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Background and references
this lecture is mostly based on what we understood working with PhD student Chanju Park 
and Biagio Lucini

§  GA, B Lucini, Chanju Park, PRD 109 (2024) 3, 034521 [2309.15002 [hep-lat]]
§  GA, B Lucini, Chanju Park, PRE 111 (2025) 1, 015303 [2407.16427 [cond-mat.dis-nn]]
§  GA, O Hajizadeh, B Lucini, Chanju Park, contribution to NeurIPS 2024 workshop ML 
     and the Physical Sciences, 2411.13512 [cond-mat.dis-nn] 

I also enjoyed
§  D Roberts, S Yaida, B Hanin,  The Principles of Deep Learning Theory, Cambridge University 
     Press [2106.10165 [cs.LG]]. 

https://arxiv.org/abs/2407.16427
https://arxiv.org/abs/2407.16427
https://arxiv.org/abs/2411.13512


Broader relation between ML and QFT/LFT

o   what can theoretical physics do for ML? intriguing connections, exchange of methodology

why explore this?

o   theoretical physicists are/should not satisfied with a ‘black-box’ algorithm
o   in the future: apply these methods to large scale numerical simulations
o   should understand and trust them

o   QFT/LFT: extensive experience in analytical and computational studies of systems with
      many fluctuating degrees of freedom à fairly unique perspective 
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Science4AI



ML for a theoretical physicist

o  neural network = system with many fluctuating degrees of freedom à use statistical mechanics

o  learning = optimisation: weight matrices are updated using stochastic gradient descent (SGD) 

o  SGD = stochastic matrix dynamics à random matrix theory

o  Coulomb gas description with effective temperature given by learning rate/batch size 

o  phase diagram of neural networks resembles those of disordered systems 



Outline

o   basics of feed-forward neural networks (NNs) and stochastic gradient descent (SGD)

o   stochastic gradient descent, Dyson Brownian motion and random matrix theory

o   examples: restricted Boltzmann machines, transformers

o   neural network phase diagram

o   outlook
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Feed-forward neural network

NN is a “universal approximator”: !𝒚	~	𝒚, should be able to generalise, predict 𝒚 for unseen data 𝒙

combination of linear transformations (matrices) and nonlinear ‘activations’ on the nodes

input data 𝒙 output !𝒚 = 𝑓(𝒙)

supervised learning: data set 𝓓 = 𝒙, 𝒚 , input 𝒙 and associated output 𝒚 



Feed-forward neural network: explicit function

𝑛!	 𝑛"	 𝑛#	 𝑛$ 	 …	 𝑛%&"	 𝑛%	

𝑊"	 𝑊#	 𝑊$	 …𝑊%&"	 𝑊%	

𝑥(;* 0𝑦+(𝑥*)

𝜙 𝑧 ! 	 𝜙 𝑧 " 	 𝜙 𝑧 # 	… 	𝜙(𝑧(%&!))	

pre-activations:

NN function:



Loss function example: mean squared error

§ gradient descent

§ learning rate or step size     (usually highly optimised) *

§  updates computed over batches of data: batch size

ü hyperparameters * Adam: A method for stochastic optimization
DP Kingma, J Ba [1412.6980 [cs.LG]]
> 220k cites (Google Scholar)



Weight matrix iniDalisaDon
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o weight matrices need to be initialised

o usual choice

o introduces another hyperparameter

o can compute moments of weight matrices at initialisation *

o  simplifies in infinite-width limit (“large 𝑁 limit”)

* D Roberts, S Yaida, B Hanin,  The Principles of Deep Learning Theory, Cambridge University Press [2106.10165 [cs.LG]] 



Data sets

what type of data sets are used?

o ‘standard’ data sets: MNIST, CIFAR, Imagenet

o  popular in stat. mech. community: teacher-student models

§ random input           teacher NN: random weight matrices
§ produces a random output, 
§ student has to ‘learn’ which weight matrices the teacher used 
§ useful for analytical studies and numerical experiments  



Outline

o   basics of feed-forward neural networks (NNs) and stochastic gradient descent (SGD)

o   stochastic gradient descent, Dyson Brownian motion and random matrix theory

o   examples: restricted Boltzmann machines, transformers

o   neural network phase diagram

o   outlook
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Stochastic weight matrix dynamics

o   consider some      weight matrix

o   update using stochastic gradient descent:     with 

o   obtained from loss function           , learning rate (or step size)

o   is estimated using a batch      with batch size       : 

o   fluctuations controlled by finite batch size (CLT):
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Stochastic weight matrix dynamics

o   using CLT stochastic update    becomes 

o   or in terms of the gradient of the loss function: 
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From rectangular to symmetric matrices

o         is                matrix: singular value decomposition:

o   singular values:    [take  without loss of generality] 

o   introduce symmetric semi-positive combination:

o   and focus on the singular/eigenvalues (invariant under left/right rotations on      ):

o   stochastic dynamics: 
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Initialisation: Marchenko-Pastur distribution

o   if initial weight matrix          then      follows Marchenko-Pastur distribution

ü  how to choose      : distribution should depend on    only, safe to take large .          limit

ü  spectrum is bounded for all    :
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Stochastic matrix dynamics

o   what is the framework to consider stochastic matrix dynamics?

o   goes back to Wigner (1955) and Dyson (1962): random matrix theory (RMT)

o   stochastic matrix dynamics: Dyson Brownian motion (Dyson, 1962)

o   first applied to nuclear spectra (1950/60s)

o   applied in (lattice) QCD to spectrum of Dirac operator
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Random Matrix Theory (RMT)

o   describes universal features of matrices in symmetry classes (symmetric, hermitian, quaternionic)

o   level spacing, Coulomb repulsion, Wigner surmise, fluctuations

o   non-universal behaviour: spectral density

o   successfully applied in QCD to describe Dirac operator

18
JJM Verbaarschot and T Wettig, Random matrix theory and chiral symmetry in QCD 
Ann. Rev. Nucl. Part. Sci. 50 (2000) 343 [hep-ph/0003017 [hep-ph]]

https://inspirehep.net/literature/524532


Stochastic matrix dynamics: 
Dyson Brownian motion and the Coulomb gas

o   framework to consider stochastic matrix dynamics for symmetric matrix 

o   Dyson Brownian motion (in continuous time for now, see below):

o   eigenvalues then evolve according to
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where



Dyson Brownian moDon and Coulomb gas

o   eigenvalues dynamics:

o   can be derived using 2nd order perturbation theory (some conditions on noise matrix       )

o   Coulomb term: eigenvalue repulsion

o   Fokker-Planck equation (FPE) for distribution of eigenvalues:  
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Dyson Brownian motion and Coulomb gas

o   FPE:

o   stationary distribution:

o   with partition function: 

o   and provided drift can be derived from a potential

o   known as Coulomb gas, describes universal features of random matrices

21



Back to weight matrix dynamics 

o   stochastic dynamics

o   what can be carried over from Dyson’s matrix dynamics? implications? universality?

o   eigenvalue equation:

o   make explicit learning rate and batch size dependence

22



Back to weight matrix dynamics 

o   eigenvalue dynamics:

o   insert learning rate and batch size dependence:

o   no usual scaling of drift and noise with learning rate (Ito calculus:     ,       )

o   only continuous time limit (SDE) in some weak sense

23

Q Li, C Tai and W E [1511.06251] 
S Yaida [1810.00004]



Stationary distribution

o   distribution for fixed  : 

o   make explicit dependence on learning rate and batch size

o   if drift vanishes at                , expand potential

o   exponential is Gaussian with variance

24

universal scaling with 
learning rate and batch size

model-dependent
factor



Linear scaling relation
o  dependence on    in training has been observed before, empirically

ü P. Goyal, P. Dollár, R.B. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola et al., 
 Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour [1706.02677]
ü S.L. Smith and Q.V. Le, 
 A Bayesian PerspecDve on GeneralizaDon and StochasDc Gradient Descent [1710.06451]
ü S.L. Smith, P. Kindermans and Q.V. Le, 
 Don’t Decay the Learning Rate, Increase the Batch Size [1711.00489]

o  finds a natural place in the framework of Dyson Brownian mooon and Coulomb gas

25
GA, B Lucini, Chanju Park, PRE 111 (2025) 1, 015303 [2407.16427 [cond-mat.dis-nn]]

https://arxiv.org/abs/2407.16427


Outline

o   basics of feed-forward neural networks (NNs) and stochastic gradient descent (SGD)

o   stochastic gradient descent, Dyson Brownian motion and random matrix theory

o   examples: restricted Boltzmann machines, transformers

o   neural network phase diagram

o   outlook
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ManifestaDons of RMT in weight matrices

RMT predicts universal behaviour:

o   universal distribution of level spacing     : Wigner surmise

o   Coulomb repulsion of eigenvalues

o   spectral density is problem-specific

o   universal behaviour has indeed been observed for variety of ML algorithms and data sets

o   some examples: restricted Boltzmann machine and transformer
27



Restricted Boltzmann Machine: generative network

o   energy-based method

o   probability distribution

o   binary or continuous d.o.f.

28

one weight matrix: bilinear coupling:



Learning task

o   target spectrum should be reflected in weight matrix, i.e. in

o   evolution from initial Marchenko-Pastur distribution to target distribution 

o   updates using persistent contrastive divergence with mini-batches

o   vary learning rate and batch size

o   use very simple target spectrum: 
      LFT dispersion relation in 1d
      doubly degenerate modes

29
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Dynamics of learning

o   from Marchenko-Pastur distribution
      to stochastic target distribution

o   10 modes, 4 doubly degenerate ones

o   follow evolution of eigenvalues

o   test predictions from RMT:

§    induced Coulomb term, eigenvalue repulsion, Wigner surmise
§    dependence on learning rate/batch size
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Eigenvalue repulsion
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Wigner surmise*

o   distribution     for level spacing

o   mean level spacing   

o   Wigner surmise for        :       universal curve

§   many RBM training runs, stochasticity due to mini-batches, collect histograms of

§   vary learning rate and batch size
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Wigner surmise: 4 degenerate pairs
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data collapse

universality



Wigner semi-circle

o   spectral density:

o   for two modes:

o   broadened and flattened Gaussian

o   fit    parameter and position for each doubly degenerate mode  
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Wigner semi-circle

o   fit to semi-circle for two different      values with fixed learning rate and batch size
o   Binder cumulant             for semi-circle (vanishes for Gaussian)
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Wigner semi-circle and surmise
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RBM: Wigner surmise and semi-circle

ü  parameter      scales as:   

ü  stochasticity leads to universal features in trained models

ü  derived and demonstrated that learning rate and finite batch size appear as ratio
         (linear scaling rule)

37

universal scaling model-dependent



Second applicaDon: Transformers

o   Gaussian RBM has one weight matrix, target spectrum is known, essentially solvable

in more advanced architectures:
 
o  many weight matrices, target spectra not known, do the spectra even exist?

o  what is the loss function landscape? localised minima, flat directions, … ?

o  empirical study following dynamics of eigenvalues of 

GA, O Hajizadeh, B Lucini, C Park, NeurIPS 2024 workshop ML and the Physical Sciences, 2411.13512 [cond-mat.dis-nn] 

https://arxiv.org/abs/2411.13512


Transformer: nano-GPT

o   four attention blocks with each four attention heads: many more matrices
o   each attention head: 

§ one key (𝐾) matrix
§ one query (𝑄) matrix
§ one value (𝑉) matrix 

o   matrix sizes: 𝑀	×	𝑁 = 64	×	16
o   about 2.1	×	10, parameters 
o   use AdamW optimiser 
     (highly adaptive stepsize during training)
o   trained on opus of Shakespeare
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Transformer: Wigner surmise

o   short-distance fluctuaoons: level spacing described by Wigner surmise
o   remains approximately described by RMT predicoon (shown 𝐾 matrix of layer 1)
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Transformer: spectral density

o   initialisation: eigenvalues of          follow Marchenko-Pastur distribution
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Transformer: spectral density

o   evolves from initial Marchenko-Pastur distribution to distribution with power decay 
o   shown 𝐾 matrix of layer 1
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Transformer: empirical analysis

requires further understanding:

o   what is the “final” target spectrum? does it even exist?
o   tail drops as a power, what does this imply? can the power be understood?

what if significant part of the spectrum remains MP: random matrix elements

o   how relevant is this part of the spectrum? remove? sparse weight matrices?

open research questions!      

43

see e.g. also CH Martin, MW Mahoney, Traditional and Heavy-
Tailed Self Regularization in Neural Network Models, 1901.08276 

https://arxiv.org/abs/1901.08276


Outline

o   basics of feed-forward neural networks (NNs) and stochastic gradient descent (SGD)

o   stochastic gradient descent, Dyson Brownian motion and random matrix theory

o   examples: restricted Boltzmann machines, transformers

o   neural network phase diagram

o   outlook

44



Phase diagram of neural networks

o  stochastic gradient descent introduces stochasticity: strength set by  

o   interpret as effective temperature

o   dependence of learning on hyperparameters

o  identify different phases?

à  distinguish quality and efficiency of learning  

o   draw analogy to disordered systems and spin glasses
45

C Park, GA, B Lucini, 
in preparation



Return to feed-forward neural network

𝑛!	 𝑛"	 𝑛#	 𝑛$ 	 …	 𝑛%&"	 𝑛%	

𝑊"	 𝑊#	 𝑊$	 …𝑊%&"	 𝑊%	

𝑥(;* 0𝑦+(𝑥*)

𝜙 𝑧 ! 	 𝜙 𝑧 " 	 𝜙 𝑧 # 	… 	𝜙(𝑧(%&!))	

pre-activations:

NN function:



Weight matrix initialisation
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o weight matrices need to be initialised

o usual choice

o introduces another hyperparameter

o can compute moments of weight matrices at initialisation *

* D Roberts, S Yaida, B Hanin,  The Principles of Deep Learning Theory, Cambridge University Press [2106.10165 [cs.LG]] 



Mean squared error loss function 
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activations on final hidden layer: features

network prediction is 
linear combination of 
features

express loss function as
function of features



Neural network as a disordered system
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loss funcoon as a funcoon of features:

with couplings:

resembles disordered “spin” system:
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Neural network phase diagram
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o trained a NN in the teacher-student setup 

o teacher network has fixed weight matrices, student has to learn those, or equivalent ones

o two hidden layers [3,32,16,1]

o vary learning rate/batch size

o vary initial weight matrix variance

o 100 runs for each choice of parameter combination  

o monitor number of ‘’observables’’, loss, grad loss, feature alignment, …
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NN phase diagram: loss at end of training 
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excellent learning 
(loss is small)
~ ferromagnetic phase

no convergence
(loss is large)
 ~ paramagneoc phase

no learning, jamming 
~ spin glass phase

effective temperature
~ learning rate/batch size

disorder ~ variance of weight matrices upon initialisation



Three distinct phases
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convergence

divergence

jamming

evolution of singular values 
of weight matrices
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Three distinct phases
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large loss, nonvanishing gradient

small loss, small gradientlarge loss
large gradient

loss at the end

gradient of loss at the end
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most aligned in 
ferromagnetic phase

alignment between features 
and external field

NN phase diagram: external field alignment
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memory of initial state
mostly preserved in 
glassy phase

correlation in time 
between features

NN phase diagram: correlaDons in Dme
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NN phase diagram and hyperparameters

o   phase diagram in plane spanned by hyperparameters
o   identification of ferro, paramagnetic and jammed or spin glass phases
o   helps in understanding which choice of hyperparameters is preferred
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choose as large                 as possible
with initial variance of weight matrices 
around 1



Theoretical physics analysis of neural networks

o   treat NNs as a system with many fluctuating degrees of freedom
o   hyperparameters are external parameters, like temperature and spin couplings
o   quality and efficiency of learning can be understood by mapping phase diagram 

why explore this?

o   practical implications for ML practitioners: support in hyperparameter tuning 
o   theoretical physicists are/should not satisfied with a ‘black-box’ algorithm
o   we can understand these algorithms by providing physics input
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o   ML algorithms/neural networks are amenable to theoreocal physics methodology 

o   stochasoc weight matrix dynamics à universal features described by RMT

o   eigenvalue repulsion, quanofied by Wigner surmise and semi-circle
      observed in actual ML algorithms

o   choice of hyperparameters can be guided by neural network phase diagrams
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Summary lecture II: SGD, RMT, phase diagrams



o   Dyson Brownian motion is present at “microscopic” level in weight matrix dynamics

o   how does it manifest itself for more advanced architectures?

o   is there universality beyond level repulsion (power law tails)?

o   what are the practical implications? description of learning, algorithmic advances?
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Open questions


