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ML seems to be everywhere

what can ML do for theoretical physics?

what can theoretical physics do for ML? 
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and no, I don’t mean this!

ML seems to be everywhere

what can ML do for theoretical physics?

what can theoretical physics do for ML? 



ML and QFT/LFT

o   ML is explored in lattice field theory in many ways
§  generation of ensembles (generative AI)
§  parameter tuning
§  observable estimation
§  inverse problems 
§  sign problem optimisation
§  …

o   fast moving, exploratory à (quasi-)rigorous?
o   first steps are easy, pursuing the standards we are used to in LFT is harder
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Applications of machine learning to lattice quantum field theory
D Boyda, et al, Snowmass 2021, 2202.05838 [hep-lat]

Physics-driven learning for inverse problems in QCD
G Aarts, K Fukushima, T Hatsuda, A Ipp, S Shi, L Wang, K Zhou

     Nature Rev. Phys. 7 (2025) no.3, 154 [2501.05580 [hep-lat]]

https://arxiv.org/abs/2202.05838
https://arxiv.org/abs/2501.05580


ML and QFT: three lectures

choice is biased by my own interests understanding what I think I understand

§   lecture I: generative AI: diffusion models for LFT

§   lecture II: stochastic gradient descent, random matrix theory and phase diagrams

§   lecture III: selected topics (detection of phase transitions, inverse RG, …)

Please ask questions and interrupt me!
5
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Background and references

this lecture is based on what I learned about diffusion models with Lingxiao Wang, Kai Zhou and 
Diaa Habibi
and about stochastic dynamics with Nucu Stamatescu, Erhard Seiler and Denes Sexty in the 
more ancient past

§  L Wang, GA, K Zhou, JHEP 05 (2024) 060 [2309.17082 [hep-lat]]
§  GA, D Habibi, L Wang, K Zhou, Mach.Learn.Sci.Tech. 6 (2025) 2, 025004 [2410.21212 [hep-lat]]
     and PoS(Lattice 2024) [2412.01919 [hep-lat]]
§  Q Zhu, W Wang, GA, K Zhou, L Wang, 2502.05504 [hep-lat]

PhD students: Diaa Habibi, Qianteng Zhu

https://arxiv.org/abs/2309.17082
https://arxiv.org/abs/2410.21212
https://arxiv.org/abs/2412.01919
https://arxiv.org/abs/2502.05504


Outline

o   generative AI and diffusion models

o   basics: stochastic differential equations (SDEs) and Fokker-Planck equations (FPEs)

o   relation between diffusion models and stochastic quantisation in lattice field theory

o   detailed study using tools of statistical field theory

o   outlook
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Generative AI using diffusion models

9
https://encord.com/blog/diffusion-models/

https://encord.com/blog/diffusion-models/
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denoising

Generative Modeling by Estimating 
Gradients of the Data Distribution
Yang Song, Stefano Ermon
1907.05600 [cs.LG]

interpolation

Score-Based Generative Modeling through 
Stochastic Differential Equations
Yang Song, Jascha Sohl-Dickstein, Diederik P. 
Kingma, Abhishek Kumar, Stefano Ermon, Ben 
Poole, 2011.13456 [cs.LG]

https://arxiv.org/abs/1907.05600
https://arxiv.org/abs/2011.13456


Diffusion model for 2d 𝜙! lattice scalar theory

o   32! lattice, choice of action parameters in symmetric and broken phase
o   training data set generated using Hybrid Monte Carlo (HMC)

o   first application of diffusion models 
      in lattice field theory

generating configurations:
o   broken phase
o   “denoising” (backward process) 
o   large-scale clusters emerge, as expected

τ = 0 τ = 0.25 τ = 0.5 τ = 0.75 τ = 1
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L Wang, GA, K Zhou, JHEP 05 (2024) 060 [2309.17082 [hep-lat]]

https://arxiv.org/abs/2309.17082


Diffusion models: stochastic dynamics
employ stochastic dynamics to generate images or configurations

o  start with data set of images or configurations
 
o  make the images more blurred by applying noise (forward process)

o  learn steps in this process
     … and then revert it

o  create new images from noise

12
https://theaisummer.com/diffusion-models/

https://theaisummer.com/diffusion-models/


Prior and target distributions

o   in terms of distributions: 𝑝" is target (non-trivial), 𝑝# is the prior (easy)

13forward process backward process



Outline

o   generative AI and diffusion models

o   basics: stochastic differential equations (SDEs) and Fokker-Planck equations (FPE)

o   relation between diffusion models and stochastic quantisation in lattice field theory

o   detailed study using tools of statistical field theory

o   outlook
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Diffusion models
three ingredients:

o  target distribution, consisting of real-world data or from known distribution (in physics)
 
o  forward stochastic process

o  backward stochastic process

15https://theaisummer.com/diffusion-models/

https://theaisummer.com/diffusion-models/


Stochastic different equations (SDEs)

o   two main approaches: 
§  denoising diffusion probabilistic models (DDPMs), variance preserving schemes
§  variance expanding schemes

o   unified description using SDEs   [Yang Song, et al, arXiv:2011.13456 [cs.LG]]

o   here: basic intro to set the stage

o   notation can differ (Brownian motion, Wiener process, continuous time, … ) 
Ø      I’ll be non-rigorous but hopefully (!) correct  

o   tutorial exercises will go through most steps in some detail
16

https://arxiv.org/abs/2011.13456


Stochastic different equations (SDEs)

o   one degree of freedom    describe distribution 

o   force/drift term                            stochastic term

o   simple discretisation

o   express dynamics in terms of probability distribution

o  replace noise average by average over distribution:              satisfies Fokker-Planck equation
17



Derivation of FPE from SDE

o   SDE/Langevin equation     

o    replace sum over trajectories by time evolution of distribution

o    Fokker-Planck equation

o    derivation in tutorial exercise

18



Fokker-Planck equation, stationary solution

o   FPE:

o   stationary solution:

o   if force is derivative of action:

o   stationary distribution:    expected result

standard result for Brownian motion, add a few more ingredients:
•   time dependent noise strength, or diffusion coefficient
•   time dependent force

19



Time-dependent noise, diffusion coefficient

o   to cover information at all scales in data set: time dependent noise

o   corresponding FPE:

o   can hence also be seen as reparameterisation of ‘time’

o   in ML jargon: noise schedulers
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Many degrees of freedom, field theory

o   distributions are functionals (path integrals) 

o   SDE

o   FPE
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Evolving distributions

o   apply this framework to evolve distributions forward and backward
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SDE/FPE evolves distribution in time 

o   forward evolution: start from data, erase information but learn along the way

o   add increasing levels of noise, simplest case: no drift term

o   time-dependent noise strength:

o   solution: 

o   variance keeps increasing

o   ‘erases’ the information from the initial data set 
23



o   initial distribution         : two Gaussian peaks (Gaussian mixture)

o   add noise in variance-expanding scheme

o   analytical description

o   peak structure erased

Example: forward evolution

24

FPE:



o   logical separation between data – distribution               – and stochastic process

o   manifold hypothesis: real-world data concentrated on low-dimensional manifolds embedded 
      in a high-dimensional space (the ambient space) 

o    at the end of the forward process, the entire high-dimensional space should be covered

o   adding noise with increasing strength ensures all data structures are captured

Manifold hypothesis
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o   structure emerges from noise: add a drift term, the score

o   from structure of FPE: drift drives distribution to desired target distribution

o   use Anderson equation [B.D.O. Anderson (1982)] 

o   SDE includes new term: score

Backward evolution: the score
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Example: backward evolution

o   target distribution: two Gaussian peaks

o   forward process

o   corresponding backward process

        with 
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score

noise profile

solve FPE for backward process
using two initial distributions



2D example: three Gaussian peaks

28

backward process, starting 
from wide normal distribution

score     during 
backward process



Where does ML come in?

o   so far, analysis of SDEs and FPEs

o   time-dependent distribution   describes forward and backward process

o   in general score              is not known, needs to be “learnt” during forward process

o   score matching

o   minimise loss function

!! !" !!

"! "" "!
!"
!# = f ", # + ( # ) !"

!* = [f ", * − ( * !∇"log 1#(")] + ( * )̅
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Score matching: learn the drift for backward process

o   one degree of freedom, variance-expanding scheme:          

o   time-dependent distribution   describes forward and backward process

o   so-called score            is not known, needs to be “learnt”

o   loss function

o             approximates score, vector field learnt by some neural network

o   introduce conditional distribution              initial data
30



Score matching: learn the drift

o  loss function

o  diffusion process                               easily solved     

o  conditional distribution

o   and hence
       
o   loss function 

tractable, computable
31

(use Jensen’s inequality)



ML applications

o   two main approaches, depending on choice of drift in forward process:

§  denoising diffusion probabilistic models (DDPMs), variance preserving schemes

 linear drift term

§  variance expanding schemes

 no drift term

o   in both cases the transition amplitude             is  is known analytically and setup works

32



Outline

o   generative AI and diffusion models

o   basics: stochastic differential equations (SDEs) and Fokker-Planck equations (FPEs)

o   relation between diffusion models and stochastic quantisation in lattice field theory

o   detailed study using tools of statistical field theory

o   outlook
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Lattice field theory simulations

o   create sequence of configurations to estimate observables

o   statistically independent, satisfy detailed balance, ergodic

o   based on Boltzmann weight              importance sampling

o   hybrid Monte Carlo (HMC) widely used

o   some issues: critical slowing down near phase transitions, topological freezing in the 
      presence of topological sectors, …

o   stochastic quantisation, early proposal for LFT simulations (Parisi & Wu 1980) 
34



Diffusion models and stochastic quantisation

o   configurations are generated during backward process 

o   stochastic process with time-dependent drift and noise strength

o   write   such that

o   then 

35



Diffusion models and stochastic quantisation

o   then

o   very familiar to (lattice) field theorists

o   stochastic quantisation (Parisi & Wu 1980)

o   path integral quantisation via a 
      stochastic process in fictitious time

o   stationary solution of associated Fokker-Planck equation

36



Diffusion models and stochastic quantisation

similarities and differences:

ü  SQ: fixed drift, determined from known action
     constant noise variance (but can be generalised using kernels)
     thermalisation followed by long-term evolution in equilibrium

ü  DM: drift and noise variance time-dependent, learn from data 
     evolution between            , many short runs

side remark: 
I worked on stochastic 
quantisation in QCD 
and theories with a sign 
problem during 2008-2015

GA and IO Stamatescu,
Stochastic quantisation at 
finite chemical potential,
JHEP 09 (2008) 018 
[0807.1597 [hep-lat]]37

https://arxiv.org/abs/0807.1597


Diffusion models and stochastic quantisation

o   diffusion models as an alternative approach to stochastic quantisation

configurations

theory:

e.g. HMC

configurations
stochastic quantisation

diffusion model, forward process

diffusion model, 
backward process
“denoising”

random 
configurations

38



Diffusion model for 2d 𝜙! lattice scalar theory

o   32! lattice, choice of action parameters in symmetric and broken phase
o   training data set generated using Hybrid Monte Carlo (HMC)

o   first application of diffusion models 
      in lattice field theory

generating configurations:
o   broken phase
o   “denoising” (backward process) 
o   large-scale clusters emerge, as expected

τ = 0 τ = 0.25 τ = 0.5 τ = 0.75 τ = 1

39



Diffusion models for LFT

o   in “real-world” applications the target or data distribution is not known analytically

o   only samples are available for learning or training

o   in physics applications, we usually know the theory and and hence the distribution 

o   this allows for use of physical intuition in designing diffusion models

o   physics-conditioned DMs for lattice gauge theory  [2502.05504 [hep-lat]]

o   inclusion of accept/reject step to make algorithm exact [2502.05504 [hep-lat]]

40

https://arxiv.org/abs/2502.05504
https://arxiv.org/abs/2502.05504


Outline

o   generative AI and diffusion models

o   basics: stochastic differential equations (SDEs) and Fokker-Planck equations (FPEs)

o   relation between diffusion models and stochastic quantisation in lattice field theory

o   detailed study using tools of statistical field theory

o   outlook
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Diffusion models

ok, so it seems to work: many questions

o   correlations: how are they destroyed and rebuilt?
o   usually attention is on two-point function or variance 
o   but higher 𝑛-point functions contain interactions in field theory
o   essential for applications in field theory, correlations = interactions
o   focus on moments and cumulants

discuss forward and backward process in more detail

τ = 0 τ = 0.25 τ = 0.5 τ = 0.75 τ = 1

GA, Diaa Habibi, L Wang, K Zhou, Mach.Learn.Sci.Tech. 6 (2025) 2, 025004 [2410.21212 [hep-lat]] 
42

https://arxiv.org/abs/2410.21212


Diffusion models in more detail

o   forward process

o   backward process

two main schemes
o   variance-expanding (VE): no drift
o   variance-preserving (VP) or denoising diffusion probabilistic models (DDPMs):
           linear drift  

43

score

noise profile



Solve forward process

o   forward process

o   initial data from target ensemble

o   solution

o   second moment/cumulant/variance

44

assume first moment vanishes
 



Higher-order moments and cumulants

o   moments      and cumulants            : straightforward algebra

45

variance-expanding 
scheme: no drift

higher cumulants 
conserved!



Proof to all orders

o  generating functionals: average over both noise and target distributions

 moments    cumulants

o   noise average

o   full average

o   cumulant generator

46



Proof to all orders: cumulants 

o   cumulant generator

o  2nd cumulant

o   higher-order 
     cumulants

47

ü  

ü  



Toy model: two-peak distribution 

o   test the predictions in simple zero-dimensional model

o   sum of two Gaussians

o   exactly solvable, all even cumulants non-zero, time-dependent score is known analytically

o   present second moment and higher-order cumulants

48
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2nd cumulant without drift

o   variance-expanding scheme
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2nd cumulant with drift (DDPM)

o   variance-preserving scheme

50

0.0 0.2 0.4 0.6 0.8 1.0

t

0.94

0.95

0.96

0.97

0.98

0.99

1.00

∑
2
/∑

ex
ac

t
2 Numerical

Analytic

0.0 0.2 0.4 0.6 0.8 1.0

ø

0.94

0.96

0.98

1.00

∑
2
/∑

ex
ac

t
2

0.90 0.95 1.00

0.995

1.000

DM

Analytic

forward backward
analytic = analytic score



4th, 6th, 8th cumulant with drift (DDPM)
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4th, 6th, 8th  cumulant without drift
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Comparison between schemes

expectation values at the end of the backward process

ü variance-expanding scheme slightly outperforms variance-preserving scheme
ü can be improved by adapting the noise schedule
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Higher-order cumulants

o   with drift (DDPM): cumulants go to zero, distribution becomes normal

o   without drift (variance-expanding):  higher-order cumulants are conserved,
      up to numerical cancellations, required between moments which increase in time

o   initial conditions for backward process taken from normal distribution

o   score has higher-order cumulants encoded: cumulants are reconstructed

54



Two-dimensional scalar fields

extension to scalar fields trivial: each lattice point is treated separately

o   forward

o   backward

o   two-point function

o   moments    independent of 

55



Generating functionals

o   moment generating

o   cumulant generating

o   higher-order cumulants

full path integral 
with sources

variance
preserving

variance 
expanding

56



𝜙! theory: 2nd, 4th, 6th cumulant without drift
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Extensions

§   U(1) gauge theory in two dimensions, exactness of algorithm, include accept/reject step
      2502.05504 [hep-lat]

§   complex actions à first results at Lattice conference, in progress, 2412.01919 [hep-lat]

§   fermionic models (Gross-Neveu model, Schwinger model) à in progress

58

https://arxiv.org/abs/2502.05504
https://arxiv.org/abs/2412.01919


Incorporate (new/old) ideas in diffusion models

o   exactness à include an accept/reject step

o   thermalisation: score is time dependent, system never thermalises à annealing

o   train at one set of parameters, apply trained model at different set à conditioning

o   apply to 2D U(1) gauge theory

59
Qianteng Zhu, W Wang, GA, K Zhou, L Wang, 2502.05504 [hep-lat]

https://arxiv.org/abs/2502.05504


Incorporate (new/old) ideas in DM dynamics

60

o Metropolis-adjusted Langevin 
     algorithm (MALA)

o annealing stage: thermalisation

o reweighting from 𝛽" to 𝛽

backward process 
(after model has been trained)



Metropolis-adjusted Langevin algorithm (MALA)

o   include an accept/reject step: well-known in Langevin dynamics *

o   include ratio of target distributions
o   and ratios of transition amplitudes
   

61
* G.O. Roberts and J.S. Rosenthal, Optimal scaling of discrete approximations to Langevin diffusions, 
Journal of the Royal Statistical Society: Series B (Statistical Methodology) 60 (1998) 255



Metropolis-adjusted Langevin algorithm (MALA)

o   include an accept/reject step

o   only done towards end of backward process

o   learned score should be fairly close to “exact” score

o   Markov chain starting from each configuration towards end of backward process
62



Annealing

o   score (drift or force in Langevin equation) 
      is time dependent

o   system never thermalises

o   allow for additional steps at fixed score

à annealing

o   strictly speaking not needed, but seems useful

63



Physics conditioning (gauge theory)

o   train using data generated at 𝛽"

o   employ at different 𝛽 values

o   applied to U(1) gauge theory:
      action scales with 𝛽

motivated by stochastic quantisation:

o   drift is proportional to 𝛽

64



Two-dimensional U(1) gauge theory

o   training: 30k configurations at 𝛽 = 1 on 16! obtained using HMC
o   generating: 1024 configs at 𝛽 = 1, 3, 5, 7, 9, 11 on 8!, 16!, 32!

65



Two-dimensional U(1) gauge theory

o   training: 30k configurations at 𝛽 = 1 on 16! obtained using HMC
o   generating: 1024 configs at 𝛽 = 1, 3, 5, 7, 9, 11 on 8!, 16!, 32!

661x1 Wilson loop topological charge

𝛽 = 1	
𝐿 = 16



Two-dimensional U(1) gauge theory

o   training: 30k configurations at 𝛽 = 1 on 16! obtained using HMC
o   generating: 1024 configs at at 𝛽 = 1, 3, 5, 7, 9, 11 on 8!, 16!, 32!	

   

671x1 Wilson loop topological charge

diffusion model 
trained at 𝛽 = 1	
but employed 
at 𝛽 = 7

HMC suffers from 
topological freezing

𝛽 = 7	
𝐿 = 16

see paper for many 
more details and 
open questions



Summary lecture I: diffusion models

§   diffusion models offer a new approach for ensemble generation to explore in LFT
§   learn from data: requires high-quality ensembles

§   closely related to stochastic quantisation
§   moment- and cumulant-generating functionals 
§   higher 𝑛-point functions important in LFT applications

§   include accept/reject step, annealing
§   physics conditioning: train on one ensemble, apply to different couplings, lattice volumes, …
    
§   in progress: application to theories with fermions, gauge theories, complex actions, …
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