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Problem 1 Show that the first two coefficients of the β-function are in fact universal.

1. Assume that one coupling g2s has a βs-function with asymptotic expansion

µ
d

dµ
gs(µ) = βs(gs)

gs→0∼ − g3s (b0 + b1g
2
s + . . . )

2. Now assume that another coupling gs′(µ) is perturbatively related with gs(µ) via the
relation

g2s′(µ)
gs→0∼ g2s (µ) + css′g

4
s (µ) + . . . .

3. Show that the βs′ function has also the same asymptotic expansion

µ
d

dµ
gs′(µ) = βs′(gs′)

gs′→0∼ − g3s′(b0 + b1g
2
s′ + . . . )

Problem 2 From the exact formula of the Λs parameter associated with the coupling gs(µ)
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1. Show that the integral is finite. i.e. that the integral behaves as

x→0∼ O(x) given the
asymptotic expansion

βs(gs)
gs→0∼ − g3s (b0 + b1g

2
s + . . . )

2. Show that if another coupling gs′(µ) is perturbatively related with gs(µ) via the rela-
tion

g2s′(µ)
gs→0∼ g2s (µ) + css′g

4
s (µ) + . . . .

the ratio of Λ-parameters is exactly given by

Λs′

Λs
= exp

(−css′

2b0

)
.

A future extraction of αs

Problem 3 Using Gradient Flow techniques, one can define not only the standard t0 scale,
but the general tx scale, defined by the condition

t2x⟨E(rx)⟩ = x (1)

In a close future Alice has managed to do an impressive calculation: The ratio

t0
t0.088

= lim
a→0

t0/a
2

t0.088/a2
= 16.97(23) . (2)

(Note that t0.088 is a very short distance scale. Alice has simulated lattice spacings a ≈
0.01, 0.013, 0.017, 0.024, using lattices as large as 4003×800. This was only possible thanks
to several improvements in algorithms [Kanwar lectures]).
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• Using (current Nf = 3) value
√
t0 =

√
t0.3 = 0.14474(57) fm, determine t0.088 in

physical units.

• Determine

αGF(µ0.088) =
4π

3
t20.088⟨E(t0.088)⟩ ,

(
µx =

1√
8tx

)
(3)

• Using the known perturbative relation

αGF(µ)
α→0∼ αMS(µ) + 1.122α2

MS
(µ)− 1.174α3

MS
(µ) + . . . (4)

determine αMS(µx)

• Determine using the known Nf = 3 coefficients of the βMS function (see below), the

value of Λ
(3)

MS

• As an estimate of the PT error, determine the contribution of the last known per-

turbative order in Eq. (3) to Λ
(3)

MS
.

If you can do it, propagate the errors of t0 and t0/t0.088 into Λ. Compare it with your
estimate of the PT errors.

b0 = 0.056993165798815
b1 = 0.0025664955636710844
b2 = 0.00016349868861254387
b3 = 1.9442896826846894e-5
b4 = 1.3280696495205311e-6

Problem 4 Using Gradient Flow techniques we have determined in finite volume the step
scaling function. The continuum values are given in table 1.

1. Parametrize the step scaling function, and fit the data to the parametrization.

2. With your parametrization, start a recursion at g2(µ0) = 11.31, and determine the
values of g2(2kµ) for k = 1, . . . , 4.

3. You are covering a factor 24 = 16 in scale. Compare the cost (assuming a cost
∝ (L/a)6) to the numerical exercise of the previous exercise.
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ui σi = σ(ui)

6.5489 14.005(175) 14.184(197)
5.8673 11.464(123) 11.654(146)
5.3013 9.371(79) 9.468(89)
4.4901 7.139(47) 7.181(51)
3.8643 5.622(28) 5.641(30)
3.2029 4.354(19) 4.367(21)
2.7359 3.541(14) 3.550(15)
2.3900 2.991(10) 2.996(10)
2.1257 2.575(9) 2.578(9)

Table 1: Step scaling function in the continuum. Each value has been obtained from a set
of three pairs of simulations (8 → 16; 12 → 24; 16 → 32) to control the continuum limit.
Columns two and three are two different models for the continuum extrapolation.
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