Exercises for Lattice determinations of α_s

MITP School "Frontiers and challenges in Lattice Gauge Theory" Jul 20 2025 - Aug 2 2025 Alberto ramos <alberto.ramos@ific.uv.es>

Problem 1 Show that the first two coefficients of the β -function are in fact universal.

1. Assume that one coupling g_s^2 has a β_s -function with asymptotic expansion

$$\mu \frac{\mathrm{d}}{\mathrm{d}\mu} g_{\mathrm{s}}(\mu) = \beta_{\mathrm{s}}(g_{\mathrm{s}}) \stackrel{g_{\mathrm{s}} \to 0}{\sim} - g_{\mathrm{s}}^{3}(b_{0} + b_{1}g_{\mathrm{s}}^{2} + \dots)$$

2. Now assume that another coupling $g_{s'}(\mu)$ is perturbatively related with $g_s(\mu)$ via the relation

$$g_{s'}^2(\mu) \stackrel{g_s \to 0}{\sim} g_s^2(\mu) + c_{ss'}g_s^4(\mu) + \dots$$

3. Show that the $\beta_{S'}$ function has also the same asymptotic expansion

$$\mu \frac{\mathrm{d}}{\mathrm{d}\mu} g_{s'}(\mu) = \beta_{s'}(g_{s'}) \stackrel{g_{s'} \to 0}{\sim} - g_{s'}^3(b_0 + b_1 g_{s'}^2 + \dots)$$

Problem 2 From the exact formula of the Λ_s parameter associated with the coupling $g_s(\mu)$

$$\frac{\Lambda_{\rm s}}{\mu} = \left[b_0 g^2\right]^{-\frac{b_1}{2b_0^2}} e^{-\frac{1}{2b_0 g^2}} \exp\left\{-\int_0^g \mathrm{d}x \left[\frac{1}{\beta_{\rm s}(x)} + \frac{1}{b_0 x^3} - \frac{b_1}{b_0^2 x}\right]\right\}$$

1. Show that the integral is finite. i.e. that the integral behaves as $\overset{x\to 0}{\sim} \mathcal{O}(x)$ given the asymptotic expansion

$$\beta_{\rm s}(g_{\rm s}) \stackrel{g_{\rm s} \to 0}{\sim} -g_{\rm s}^3(b_0 + b_1 g_{\rm s}^2 + \dots)$$

2. Show that if another coupling $g_{s'}(\mu)$ is perturbatively related with $g_s(\mu)$ via the relation

$$g_{s'}^2(\mu) \stackrel{g_s \to 0}{\sim} g_s^2(\mu) + c_{ss'}g_s^4(\mu) + \dots$$

the ratio of Λ -parameters is exactly given by

$$\frac{\Lambda_{\rm s'}}{\Lambda_{\rm s}} = \exp\left(\frac{-c_{\rm ss'}}{2b_0}\right) \,.$$

A future extraction of α_s

Problem 3 Using Gradient Flow techniques, one can define not only the standard t_0 scale, but the general t_x scale, defined by the condition

$$t_{\mathbf{x}}^{2}\langle E(r_{\mathbf{x}})\rangle = \mathbf{x} \tag{1}$$

In a close future Alice has managed to do an impressive calculation: The ratio

$$\frac{t_0}{t_{0.088}} = \lim_{a \to 0} \frac{t_0/a^2}{t_{0.088}/a^2} = 16.97(23). \tag{2}$$

(Note that $t_{0.088}$ is a very short distance scale. Alice has simulated lattice spacings $a \approx 0.01, 0.013, 0.017, 0.024$, using lattices as large as $400^3 \times 800$. This was only possible thanks to several improvements in algorithms [Kanwar lectures]).

- Using (current $N_f = 3$) value $\sqrt{t_0} = \sqrt{t_{0.3}} = 0.14474(57)$ fm, determine $t_{0.088}$ in physical units.
- Determine

$$\alpha_{\rm GF}(\mu_{0.088}) = \frac{4\pi}{3} t_{0.088}^2 \langle E(t_{0.088}) \rangle , \qquad \left(\mu_{\rm x} = \frac{1}{\sqrt{8t_{\rm x}}}\right)$$
 (3)

• Using the known perturbative relation

$$\alpha_{\rm GF}(\mu) \stackrel{\alpha \to 0}{\sim} \alpha_{\overline{\rm MS}}(\mu) + 1.122\alpha_{\overline{\rm MS}}^2(\mu) - 1.174\alpha_{\overline{\rm MS}}^3(\mu) + \dots \tag{4}$$

determine $\alpha_{\overline{\rm MS}}(\mu_{\rm x})$

- Determine using the known $N_f = 3$ coefficients of the $\beta_{\overline{\rm MS}}$ function (see below), the value of $\Lambda_{\overline{\rm MS}}^{(3)}$
- As an estimate of the PT error, determine the contribution of the last known perturbative order in Eq. (3) to $\Lambda_{\overline{\rm MS}}^{(3)}$.

If you can do it, propagate the errors of t_0 and $t_0/t_0.088$ into Λ . Compare it with your estimate of the PT errors.

b0 = 0.056993165798815

b1 = 0.0025664955636710844

b2 = 0.00016349868861254387

b3 = 1.9442896826846894e-5

b4 = 1.3280696495205311e-6

Problem 4 Using Gradient Flow techniques we have determined in finite volume the step scaling function. The continuum values are given in table 1.

- 1. Parametrize the step scaling function, and fit the data to the parametrization.
- 2. With your parametrization, start a recursion at $g^2(\mu_0) = 11.31$, and determine the values of $g^2(2^k\mu)$ for $k = 1, \ldots, 4$.
- 3. You are covering a factor $2^4 = 16$ in scale. Compare the cost (assuming a cost $\propto (L/a)^6$) to the numerical exercise of the previous exercise.

u_i	$\sigma_i = \sigma(u_i)$	
6.5489	14.005(175)	14.184(197)
5.8673	11.464(123)	11.654(146)
5.3013	9.371(79)	9.468(89)
4.4901	7.139(47)	7.181(51)
3.8643	5.622(28)	5.641(30)
3.2029	4.354(19)	4.367(21)
2.7359	3.541(14)	3.550(15)
2.3900	2.991(10)	2.996(10)
2.1257	2.575(9)	2.578(9)

Table 1: Step scaling function in the continuum. Each value has been obtained from a set of three pairs of simulations (8 \rightarrow 16; 12 \rightarrow 24; 16 \rightarrow 32) to control the continuum limit. Columns two and three are two different models for the continuum extrapolation.