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Background and references

this lecture is mostly based on what we understood working with PhD student Chanju Park

and Biagio Lucini

= GA, B Lucini, Chanju Park, PRD 109 (2024) 3, 034521 [2309.15002 [hep-lat]]

= GA, B Lucini, Chanju Park, PRE 111 (2025) 1, 015303 [2407.16427 [cond-mat.dis-nn]]

= GA, O Hajizadeh, B Lucini, Chanju Park, contribution to NeurlPS 2024 workshop ML
and the Physical Sciences, 2411.13512 [cond-mat.dis-nn]

| also enjoyed

= D Roberts, S Yaida, B Hanin, The Principles of Deep Learning Theory, Cambridge University
Press [2106.10165 [cs.LG]].



https://arxiv.org/abs/2407.16427
https://arxiv.org/abs/2407.16427
https://arxiv.org/abs/2411.13512

Broader relation between ML and QFT/LFT

o what can theoretical physics do for ML? intriguing connections, exchange of methodology
why explore this?

o theoretical physicists are/should not satisfied with a ‘black-box’ algorithm

o in the future: apply these methods to large scale numerical simulations

o should understand and trust them Science4Al

o QFT/LFT: extensive experience in analytical and computational studies of systems with

many fluctuating degrees of freedom —> fairly unique perspective



ML for a theoretical physicist

O

O

O

O

O

neural network = system with many fluctuating degrees of freedom = use statistical mechanics

learning = optimisation: weight matrices are updated using stochastic gradient descent (SGD)

SGD = stochastic matrix dynamics = random matrix theory

Coulomb gas description with effective temperature given by learning rate/batch size

phase diagram of neural networks resembles those of disordered systems



Outline
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basics of feed-forward neural networks (NNs) and stochastic gradient descent (SGD)

stochastic gradient descent, Dyson Brownian motion and random matrix theory

examples: restricted Boltzmann machines, transformers

neural network phase diagram

outlook



Feed-forward neural network

supervised learning: data set D = {x, y}, input x and associated output y

input data x outputy = f(x)

@
O
O
O
\'
©
®
O

NN is a “universal approximator”: ¥ ~ y, should be able to generalise, predict y for unseen data x

combination of linear transformations (matrices) and nonlinear ‘activations’ on the nodes



Feed-forward neural network: explicit function

nr-—i

NN function: Ui(24;0) = z(L)(a:a) — Z W(L) ( (L= 1)(xa)) 0 = {W(l), e W(L)}

pre-activations:

nj

2 (2a) = Y W9 (20(2))

J=1

no
zz-(l) (2) = Z W(l)xj o
j=1




Loss function example: mean squared error

D ng
1 . . 1 .
L(0) = Dl > L (y(za), §(za; 0)) €y, 9) =5 > (i — i)
a=1 i=1
o dient d W, =W, — a6£(9) 0= {w w L)
gradient descent ij i oW, =4 e }

= |earning rate or step size o (usually highly optimised) *

= updates computed over batches of data: batch size | B]

* Adam: A method for stochastic optimization
DP Kingma, J Ba [1412.6980 [cs.LG]]
> 220k cites (Google Scholar)

v" hyperparameters «, |B]



Weight matrix initialisation

o weight matrices need to be initialised

o usual choice  W;; ~ N (0,07, /ni_1)

o introduces another hyperparameter oy

o can compute moments of weight matrices at initialisation *

o simplifies in infinite-width limit (“large N limit”)

* D Roberts, S Yaida, B Hanin, The Principles of Deep Learning Theory, Cambridge University Press [2106.10165 [cs.LG]]
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Data sets

what type of data sets are used?
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o ‘standard’ data sets: MINIST, CIFAR, Imagenet

o popular in stat. mech. community: teacher-student models

= random input x; ~ N (0, 1) teacher NN: random weight matrices W'Z(Jl) ~ N(0,1)

= produces a random output, y, = f(xq;0)

= student has to ‘learn” which weight matrices the teacher used

= useful for analytical studies and numerical experiments
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Stochastic weight matrix dynamics

consider some M x N weight matrix W

0L
update using stochastic gradient descent: W — W/ =W + W  with dW = _QW

obtained from loss function [,[W] , learning rate (or step size) «

1
OW is estimated using a batch B with batch size |B|: IWp = — E oWy
|B| beB
1
fluctuations controlled by finite batch size (CLT): ——+/V[6W)]

13



Stochastic weight matrix dynamics
o using CLT stochasticupdate W — W' = W + dW becomes
1
W =E |[0W|+ ——+/V|0W i 0,1

o orinterms of the gradient of the loss function:

0L Q 0L
W =W —aF | —| + —— it
= ) |B|\/V v "

14



O

From rectangular to symmetric matrices

W is M x N matrix: singular value decomposition: W = U=V’ vt =1 vvli=1

singular values: & (i=1...N) [take N < M without loss of generality]
introduce symmetric semi-positive combination: X = W!W = VDV’

and focus on the singular/eigenvalues (invariant under left/right rotations on W ):

= =I'E = diag (&, ..., &) = diag (z1, ..., zN)

stochastic dynamics: X 5> X' =X+E[6X]+ b V[6X)]

77
VB -



Initialisation: Marchenko-Pastur distribution

o if initial weight matrix W;; ~ N(0,0%)  then X follows Marchenko-Pastur distribution

1
- 2mo2Mrx

Pyp(z) V(zy —z)(z—=z_) r_.<zr<zy r=N/M<I1 ry = Mo? (1:|:\/77)2

v how to choose ¢ : distribution should depend on 7 only, safe to take large IV, M limit

N< M
v’ spectrumis bounded forall7: o%=1/M

PMP(m)zzim\/(fM—fE)(fE—fﬁ—) 0<z_<z<z, <4 $i=(1i\/77)2

16



Stochastic matrix dynamics

what is the framework to consider stochastic matrix dynamics?

goes back to Wigner (1955) and Dyson (1962): random matrix theory (RMT)
stochastic matrix dynamics: Dyson Brownian motion (Dyson, 1962)

first applied to nuclear spectra (1950/60s)

applied in (lattice) QCD to spectrum of Dirac operator

17



Random Matrix Theory (RMT)

o describes universal features of matrices in symmetry classes (symmetric, hermitian, quaternionic)

o level spacing, Coulomb repulsion, Wigner surmise, fluctuations

0.6
o non-universal behaviour: spectral density p.(z) F
0.4 H
o successfully applied in QCD to describe Dirac operator ]
0.2 H
. . . . 0
JJM Verbaarschot and T Wettig, Random matrix theory and chiral symmetry in QCD 0

Ann. Rev. Nucl. Part. Sci. 50 (2000) 343 [hep-ph/0003017 [hep-ph]]

IIIIIIIIIIIIIIIIIIIIIII

A 1416 conf.:

\
|
|
|

B=2.0, [V|=10% -

® 10 15 .20 25
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https://inspirehep.net/literature/524532

Stochastic matrix dynamics:
Dyson Brownian motion and the Coulomb gas

o framework to consider stochastic matrix dynamics for symmetric matrix X

o Dyson Brownian motion (in continuous time for now, see below):

dX;i
o = Kii(X) +/Aijnig

o eigenvalues then evolve according to

Wi Ko+ 35— + Vagun
dt — g\ Lg £ T — 1z, gini

— Ki(eff) (z;) + ﬁgim where VAi = v2g;

19



Dyson Brownian motion and Coulomb gas

T \fgmz-

d
eigenvalues dynamics: Ki(z;) + Z
J#

can be derived using 2nd order perturbation theory (some conditions on noise matrix A;; )

.TZ—CL"?

Coulomb term: eigenvalue repulsion

Fokker-Planck equation (FPE) for distribution of eigenvalues:

P({z:}t) = Za (g20:. — K@) | P}, 1)

20



Dyson Brownian motion and Coulomb gas

FPE: P({zi},1) Zc?xz [(gfﬁmi = Kfeﬁ)(wi))] P({z:},1)

stationary distribution: 1 LN V() /a2
P,({z;}) = = H |z — x| e 2. Vi(®i)/9g;
i<j
with partition function:  Z = /d:cl ...dxy Py({z;})

dﬂ?i

and provided drift can be derived from a potential Ki(x;) = —

known as Coulomb gas, describes universal features of random matrices

21



Back to weight matrix dynamics

: : 1
stochastic dynamics X > X =X+E[X]+——+V[X)]n

VIB|

what can be carried over from Dyson’s matrix dynamics? implications? universality?

g?

eigenvalue equation: x; — 33; =x; +0x; + + \/égmz'
— L — Xy
J7#4
make explicit learning rate and batch size dependence
a ~
55137; = CYKq; , — T q; ~ V[&C/dW] Im

gi gz
VB

22



Back to weight matrix dynamics

2
g.
eigenvalue dynamics: T — 33;, =x; +0x; + — + \/Qgini
—. L — Xy
J7i
insert learning rate and batch size dependence:
: o’ g; a s
T, —> T, = T; + aK; + @ + \/igz'm

7 N VB

no usual scaling of drift and noise with learning rate (Ito calculus: € ,/¢)

only continuous time limit (SDE) in some weak sense Q Li, C Taiand W E [1511.06251]
S Yaida [1810.00004]

23



O

O

O

O

xi—>x§:xi+aK@-—l—

Stationary distribution

distribution for fixed «, |B]
1<J
make explicit dependence on learning rate and batch size

a ~

9i = —F—9i Vi(z;) = oVi(zs)
valsl
if drift vanishes at z; = x; expand potential f/( )

exponential is Gaussian with variance o = (a/|Bl)

universal scaling with
learning rate and batch size

2

Bl 57

~9
g;

iCi—SCj

1 — S Vi(x:) /g2
P({zi}) = - [ 2 — ;] e~ = Vite/si

Vilz:) 1 V(=)

g2 _a/|B|
Vi(z?) + Q(
(37 /%)

model-dependent
factor

\/@

24
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Linear scaling relation

o dependence on «/|B| in training has been observed before, empirically

v' P. Goyal, P. Dollar, R.B. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola et al.,

Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour [1706.02677]
v' S.L. Smith and Q.V. Le,

A Bayesian Perspective on Generalization and Stochastic Gradient Descent [1710.06451]
v S.L. Smith, P. Kindermans and Q.V. Le,

Don’t Decay the Learning Rate, Increase the Batch Size [1711.00489]

o finds a natural place in the framework of Dyson Brownian motion and Coulomb gas

25

GA, B Lucini, Chanju Park, PRE 111 (2025) 1, 015303 [2407.16427 [cond-mat.dis-nn]]



https://arxiv.org/abs/2407.16427
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Manifestations of RMT in weight matrices

RMT predicts universal behaviour:
o universal distribution of level spacing S; = x;,1 — x; : Wigner surmise P(S)

o Coulomb repulsion of eigenvalues

o spectral density is problem-specific p(z < 25 T — I; >

o universal behaviour has indeed been observed for variety of ML algorithms and data sets

o some examples: restricted Boltzmann machine and transformer
27



Restricted Boltzmann Machine: generative network

Information forwarding & retrieval o energy-based method
\ o probability distribution
bi, © € (1,Ny,) ha, a € (1, Ny)

o binary or continuous d.o.f.

I _
, p(¢, h) = e~

Wiq

Visible Hidden

7 = / D$Dh e 5@

one weight matrix: bilinear coupling: ¢! Wh = Z OiW,ahe

o 28



Learning task

o target spectrum should be reflected in weight matrix, i.e.in X = W' W
o evolution from initial Marchenko-Pastur distribution to target distribution
o updates using persistent contrastive divergence with mini-batches

o vary learning rate and batch size

o use very simple target spectrum:

LFT dispersion relation in 1d

doubly degenerate modes

29



Dynamics of learning

from Marchenko-Pastur distribution

to stochastic target distribution
10 modes, 4 doubly degenerate ones
follow evolution of eigenvalues

test predictions from RMT:

distribution

2.00

1.75 A

1.50 A

1.25 A

1.00 +

0.75 -

0.50 -

0.25 -

0.00

Histogram fort = 0.0

0

* induced Coulomb term, eigenvalue repulsion, Wigner surmise

= dependence on learning rate/batch size

30




Eigenvalue repulsion R T T

) . 104 ! | ! | ! |
Coulomb interaction between all
eigenvalues
° LU2F el |
@ 100 ___x”_“_'_8_'__"_"_"_"_"_'3 _______________________________________ —
x..
. ~ | e %0,
repulsion for nonzero = o
learning rate/batch size 0.98 |- """‘“"&NXW -
.....'.'.'."'ZIZZXZ:.:::..
no “perfect learning” unless 096k o |B e _
stochasticity vanishes L % ..... o
0.94 : : : : : : :
overfitting, generalisation, ... 0.000 0.002 0.004 0.006 0.008
a/|B|



Wigner surmise™

S
o distribution P(S) = ——e~5/(47") |evel spacing S = z1 — 72

202

o mean level spacing (S) = / dS SP(S) = /7o

0

o Wigner surmise for s = 5/(S): P(s) = gse

—ms?/4

universal curve

= many RBM training runs, stochasticity due to mini-batches, collect histograms of Z;

= vary learning rate and batch size

* expression is derived in the exercises

32




5 6 ‘

Wigner surmise: 4 degenerate pairs

— Wigner surmise -

0.8 .
_ data collapse

06 -
V) . .
| universality

0.4 .

0.2 .

0.0

33




0.30;

Wigner semi-circle S0

0.05

N |

1 o

o spectral density:  p(z) = <_ E :5(3; _ $Z)> 0.00 X
=1

o for two modes: e“”2/(2"2)

p(z) = Vs [2 /(27 4 \fom= Erf( 20)]

o broadened and flattened Gaussian

o fito parameter and position for each doubly degenerate mode

34



—.’Bz/(202)
(A 2 2 i T
p(x) i e + V27m—FEr (\/ﬁ )]

Wigner semi-circle

o fit to semi-circle for two different K; values with fixed learning rate and batch size

o Binder cumulant Uy = —4/27 ~ —0.148 for semi-circle (vanishes for Gaussian)
].0 | ! | ! : | ! I T ].O ! | ' | : ! I T I
- —— p(2;1.37,0.04) | Uy = —0.164 -~ pla;4.61,0.08) | Uy = —0.140 |
8 —--mm I p? — k= 4.62 T
0 - 6r .
4 | _ -
2 | _ —
070 5.0




Wigner semi-circle and surmise

semi-circle
dependence on learning rate/batch size

0.5 - . - . .
. 3 p
NN =
- -
0.3F -
E _ Q,’G’g
0.2} W -
0.1F » -
2 ape = 2.2001 £ 0.0296 -
O'(?.OO 0.05 0.10 0.15 0.20

o 2
|B|’£Q

S

)

~~—

consistency between surmise
and semi-circle fits

0.5

0.4

0.2

0.1

0.3

O(&



RBM: Wigner surmise and semi-circle

v/ parameter o scales as: 02-2 = (a/|B|) (93/92)

universal scaling model-dependent

v' stochasticity leads to universal features in trained models

v derived and demonstrated that learning rate and finite batch size appear as ratio

(linear scaling rule)

37



Second application: Transtformers

o Gaussian RBM has one weight matrix, target spectrum is known, essentially solvable
in more advanced architectures:

o many weight matrices, target spectra not known, do the spectra even exist?

o what is the loss function landscape? localised minima, flat directions, ... ?

o empirical study following dynamics of eigenvalues of X = WIW

GA, O Hajizadeh, B Lucini, C Park, NeurlIPS 2024 workshop ML and the Physical Sciences, 2411.13512 [cond-mat.dis-nn]



https://arxiv.org/abs/2411.13512

Transformer: nano-GPT

o four attention blocks with each four attention heads: many more matrices

o each attention head:

= one key (K) matrix
) . Main Points of Transformer Architecture
= one query (Q) matrix DECODER

= one value (V) matrix
o matrixsizess M X N = 64 X 16

o about 2.1 X 10° parameters

o use AdamW optimiser Outputer?bedd/

Tokenization

(highly adaptive stepsize during training) T

Entire input sequence Previous output

o trained on opus of Shakespeare

39

https://botpenguin.com/glossary/transformer-architecture


https://botpenguin.com/glossary/transformer-architecture

Transformer: Wigner surmise

o short-distance fluctuations: level spacing described by Wigner surmise

o remains approximately described by RMT prediction (shown K matrix of layer 1)

1.0 ' T ' T ' T - T - 1.0 ' T ' T ' T - T - 1.0 - | - , - , . ,

: ——  Wigner surmise 1 - ——  Wigner surmise . - ——  Wigner surmise
0.8F B Histogram, [teration:0 0.8 B Histogram, [teration:1000 0.8F B Histogram, [teration:5000 -
0.6 4 06 .

I 2]

R
0.4 = 0.4 .
0.2 = 0.2 .
0'OO 1 2 3 4 5 O.OO 1 2 3 4 5
s 5 S
iteration O iteration 1000 iteration 5000

40



Transformer: spectral density

o initialisation: eigenvalues of X = W W follow Marchenko-Pastur distribution

A
s _
Pyp (2;0%, A) = o——+/ (@4 —2)(z —2-) 0(z4 —2)0(z — z)
3.0 T I T I T I T I T
I —— MP Fit 02:0.34,4:0.99 1
2.5 Bl Histogram, Iteration:0

2.0
E15

1.0

0.5

O'%.O 0.2 0.4 0.6 0.8 1.0



Transformer: spectral density

o evolves from initial Marchenko-Pastur distribution to distribution with power decay

o shown K matrix of layer 1

3.0 ' I ' J ' J ' I ' 1.50 T T T T T T T T T T T 1.0 T T T T T T T T T
I —— MP Fit 6°:0.34,4:0.99 1 1 —— MP Fit 6%2:0.60,4:0.90 1 - —— MP Fit ¢%:0.76, A : 0.80
2.5 EE Histogram, Iteration:0 1.25 B Histogram, Iteration:1000 0.8F B Histogram, Iteration:5000 |
2.0 1.00
= ol
<197 = 0-75]
1.0 0.50
0.25

0. :
%.O 0.2 0.4 0.6 0.8 1.0 0 O%.O 0.5 1.0 1.5 2.0 2.9 3.0

xr €T xXr

iteration O iteration 1000 iteration 5000
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Transformer: empirical analysis

requires further understanding:

o what is the “final” target spectrum? does it even exist?

o tail drops as a power, what does this imply? can the power be understood?
what if significant part of the spectrum remains MP: random matrix elements

o how relevant is this part of the spectrum? remove? sparse weight matrices?

see e.g. also CH Martin, MW Mahoney, Traditional and Heavy-

I |
open research questions! Tailed Self Regularization in Neural Network Models, 1901.08276

43


https://arxiv.org/abs/1901.08276
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Phase diagram of neural networks

o stochastic gradient descent introduces stochasticity: strength set by a/|B|

o interpret as effective temperature T = a/|B|

o dependence of learning on hyperparameters

o identify different phases? C Park, GA, B Lucini,
in preparation

— distinguish quality and efficiency of learning

o draw analogy to disordered systems and spin glasses

45



Return to feed-forward neural network

NN function: @i(ica; 9) = Z(L)( a) = Z Wi(L)¢( - 1)(5%))

j=1

pre-activations:

nj

2 (2a) = Y W9 (20(2))

J=1

ng
() = 3 W,
j=1




Weight matrix initialisation

o weight matrices need to be initialised
o usual choice  W;; ~ N (0,07, /ni_1)
o introduces another hyperparameter oy

o can compute moments of weight matrices at initialisation *

* D Roberts, S Yaida, B Hanin, The Principles of Deep Learning Theory, Cambridge University Press [2106.10165 [cs.LG]]
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Mean squared error loss function

|D| nL
£(0) = 15 £ (1(za), 5(2030) £w.9) =5 > (= )’

j
network prediction is 1 — (L) ’
_ o L) g
linear combination of £0) = 2|D| z_:lz_; (yw‘ z_; Wi d)m)
features - "
1 Dl np /nr—1 (L)er (D) NL—1 L)
= 551 YUY WEIOW bjabra — 2 %W bia + Yialia
a=1 i=1 \jk=1 J=1
| . 1 |D| nr—1 1 |D| np—1
express loss function as _ T inie — —— Binbio + C
function of features 2D a;z; : : D ; ; Y



Neural network as a disordered system

loss function as a function of features:

with couplings:

D| nr_1 D] np—1
SN Jibiatia — = 30 hratie
2|D| |D|
a=1 1,7=1 a=1 j7=1
= 1 (L) (D) S ()
Jij = Z Wi "W Rjo = Zyiaw/;j
k=1 i—=1

1
resembles disordered “spin” system: H = —5 Z Jijsisj + Z hjsj

49



VOLUME 35, NUMBER 26 PHYSICAL REVIEW LETTERS 29 DECEMBER 1975

Solvable Model of a Spin-Glass

David Sherrington* and Scott Kirkpatrick
IBM Thomas J. Watson Reseavch Centev, Yorktown Heights, New Yovk 10598
(Received 16 October 1975)

We consider an Ising model in which the spins are coupled by infinite-ranged random
interactions independently distributed with a Gaussian probability density. Both “spin-
glass” and ferromagnetic phases occur. The competition between the phases and the type
of order present in each are studied.

PARA
val
1.00
0.75 kL FERRO
— . Q.Q. Q. 0.50 |k SPIN GLASS
H > E Jij8i8; + E h;s;
] J 0.25 |
0.0 | | l |
0.0 0.25 0.50 0.75 1.00 1.25

Tol

FIG. 1. Phase diagram of spin-glass ferromagnet.



Neural network phase diagram

o trained a NN in the teacher-student setup
o teacher network has fixed weight matrices, student has to learn those, or equivalent ones
o two hidden layers [3,32,16,1]
o vary learning rate/batch size T = ¢/|B]
_ : : : () 2
o vary initial weight matrix variance W;;j ~ N (O, OW/nl_l)
o 100 runs for each choice of parameter combination

o monitor number of “observables”, loss, grad loss, feature alignment, ...

51



NN phase diagram: loss at end of training

~410~2 no convergence
] (loss is large)
101 = E ~ paramagnetic phase

effective temperature
~ learning rate/batch size

T =¢/|B|

¢/|B]

10V -

excellent learning
(loss is small)
~ ferromagnetic phase

no learning, jamming 10—1 !
~ spin glass phase ]

disorder ~ variance of weight matrices upon initialisation >



divergence x

Three distinct phases

evolution of singular values
of weight matrices

jamming x

x10°

I d T

" ¢/|B| =0.031, 1/ow =8




Th ree diStinCt phases gradient of loss at the end

1OO§ rorrTTTTT rorTTTTTT rorrTTTTT L 10_3§ I I T I I 1/O_W:OOO4

; ' —o— 1/ow = 0.008

102 , _ - 1/ow = 0.016

: ® ] s 1oy =0.031

- P & 1 v oy = 0.062
Q 107 | —+= 1oy = 0.125
- o 1oy = 0.250
10-6 r 3 —8— 1/ow = 0.500
et 1 oy = 1.000

—A— 1/ow = 2.000

10—180'_2 ST B 1/oy = 4.000
—o— 1/oy = 8.000

¢/|B|
loss at the end

large loss, nonvanishing gradient x

small loss, small gradient J

x large loss
large gradient
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NN phase diagram: external field alignment

D| np-1 D] np—1
1 1
L(0) =—= Z Z JijGiaPja — 707 Z Z hjaPja
2|D| 4~ £ D| £~ “
a=1 1,7=1 a=1 j=1
x 1073

alignment between features

and external field 10! 2.0
) ar
Q
- 107
10! most aligned in

ferromagnetic phase

1/O-W 55



NN phase diagram: correlations in time

. . . 1 1 1 nr—-i
correlationintime ;¢\ =R Nd(F)] = — L s ()5 (¢
between features ( ) ) S[¢( )¢( )] |S| SEZS |D| (;DnL—l ; ¢ja( ) Ja( )

=1 0.6

101 E :

) O 3 0.4
> 10°F

memory of initial state 0.2
mostly preserved in 10-1 &
glassy phase c

0.0

1/0’W 56



NN phase diagram and hyperparameters

o phase diagram in plane spanned by hyperparameters
o identification of ferro, paramagnetic and jammed or spin glass phases

o helps in understanding which choice of hyperparameters is preferred

choose as large T' = ¢/|B| as possible
with initial variance of weight matrices
around 1

57




Theoretical physics analysis of neural networks

o treat NNs as a system with many fluctuating degrees of freedom
o hyperparameters are external parameters, like temperature and spin couplings

o quality and efficiency of learning can be understood by mapping phase diagram
why explore this?
o practical implications for ML practitioners: support in hyperparameter tuning

o theoretical physicists are/should not satisfied with a ‘black-box’ algorithm

o we can understand these algorithms by providing physics input
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Summary lecture II: SGD, RMT, phase diagrams

o ML algorithms/neural networks are amenable to theoretical physics methodology
o stochastic weight matrix dynamics = universal features described by RMT

o eigenvalue repulsion, quantified by Wigner surmise and semi-circle

observed in actual ML algorithms

o choice of hyperparameters can be guided by neural network phase diagrams
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Open gquestions

o Dyson Brownian motion is present at “microscopic” level in weight matrix dynamics
o how does it manifest itself for more advanced architectures?
o is there universality beyond level repulsion (power law tails)?

o what are the practical implications? description of learning, algorithmic advances?
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