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Standard Model predictions:  Buras, et al [arXiv:1303.3820, JHEP 2013],  Bobeth, et al [arXiv:1311.0903, PRL 2014; arXiv:2104.09521], 
Beneke et al [arXiv:1908.07011, JHEP 2019]. 
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1 Introduction

Since the first observation of the decay Bs ! µµ̄ in 2013 there have been steady improve-
ments of the measurement of its branching ratio and also of the one for Bd ! µµ̄ by CMS,
LHCb and ATLAS collaborations [1–3]. In 2020 the three experimental collaborations com-
bined their results to provide the world average of the two-dimensional likelihood in the
space of B(Bs ! µµ̄) and B(Bd ! µµ̄), which give the one-dimensional results [4–6]

B(Bs ! µµ̄) = (2.69+0.37

�0.35
) · 10�9

, (1)

B(Bd ! µµ̄) < 1.6 (1.9) · 10�10 at 90% (95%) CL . (2)

Very recently the LHCb collaboration presented their final results based on the full Run-II
data [7, 8]

B(Bs ! µµ̄) =
�
3.09+0.46 +0.15

�0.43 �0.11

�
· 10�9

, (3)

B(Bd ! µµ̄) < 2.6 · 10�10 at 95% CL , (4)

which imply new world averages. The world averages must be performed by the experimental
collaborations themselves to account properly for all systematic uncertainties. Until then
only provisional averages with varying sophistication are available, as for example presented
in [9], [10] and [11]. We will use here exemplary the value of [11]

B(Bs ! µµ̄) = (2.85 +0.34

�0.31
) · 10�9

, (5)

B(Bd ! µµ̄) < 2.05 · 10�10 at 95% CL . (6)

The other preliminary world averages of B(Bs ! µµ̄) are given in [9] and [10] with very
similar values (2.84 ± 0.33) · 10�9 and (2.93 ± 0.35) · 10�9, respectively. The upper bounds
on B(Bd ! µµ̄) are read o↵ from the 2� contours of the 2-dimensional likelihood plots
in [11], [9] and [10], where the latter two find 2.0 · 10�10 and 2.2 · 10�10 as upper bounds.

On the other hand the present SM values of B(Bq ! µµ̄), based on the calculations over
three decades by several groups [12–19], read

B(Bs ! µµ̄)SM = (3.66± 0.14) · 10�9
, (7)

B(Bd ! µµ̄)SM = (1.03± 0.05) · 10�10
. (8)

Comparing the results in (5) with (7) implies the tension between the SM and the data in
the ballpark of 2� [9, 10].

We would like to point out that such a conclusion is premature because in obtaining the
result in (7) the inclusive determination of |Vcb| has been used with the value |Vcb|B!Xc

=
(42.00 ± 0.64) · 10�3 [20]. For the corresponding exclusive determination of |Vcb|, as for
example |Vcb|B!D = (40.7± 1.1) · 10�3 from B ! D`⌫̄ [21], one finds the branching ratio in
question in the ballpark of (3.44± 0.20) · 10�9 and the reduced tension of 1.4� deeming the
hopes for seeing new physics in this decay at work. Full compatibility between theory and
experiment can be found with the less reliable determination |Vcb|B!D⇤ = (38.8± 1.4) · 10�3

from B ! D
⇤
`⌫̄ [21], which gives B(Bs ! µµ̄)SM = (3.12 ± 0.23) · 10�9. Therefore, taking

all these results into account, in our view the uncertainty of 4% in (7) does not represent
properly the present uncertainty in the SM prediction for the branching ratio in question.
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2 Basic Formulae

In this section we recall the basic formulae for the branching ratios of the leptonic decays
Bq ! µµ̄ and the mass di↵erences in neutralB-meson systems�Mq. Besides the higher order
QCD corrections, we include known next-to-leading (NLO) electroweak (EW) corrections as
well as QED corrections.

The e↵ective Lagrangian for |�B| = 1 decays (q = d, s)

L�B=1 = Nq

X

i

Ci(µb)Oi + h.c. , Nq =
G

2

F
m

2

W

⇡2
V
tb
V

⇤
tq
, (10)

contains the normalization factor Nq, which is chosen to facilitate the renormalization at
NLO in EW interactions [16,26]. The Wilson coe�cients are evaluated at the scale µb ⇠ mb

of the order of the b-quark mass and include NNLO QCD and NLO EW/QED corrections
[16, 17, 27, 28]. At LO in EW/QED interactions the single operator

O10 =
⇥
q̄�

µ
PLb

⇤⇥
µ̄�µ�5µ

⇤
, PL ⌘

1� �5

2
, (11)

is relevant only.1 The time-integrated branching fraction [29], denoted by a bar, is given by

B(Bq ! µµ̄) =
|Nq|

2
M

3

Bq
f
2

Bq

8⇡ �H
q

�qµ

✓
mµ

MBq

◆2 ���Ce↵

10

���
2

, �qµ ⌘

s

1�
4m2

µ

M2

Bq

, (12)

where C
e↵

10
includes

1. the NLO EW corrections from matching the SM at the electroweak scale µew ⇠ 160GeV
and resummed QED corrections to the scale µb ⇠ mb [16].

2. power-enhanced structure-dependent NLO QED corrections between the scales µb and
the scales ⇤QCD [18, 19].

It is the photon-inclusive branching fraction, recovered after including soft-photon final-
state radiation [14, 19]. In the SM the time-integration implies that the lifetime �H

q
of the

heavy-mass eigenstate |BH

q
i has to be used instead of the averaged one [29]. However, time-

integration is at the current precision numerically only relevant for Bs decays. We follow [19]
for the calculation of B(Bq ! µµ̄).

The mass di↵erence of the neutral meson system is governed in the SM by a single
|�B| = 2 operator2

L�B=2 = �
Nq Vtb

V
⇤
tq

4
CVLL(µb)OVLL + h.c. , OVLL =

⇥
q̄�

µ
PLb

⇤⇥
q̄�µPLb

⇤
(13)

with

CVLL(µew) = S0(xt) + . . . , S0(xt) =
4xt � 11x2

t
+ x

3

t

4(1� xt)2
�

3x3

t
ln xt

2(1� xt)3
, (14)

1Here we use the convention C10 = �2CA compared to [15, 17] and C10 = ec10 to [16]. It di↵ers by a
factor of sine-squared of the weak mixing angle to c10 of [27, 28]: C10 = s2W c10 at LO in EW interactions.

2This is also the case of CMFV models, but the function S0(xt) receives additional flavour-universal
contributions.
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http://arxiv.org/abs/arXiv:2411.04268


A. El-Khadra MITP Frontiers 2025, Lecture 2 5

W

µ+

Bs
µ�

Rare leptonic decay Bs → μμ
Branching fractions

6

1 2 3 4 5
]9−) [10−µ+µ → 0

s
(BΒ

SM Prediction
Beneke et al, JHEP 10 (2019) 232 0.14 ± 3.66

LHCb
PRL 118 (2017) 191801  0.6− 

 +0.73.0

CMS
JHEP 04 (2020) 188 0.65− 

 +0.722.94

ATLAS
JHEP 04 (2019) 098  0.7− 

 +0.82.8

ATLAS+CMS+LHCb
BPH-20-003 0.35− 

 +0.372.69

LHCb
PRL 128 (2022) 041801 0.44− 

 +0.483.09

CMS
BPH-21-006 0.41− 

 +0.443.83

No evidence for B0 -> μ+μ-

S. Aoki et al [FLAG 2024 review, arXiv:2411.04268]

0.6%[CMS, Phys Lett B 2023]

http://arxiv.org/abs/arXiv:2411.04268


A. El-Khadra MITP Frontiers 2025, Lecture 2

Heavy Quark discretization errors for HISQ fermions
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Lilly Endowment, Inc., through its support for the Indiana University Pervasive Technology
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This work was supported in part by the U.S. Department of Energy under grants No. DE-
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(S.G.), No. DE-FG02-91ER40661 (S.G.), No. DE-FG02-13ER42001 (A.X.K.), No. DE-
SC0015655 (A.X.K.), No. DE-SC0010005 (E.T.N.), No. DE-FG02-13ER41976 (D.T.),
No. DE-SC0009998 (J.L.); by the U.S. National Science Foundation under grants PHY14-
14614 and PHY17-19626 (C.D.), and PHY13-16748 and PHY16-20625 (R.S.); by the
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Laboratory is supported by the United States Department of Energy, O�ce of Science, O�ce
of High Energy Physics, under Contract No. DE-SC0012704. This document was prepared
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Accelerator Laboratory (Fermilab), a U.S. Department of Energy, O�ce of Science, HEP
User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under
Contract No. DE-AC02-07CH11359.

Appendix A: Tree-level calculations of heavy quarks with HISQ action

The HISQ action for one flavor can be written as

S =
X

x

 (x)

(
X

µ

�µ


a�µ � N

6
a
3�3

µ

�
+ am0

)
 (x), (A1)

where (suppressing the gauge field) a�µ (x) = 1
2 [ (x + µ̂a) �  (x � µ̂a)], m0 is the bare

mass, and N = 1 + ✏ is the coe�cient of the Naik improvement term [91]. The correction ✏

is needed to improve the dispersion relation when m0a 6⌧ 1 [29]. The notation ✏ is used in
Ref. [29]; in Appendix B, however, 1 + ✏ appears, so we use N for brevity.

We are interested in heavy quarks with mass much larger than their typical momentum.
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Follana et al [HPQCD, hep-lat/0610092, 2007 PRD] 
Monahan et al [arXiv:1211.6966, 2013 PRD] 
Bazavov et al [FNAL/MILC, arXiv:1712.09262, 2018 PRD]

Then, the energy can be expanded as

E(p) = m1 +
p2

2m2
+ · · · , (A2)

where m1 and m2 are called the rest and kinetic masses, respectively. At nonzero lattice
spacing, these two masses are no longer identical. The parameter ✏ in the HISQ action is
supposed to be tuned such that the kinetic mass of a quark equals its rest mass, i.e.,

m1

m2
= lim

p!0

E
2(p) � E(0)2

p2
= 1. (A3)

This condition yields

✏ =
4 � 2

p
1 + 3X

sinh2(am1)
� 1, (A4)

X =
2am1

sinh(2am1)
. (A5)

With this exact expression for ✏, we have am2 = am1 to all orders in am0, at the tree level.
The Taylor expansion of ✏, in Eq. (A4), about the origin reads

✏ = �27

40
(am1)

2 +
327

1120
(am1)

4 � 5843

53760
(am1)

6 +
153607

3942400
(am1)

8 � 604604227

43051008000
(am1)

10

+
2175452933

422682624000
(am1)

12 � 1398976049

729966182400
(am1)

14 + · · · . (A6)

The radius of convergence of this series is ⇡/2, which is set by the singularities in the complex
plane from the inverse power of sinh(2am1) in the exact expression. Equation (A6) can be
rewritten as

✏ = �1.67 x
2
h

+ 1.78 x
4
h

� 1.63 x
6
h

+ 1.44 x
8
h

� 1.28 x
10
h

+ 1.16 x
12
h

� 1.07 x
14
h

+ · · · , (A7)

where xh = 2am1/⇡. (The coe�cients have been rounded to two significant figures.) This
expansion converges inside the unit disc in the complex xh-plane, centered at the origin.
One sees that many of the first several coe�cients of this power series are of order 1, and in
this sense, xh can be considered to be a natural expansion parameter.

The bare mass m0 in the quark action is related to its tree-level pole mass by

am0 = sinh(am1)
1 +

p
1 + 3X

3
, (A8)

with X as in Eq. (A5). As with ✏, the Taylor expansion of m0 breaks down at am1 = ⇡/2,
and m0 has a natural series expansion in powers of xh.

Appendix B: Normalization of staggered bilinears when am0 6⌧ 1

From Ref. [89] for massive Wilson fermions, it follows that when am0 6⌧ 1 a bilinear can
lose the conventional normalization. In this appendix, we derive the factor needed to restore
this normalization for the pseudoscalar density of (improved) staggered fermions. To this
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Appendix A: Analysis of staggered correlation functions

As demonstrated in Ref. [154], averaging over adjacent time slices can dramatically sup-
press contributions from oscillating states. Consider a two-point correlation function C2(t)
Let E denote the ground state energy. Then the averaged two-point function is C2(t):

C2(t) =
e
�Et

4


C2(t)

e�Et
+

2C2(t+ 1)

e�E(t+1)
+

C2(t+ 2)

e�E(t+2)

�
, (A1)

=
|h;| O |Ei|2

2E
e
�Et +O(�E

2), (A2)

where O is an interpolating operator as given in Table III and |;i is the QCD vacuum.
Similarly, consider a three-point correlation function C3(t, T ) with ground states EL and
EH at the source and sink, respectively, and connected by the current J . The averaged
three-point function is C3(t, T ):

C3(t, T ) =
e
�ELte

�EH(T�t)

8
⇥


C3(t, T )

e�ELte�EH(T�t)
+

2C3(t+ 1, T )

e�EL(t+1)e�EH(T�t�1)
+

C3(t+ 2, T )

e�EL(t+2)e�EH(T�t�2)
(A3)

+
C3(t, T + 1)

e�ELte�EH(T+1�t)
+

2C3(t+ 1, T + 1)

e�EL(t+1)e�EH(T�t)
+

C3(t+ 2, T + 1)

e�EL(t+2)e�EH(T�t�1)

�

=
h;| OL |ELi hEL| J |EHi hEH | OH |;i

4ELEH

e
�ELte

�EH(T�t) +O(�E
2
H
,�E

2
L
). (A4)

These averaged two- and three-point functions are used in Eqs. (4.10)–(4.12).

Appendix B: Discretization errors for HISQ

Several of the results in this appendix were first derived in Ref. [155]. Our discussion
follows closely that of Ref. [32]. Let am0 and am1 denote a quark’s bare and rest masses,
respectively. The two quantities are related by the transcendental equation

am0 = afSh(am1) = sinh(am1)

✓
1� 1

6
N(am1) sinh

2(am1)

◆
. (B1)

In this expression, N(am1) denotes the coe�cient of the Naik improvement term appearing
in the HISQ action

N(am1) =
4� 2

p
1 + 3X(am1)

sinh2(am1)
, (B2)

X(am1) =
2am1

sinh(2am1)
. (B3)

When bare masses are not small, am0 6⌧ 1, quark bilinears can lose their conventional
normalization. This phenomenon has been discussed in the literature for both Wilson [156,
157] and staggered fermions. Consider a quark bilinear containing a heavy quark h and a
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As demonstrated in Ref. [154], averaging over adjacent time slices can dramatically sup-
press contributions from oscillating states. Consider a two-point correlation function C2(t)
Let E denote the ground state energy. Then the averaged two-point function is C2(t):

C2(t) =
e
�Et

4


C2(t)

e�Et
+

2C2(t+ 1)

e�E(t+1)
+

C2(t+ 2)

e�E(t+2)

�
, (A1)

=
|h;| O |Ei|2

2E
e
�Et +O(�E

2), (A2)

where O is an interpolating operator as given in Table III and |;i is the QCD vacuum.
Similarly, consider a three-point correlation function C3(t, T ) with ground states EL and
EH at the source and sink, respectively, and connected by the current J . The averaged
three-point function is C3(t, T ):

C3(t, T ) =
e
�ELte

�EH(T�t)

8
⇥


C3(t, T )

e�ELte�EH(T�t)
+

2C3(t+ 1, T )

e�EL(t+1)e�EH(T�t�1)
+

C3(t+ 2, T )

e�EL(t+2)e�EH(T�t�2)
(A3)

+
C3(t, T + 1)

e�ELte�EH(T+1�t)
+

2C3(t+ 1, T + 1)

e�EL(t+1)e�EH(T�t)
+

C3(t+ 2, T + 1)

e�EL(t+2)e�EH(T�t�1)

�

=
h;| OL |ELi hEL| J |EHi hEH | OH |;i

4ELEH

e
�ELte

�EH(T�t) +O(�E
2
H
,�E

2
L
). (A4)

These averaged two- and three-point functions are used in Eqs. (4.10)–(4.12).

Appendix B: Discretization errors for HISQ

Several of the results in this appendix were first derived in Ref. [155]. Our discussion
follows closely that of Ref. [32]. Let am0 and am1 denote a quark’s bare and rest masses,
respectively. The two quantities are related by the transcendental equation

am0 = afSh(am1) = sinh(am1)

✓
1� 1

6
N(am1) sinh

2(am1)

◆
. (B1)

In this expression, N(am1) denotes the coe�cient of the Naik improvement term appearing
in the HISQ action

N(am1) =
4� 2

p
1 + 3X(am1)

sinh2(am1)
, (B2)

X(am1) =
2am1

sinh(2am1)
. (B3)

When bare masses are not small, am0 6⌧ 1, quark bilinears can lose their conventional
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157] and staggered fermions. Consider a quark bilinear containing a heavy quark h and a
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Tree-level HISQ action:

Naik term:

➠

Normalization of heavy-light bilinears: 

end, we also need to think of HQET as a theory of cuto↵ e↵ects, applied directly to lattice
gauge theory [90].

The starting point is the time evolution of the fermion propagator at zero momentum.
Using the residue theorem (� is real, small, and positive),

C(0, x4) =

Z (⇡+�)/a

�(⇡��)/a

dp4

2⇡
e
ip4x4

�i�4S̃4 + m0

S̃
2
4 + m

2
0

=
1
fCh

e
�m1|x4|


1 ± �4

2
+ e

�i⇡|x4|/a1 ⌥ �4

2

�
, (B1)

where the upper (lower) sign in front of �4 is for x4 > 0 (x4 < 0), and

aS̃4(p) = sin ap4

�
1 + 1

6N sin2
ap4

�
, (B2)

afSh = sinh am1

�
1 � 1

6N sinh2
am1

�
, (B3)

fCh = cosh am1

�
1 � 1

2N sinh2
am1

�
. (B4)

The rest mass m1 is obtained from the bare mass m0 via

m0 = fSh. (B5)

Equation (B1) consists of an unwanted normalization factor, the exponential fall-o↵ in Eu-
clidean time, and (correctly normalized) Dirac matrices for two species: the one with the
factor e

�i⇡|x4|/a is the time doubler. States with energy near the cuto↵ are omitted, and one
should bear in mind that other doublers with energy m1 can be found in other corners of
the spatial Brioullin zone. None of these staggered features is important here.

The first factor implies that the external line factors for zero-momentum fermion and
antifermion states are

 (x)|q(⇠,0)i = fCh
�1/2

u(⇠,0)e�m1x4 , (B6)

 ̄(x)|q̄(⇠,0)i = fCh
�1/2

v̄(⇠,0)e�m1x4 , (B7)

when the fermion states are normalized to

hq(⇠0,p0)|q(⇠,p)i = (2⇡)3�(p0 � p)�⇠
0
⇠
, (B8)

and similarly for single-antiquark states.
With naive or staggered fermions, the pseudoscalar density appearing in the Ward identity

of the exact remnant of chiral symmetry is the local one:

Phx(x) =  ̄h(x)i�5 x(x) (B9)

using the notation of the naive formulation. Let us consider two matrix elements of the
pseudoscalar density, namely when the x quark is nonrelativistic or ultrarelativistic. To the
order needed, one finds

h0|Phx(0)|qx(⇠x,0)q̄h(⇠h,0)i = fCh
�1/2

h
fCh

�1/2

x
w

†
⇠h

w⇠x , (B10)
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h0|Phx(0)|qx(⇠x,px)q̄h(⇠h,ph)i =
⇣
2fChh

⌘�1/2

w
†
⇠h


1 � (� · p̂x)(� · ph)

2m0h

�
w⇠x + O(p2),

(B11)

for the nonrelativistic and ultrarelativistic cases, respectively, where w
†
⇠h

and w⇠x are two-
component spinors, and p̂x = px/|px|. Similar results hold for other local bilinear currents.

These tree-level calculations reveal two important features about the heavy-quark dis-
cretization e↵ects. First, depending on whether the x quark is a nonrelativistic or ultrarel-
ativistic, matrix elements should be multiplied by a factor

ZJhx
= fCh

1/2

h
fCh

1/2

x
, (B12)

ZJhx
= fCh

1/2

h
(B13)

to remove tree-level mass-dependent discretization e↵ects at the leading order in |ph|/m0h.7

Second, the next order in the HQET expansion requires an additional correction (as is the
case with Wilson fermions [89, 90]) to ensure the correct normalization of this term. It is,
however, proportional to

1

m0h
� 1

m1h
=

1 � m0h/m1h

m0h
. (B14)

The numerator’s leading discretization errors are of order x
4
h

and ↵sx
2
h
, owing to the tree-

level Naik improvement term, and the dimensions are balanced, in a heavy-light meson, by
⇤HQET or mx. As in Appendix A, xh = 2am1h/⇡ is the natural expansion parameter for
organizing heavy-quark discretization errors.

To arrive at the decay constant, the pseudoscalar density must be multiplied by the
sum of the quark masses. From the axial Ward identity, the combination m0x + m0h is
natural. This quantity would, however, introduce heavy-quark discretization e↵ects that
can be avoided by using m1x +m1h instead. With this choice and Eq. (B13) for normalizing
�Hx , all heavy-quark discretization errors are suppressed by either ↵s or ⇤HQET/MHx or
both.

Appendix C: Covariance matrix for decay constants

Tables XV and XVI provide the correlation and covariance matrices for our decay-
constant results, respectively, to enable future phenomenological studies.

7 For a light quark (mx . 2⇤QCD), fChx deviates from 1 by e↵ects as small or smaller than other discretization

e↵ects. In particular fChx = 1 + O(a2
m

2
x) for the unimproved action with N = 0 and fChx = 1 + O(a4

m
4
x)

for the improved actions with N = 1 or N = 1 + ✏.
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remaining discretization errors: 
∼ (amh)4, αs(amh)2
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FIG. 6. Distribution of four-flavor QCD gauge-field ensembles used in this work. Ensembles that
are new with respect our previous analysis [23] are indicated with black outlines. Ensembles with
unphysical strange-quark masses are shown as gold disks with orange outlines. The area of each
disk is proportional to the statistical sample size Nconf ⇥ Nsrc. The physical, continuum limit is
located at (a = 0, M⇡ ⇡ 135 MeV).

charm and bottom quarks with controlled discretization errors. Figure 7 shows the range
of valence heavy-quark masses used in our analysis. On the coarsest a ⇡ 0.15 and 0.12 fm
ensembles, we have only two values mh = 0.9m0

c
and m

0
c
; on our finest a ⇡ 0.042 and 0.03 fm

ensembles, however, we have several heavy-quark masses between 0.9m0
c

 mh  5m0
c
,

reaching just above the physical b-quark mass. Second, as discussed in Sec. III, we have
large statistical sample sizes, with about 4,000 samples on most ensembles and large lattice
volumes; the resulting errors on the decay constants range from 0.04% to 1.4%.

Because of the breadth and precision of the data set, it is a challenge to find a theo-
retically well-motivated functional form that is sophisticated enough to describe the whole
data set. We therefore rely on several EFTs to parameterize the dependence of our data
on each of the independent variables just described: Symanzik e↵ective field theory for lat-
tice spacing dependence [37], chiral perturbation theory for light- and strange-quark mass
dependence, and heavy-quark e↵ective theory for the heavy-quark mass dependence. These
EFTs are linked together within heavy-meson rooted all-staggered chiral perturbation the-
ory (HMrAS�PT) [64]. Here we use the one-loop HMrAS�PT expression to describe the
nonanalytic behavior of the interaction between pion (and other pseudo-Goldstone bosons)
and the heavy-light meson, and supplement it with higher-order analytic functions in the
light- and heavy-quark masses and lattice spacing to enable a good correlated fit.

Even with these additional terms, however, the extrapolation a ! 0 and the interpolation
mh ! mb oblige us to restrict the range of amh. In practice, we are able to obtain a good
correlated fit of our data with heavy-quark masses amh  0.9. Note, however, that our final
fit function describes even the data with amh > 0.9 quite well.

20

MILC nf = 2+1+1

A. Bazavov et al [FNAL/MILC, arXiv:1712.09262, 2018 PRD]

0 0.03 0.06 0.09 0.12 0.15 0.18
a (fm)

0

1

2

3

4

5

6

m
h
/m

ć
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FIG. 7. Valence heavy-quark masses vs. lattice-spacings of ensembles used in this calculation,
in units of the simulation charm sea-quark mass. Symbol shapes indicate the value of the light
sea-quark masses, with diamonds, squares, and circles corresponding to m

0
l
= m

0
s/5, m

0
s/10, and

physical, respectively. The symbol area is proportional to the statistical sample size. The black
(gray) hyperbola shows amh = 0.9 (amh = ⇡/2). The horizontal dashed lines indicate the physical
bottom and charm masses.

Even with these additional terms, however, the extrapolation a ! 0 and the interpolation
mh ! mb oblige us to restrict the range of amh. In practice, we are able to obtain a good
correlated fit of our data with heavy-quark masses amh  0.9. Note, however, that our final
fit function describes even the data with amh > 0.9 quite well.

The rest of this section is organized as follows. In Sec. VA, we construct an EFT-based
fit function with enough parameters (60) to describe the data as a function of the light- and
heavy-quark masses and lattice spacing. For convenience, the complete final expression is
written out in Sec. V B. Next, Sec. VC explains how we convert our decay-constant data
from lattice units to “p4s units” and, eventually, to MeV. Finally, we describe how the fit
works in practice and present our final fit used to obtain the decay-constant central values
and errors in Sec. V D.

A. E↵ective-field-theory fit function for heavy-light decay constants

Recall that Hx denotes a generic heavy-light pseudoscalar meson composed of a light
valence quark x and a heavy valence antiquark h̄, with masses mx and mh, respectively.
The decay constant and mass of Hx are fHx and MHx , respectively. In heavy-quark physics,
the conventional decay constant is defined and normalized as �Hx ⌘ fHx

p
MHx .

We start with massless light quarks, with �0 and M0 denoting the decay constant and
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FIG. 8. Decay constants plotted in units of fp4s vs the heavy-strange meson mass for physical-mass
ensembles at three lattice spacings, and continuum extrapolation. For each color there are two sets
of data and fit lines: one with valence light mass mx = ms (higher one), and one with mx = mu.
The dashed vertical lines indicate the cut amh = 0.9 for each lattice spacing, and data points (with
open symbols) to the right of the dashed vertical line of the corresponding color are omitted from
the fit. The width of the fit lines shows the statistical error coming from the fit. The solid vertical
lines indicate the D and B systems, where MHs = MDs and MHs = MBs , respectively.

Altogether we have 492 lattice data points in the base fit and 60 parameters in the EFT
fit function. The fit has a correlated �

2
data/dof = 466/432, giving p = 0.12. Figure 8

shows a snapshot of the decay constants for physical-mass ensembles, plotted versus the
corresponding heavy-strange meson masses MHs at three lattice spacings. The continuum
extrapolation is also shown. The valence light mass mx is tuned either to ms (upper points)
or to mu (lower points). Data points with open symbols that are at the right of the dashed
vertical line of the corresponding color are omitted from the fit because they have amh > 0.9.
The fact that the fit lines agree well with the omitted points is evidence that we have not
overfit the data. In the continuum extrapolation, the masses of sea quarks are set to the
correctly-tuned, physical quark masses ml, ms, and mc, while at nonzero lattice spacing the
masses of the sea quarks take the simulated values.

The width of the fit lines in Fig. 8 shows the statistical error coming from the fit, which
is only part of the total statistical error, since it does not include the statistical errors in the
inputs of the quark masses and the lattice scale. To determine the total statistical error of
each output quantity, we divide the full data set into 20 jackknife resamples. The complete
calculation, including the determination of the inputs, is performed on each resample, and
the error is computed as usual from the variations over the resamples. (For convenience, we
kept the covariance matrix fixed to that from the full data set, rather than recomputing it
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• small errors due to physical light quark masses 
• improved quark action with small discretization errors 
• no renormalization (Ward identity)

A. Bazavov et al [FNAL/MILC, arXiv:1712.09262, 2018 PRD]

8.8

9.0
©Hs/f

3/2
p4s (for multiple values of MHs/MDs)

2.73

8.6

8.8

2.5

8.3

8.5

2.25

8.0

8.2

2

7.6

7.8

1.75

7.1

7.3

1.5

6.5

6.7

1.25

0.0 0.2 0.4 0.6 0.8 1.0
(amh)2

5.8

6.0

1


