Exercises MITP2025 — ML and QFT — Gert Aarts

Weight matrices

In this exercise we will collect some observations about weight matrices. This exercise relies
heavily on Refs. [1,2] and I am indebted especially to Chanju Park for the joint work used in
the preparation of this exercise.

1. Definition of a feed-forward neural network (NN).

Given an input x, and associated output y,, where « labels the data set D, a neural
network provides a function g, = f(x,). If the NN is well trained, g, ~ y,. The function
is a combination of linear transformations, via weight matrices W® and nonlinear trans-
formations, via activation functions ¢(z), where 2z denotes the so-called pre-activation.
The weight matrices are typically rectangular, of size n; X n;_;.
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The feed-forward neural network in the figure is a graphical representation of the following
expressions:

@) =W (@) D) =3 W, (25)
j=1

j=1

where ¢, 7 are the indices of the vectors «,y, z. The matrix multiplication is component-
wise. The result on the final layer defines the neural network function

3i(@a;0) = 2" (2 Z W (2 (wa)). (29)

Here we follow closely the notation of Ref. [3]. We do not include a bias (but this can
easily be done). Make sure that you understand the relation between these equations and
the figure.

Some jargon: the number of nodes in a layer is referred to as the width and the number of
layers as the depth. Deep learning means many layers. There are Ny learnable parameters
in the network function, collectively denoted as

L
o={w . why No=> m_in. (30)



The combination of linear and non-linear transformations yields a “universal approx-
imator”. This is the content of the “universal approximation theorem”.? Examples of
activation functions are ¢(z) = tanh(z), the sigmoid o(z) = 1/(1+e7%),® and the rectified
linear unit, ReLU(2) = max(0, z).

To demonstrate that non-linear activation is essential, take ¢ as the identity, ¢(z) = z,
and show that the NN then simply provides a linear function,

=Wz, W =wHwE= ) (31)

where W is the product of all weight matrices. Deep linear NNs are discussed in detail
in Ref. [3].

2. Weight matrix initialisation.

To initialise the NN, the weight matrices are given random elements, e.g., from a nor-
mal distribution, W;; ~ N(0,0%,/n—1). One can then compute moments of the pre-
activations recursively. Show that?
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(32)
What is the expression for [ = 1?7 Higher-order moments can also be considered; this is
an exercise in Gaussian expectation values and Wick’s theorem (and hence easy for field
theorists). As in field theory, this simplifies in a large N expansion, where N is the width,
see again Ref. [3] for details.

3. Singular value decomposition (SVD).

Weight matrices are usually rectangular. One can do a SVD and write them as products
of a left rotation, a rectangular diagonal matrix, and a right rotation. Consider an M x N
matrix W, with for definiteness N < M. The SVD is

W= UEVT, Uu” = L arsenrs vVt = Inxn, E = diagy;,n (61,82, &N) -
(33)
The positive §;’s are the singular values. Express the eigenvalues of X = WTW and
X = WWT in terms of the &’s

4. Marchenko-Pastur distribution at initialisation.

It is useful to focus on the singular or eigenvalues, since the left/right rotations simply
rotate the nodes. Since in physics we are used to symmetric real matrices, we consider
from now on X = WTIW. We are interested in the distribution of eigenvalues, both at
initialisation and after learning.

Let’s start with initialisation. If W;; ~ N(0,0%/M), then the distribution of eigenvalues
of X is given by the Marchenko-Pastur distribution,®

1
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pup (1) =

’https://en.wikipedia.org/wiki/Universal _approximation_theorem

3Yes, the sigmoid is indeed almost the Fermi-Dirac distribution.

41t is common to denote expectation values with E[.], rather than with brackets.
Shttps://en.wikipedia.org/wiki/Marchenko-Pastur distribution



where » = N/M < 1. Plot this distribution for several values of r. What is the effect
changing o2?

5. Distribution after training.

Weight matrices are trained by minimising some loss function, e.g., the mean-squared
error (MSE). Using the notation introduced above, this reads

1 2
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which is a function of all the weight matrices. It seems that for a well-trained NN the
spectral densities contain a power decay, p(z) ~ 1/x7, for a wide range of learning tasks,
see e.g. Refs. [4-6]. It is an open research question to derive the form of the eigenvalue

distributions semi-analytically.

6. Universal description from random matrix theory (RMT): Coulomb gas

As discussed in the lecture, when weight matrices are updated using stochastic gradient
descent, they are subject to Dyson Brownian motion. Below we will derive the expressions
for the Coulomb potential and for the Wigner surmise, which concerns the level spacing in
spectra. We assume the standard assumptions in RMT hold [7], but this is not obvious.

Consider N eigenvalues x; (i = 1,...,N). The evolution equation for eigenvalue x; is
2
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where it is assumed the drift can be derived from some potential K; = —0,,V ({z;}). The
derivation of Eq. (36) essentially follows second-order perturbation theory in QM.

Show that the corresponding FPE reads®

N
oz} ) = 3 0, [ (6200, — K p({ai} 1), (37)
i=1
where the combined drift term is
(eff) 92
K =K, . 38
i + ; p— (38)

Show that the stationary solution is given by the so-called Coulomb gas,

ps({z:}) = %H |z; — x4 e~V {=/g? Z = /d:L’l codey ps({xi}). (39)

1<j

The term in the measure reflects the eigenvalue repulsion.

6We use the convention where time is rescaled with a factor of 2, see footnote 1.



7. Universal fluctuations: Wigner surmise

To analyse the eigenvalue repulsion, one can study the behaviour of the spacing between
adjacent eigenvalues, S; = x;11 — x;. It turns out that its distribution P(.S) is universal;
it is known as the Wigner surmise.

To derive it we consider N = 2 eigenvalues and assume the potential has a simple
quadratic form around degenerate minima,

V(zy, z2)/g° = % [(a:l — k)% 4 (29 — /@)2} . (40)

Without repulsion, (S) = (x2 — 1) — 0, due to the degeneracy.

We assume the distribution is sufficiently peaked around &, such that the integral bound-
aries can be taken as +oo. The partition function is then

1 2., .2
A4 /dl‘ld.IQ ‘$1 — $2| 67(31+x2)/(202), NO = 4\/%0’3. (41)

N

Change variables to ;2 = x & .5/2 to show that the Wigner surmise P(S) reads

P(S) = ie—SQ/(4o2), 7 = / dS P(S). (42)
0

202
Show that the mean level spacing is
(S = /0 " d4S SP(S) = V7o (43)
In terms of s = S/(S) the surmise is parameter-free,
P(s) = gse_“2/4. (44)

This universal behaviour has indeed been observed in NNs; see e.g. Refs. [1,5,6].
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