x(t)\eta_x(t')\rangle = 2N_x\delta(t-t')$$

$$\dot{y}(t) = K_y + \eta_y(t), \qquad K_y = \operatorname{Im}\frac{d}{dz}\log\rho(z), \qquad \langle \eta_y(t)\eta_y(t')\rangle = 2N_y\delta(t-t')$$

observables

$$N_x - N_y = 1$$

$$\langle O[x(t) + iy(t)] \rangle_{\eta} = \int dx dy P(x, y; t) O(x + iy)$$

introductory lectures on QCD and the sign problem: GA, 1512.05145 [hep-lat]

Complex Langevin dynamics

- O FPE $\partial_t P(x,y;t) = \left[\partial_x \left(N_x \partial_x K_x \right) + \partial_y \left(N_y \partial_y K_y \right)\right] P(x,y;t)$
- o cannot be solved, non-integrable $\partial_x K_y \neq \partial_y K_x$
- o formal justification $\int dx dy \, P(x,y) O(x+iy) = \int dx \, \rho(x) O(x)$
- orelation (cannot be verified in practice) $ho(x) = \int dy \, P(x-iy,y)$
- instead, a posteriori criteria for correctness

Complex Langevin distributions

- o FPE
- $\partial_t P(x, y; t) = \left[\partial_x \left(N_x \partial_x K_x \right) + \partial_y \left(N_y \partial_y K_y \right) \right] P(x, y; t)$

real noise:

$$N_x = 1, N_y = 0$$

- want to describe/understand this distribution
 - further sampling

 $P(x, y; t) \ge 0$

- criteria for correctness
- (modify process)
- use diffusion model, learn from CL generated data
- diffusion model does not care what the origin of the data is
- o note: no solution to the sign problem if CL fails

Quartic model

- o simple model with quartic coupling $S=rac{1}{2}\sigma_0x^2+rac{1}{4}\lambda x^4$ $\sigma_0=A+iB$
- detailed analysis in GA, Giudice, Seiler, Annals Phys. 337 (2013) 238 [1306.3075]
- \circ CL converges, provided $3A^2-B^2>0$, dynamics is contained inside a strip, $-y_- < y < y_-$
- this follows from CL drift

$$y_{-}^{2} = \frac{A}{2\lambda} \left(1 - \sqrt{1 - \frac{B^{2}}{3A^{2}}} \right)$$

- FPE can be solved (approximately) using double expansion in Hermite polynomials
- train diffusion model on CL generated data

Quartic model

$$A = B = \lambda = 1$$
$$y_{-} \approx 0.3029$$

2 1 0 -0.4 -0.2 0.0 0.2 0.4

solution of FPE using double expansion in Hermite polynomials

solution obtained by sampling from trained diffusion model

Comparison

cumulants in the quartic model

n	2		4		6		8	
	re	-im	re	–im	re	-im	re	-im
Exact	0.428142	0.148010	-0.060347	-0.100083	-0.00934	0.19222	0.41578	-0.5923
CL	0.4277(5)	0.1478(2)	-0.0597(6)	-0.0991(6)	-0.010(1)	0.188(2)	0.406(4)	-0.57(1)
DM	0.4267(6)	0.1459(2)	-0.0582(6)	-0.0981(5)	-0.008(1)	0.188(2)	0.400(5)	-0.58(1)

expectation values at the end of the backward process

note: diffusion model learns from CL data, not the "exact" value

Trained diffusion model: quartic model

two very different processes

complex Langevin:

- non-integrable drift
- noise in real direction
- attractor at origin

diffusion model:

- integrable score
- noise in both directions
- saddle at origin

to explore further

different Fokker-Planck equations

yet same distributions are created for data generation

have obtained access to $\nabla \log P(x,y)$

Summary and outlook

- machine learning offers a fascinating playground for (theoretical) physicists
- applicable to address research questions, including in lattice field theory
- scope to apply theoretical physics knowledge to gain insight into ML algorithms
- many directions to explore
- after learning the basics, first steps are relatively easy

next challenge:

- impose the rigour we are used to from LFT
- improve upon well-established approaches