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RUNNING CIRCUITS ON THE IBM QUANTUM PLATFORM

IBM allows anyone to run quantum circuits on some of their digital quantum computers, as well as quantum
simulators, for free. In order to do so, you will need to register via IBM’s Quantum Experience. Once you do so, you
can run up to 10minutes of circuits per month.

The language that IBM uses to construct and communicate with their machine is Qiskit. You can find documentation
here: Introduction to Qiskit. Qiskit is a Python-based software specifically built to write machine code for quantum
computers. To learn how to write circuits, the tutorial on circuit construction is quite useful: Constructing Circuits.

I provide hints to the problems on the very last page (after an empty page). Feel free to refer to this, though I
encourage you to do so only after giving yourself a day to ruminate on the problems.

I. GHZ STATE

Recall from Monday’s lecture that it is possible to construct an entangled state on a quantum computer. In
particular, we constructed a Bell State, a two-qubit entangled state,
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This was done via the following circuit
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In this problem, you will construct the Greenberger—Horne—Zeilinger (GHZ) state, a three-particle entangled
state and run it on a quantum computer, to determine the effects of noise.
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1. Construct a circuit that creates the GHZ state,
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Is there an alternative circuit that can create this state?
Bonus question: can you generalize this to a GHZ state with an arbitary number of qubits, ie
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where n is the total number of qubits.

2. For three qubits, what are the eight states that fully span the Hilbert space? What is the probability of measuring
these states?

3. Now, run this circuit on a (real) quantum device. Remember to repeat the circuit sufficiently many times to have
your result be statistically sufficient (this is controlled by altering the number of shots). What are the measured
probabilities of each of the states from above? Do they match your prediction? Why or why not?

II. QUANTUM SIMULATION OF THE QUANTUM HARMONIC OSCILLATOR

Whenever I begin working with a new tool or technique, I find it incredibly illuminating to first apply it to a
situation where I already know what the answer should be. Often times, the quantum harmonic oscillator is perfect for
this. The goal of this problem is to help you start thinking about Hamiltonian formulations, the connections between
matrix representations and quantum circuits and the various considerations you must weigh when trying to simulate
quantum field theories on quantum computers.

1. Recall that the Hamiltonian for a Quantum Harmonic Oscillator (QHO) can be written in one of two forms
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The form of the Hamiltonian that we will work with is the first, as it will be easiest to generalize the methods
you develop here to other systems. Since quantum circuits (and quantum simulation) is nothing more than
matrix multiplication, the first step is to convert this Hamiltonian into a matrix. In order to do this, we must
choose a basis. For simplicity, let us work in the position basis.

What is the form of the operators Z and p in the position basis? As written, can this matrix be implemented on
a (digital) finite computer, with a finite number of qubits?

I am putting a page break here as the next questions provide the answer to this question. I strongly encourage
you to NOT read ahead until you have thought about this question



2. In order to implement this system onto a quantum computer, the operators & and p must be discretized and
truncated. This is somewhat analagous to how spacetime is discretized when writing a lattice gauge theory, but
notice that we are already having to do this for a 0+ 1 QFT (as quantum mechanics is simply 0+ 1 QFT). Since
we have decided to work in the position basis, it is easiest to discretize Z first.

What are the eigenvalues of a discretized and trunacted £, assuming that you are working with n, qubits? What
is the matrix representation in the position basis of the operator £2? Your answer should only depend on Zmax
and ng.

3. What are the eigenvalues of the operator p. Are there different possibilities for the eigenvalues? How do you
justify which set of eigenvalues you would like to choose? Regardless of your choice, your expression should only
depend on .y and n,. Next, what is the form of the operator p* in position space?

4. We are going to make use of a classical machine to check our choices and assumptions. You can use whatever
computing program you are most comfortable with (ie Python, Mathematica, Matlab or anything else), as long
as it can do numerically evaluate the eigenvalues of matrices.

Combining your forms of 2% and p, find the eigenvalues of the Hamiltonian for n, = 3, for a choice of Zmax (do
not stress about choosing a good value at this point, just evaluate and see what happens). For your choice in
Tmax, do your eigenvalues match the known results for a QHO? If not, carry out a scan over xpy,ax and see if you
can find an optimal value for x,,,,, defined as the value for z,,,x that gives you an eigenvalue closest to the
(continuous) QHO:

1
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5. Repeat this exercise for the other choice for the digitization and truncation of the momentum operator p. Is
there an optimal choice for z,., for this choice of the momentum operator?

Note that the difference between these two choices is not the boundary conditions you choose, but whether the
ratio of the eigenvalues is a polynomial or not. If this comment does not make sense, please come ask me - I am
trying to not give away the answer.

6. Repeat this process with n, = 4. You could also go to more qubits if you would like, but you should see a pattern
emerging already and it is quite time-consuming to do n, = 5.!

7. Next, we are going to implement this Hamiltonian onto a quantum computer and look at the time evolution of
a state that is not an eigenstate of the system. If you would like, please feel free to check the form of #2 and
p% with me. We will begin with #2. Since we are working in the position basis, this operator is diagonal. To
implement onto a quantum device, we are going to decompose this diagonal operator into a sum of Kronecker
products of the Identity matrix and Z gates.?. Extend our definition of the Pauli matrices to have oy be the
identity matrix. To be more explicit, assuming three qubits, decompose the operator 2 into the basis
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Calculate the value of the coefficients ¢; using the fact that this basis is orthonormal and complete.

8. Do the same procedure for the p? operator in the momentum basis ie the basis in which p? is diagonal. Do
you notice anything about how the operator 2 and p? are decomposed in their own basis? If you do not see
something striking, come check with me.

9. In order to carry out time evolution, we must exponentiate the Hamiltonian to create the time evolution operator.
Since the position basis and the momentum basis are related by a Fourier transform and there exists an efficient
implementation of this on quantum devices, called a Quantum Fourier Transform (QFT), we will separate the
Hamiltonian into two components:

H=H,+H, (8)

I There is a really lovely physics explanation for why the optimal value of Tmax it is. If you are curious, take a look at the how the
(continuous) ground state wavefunction in both (discretized) position and momentum space. Notice anything?

2 Note that, for an arbitrary number of qubits, this basis forms a complete and orthonormal basis. This is related to Walsh-Hadamard
matrices, but that goes beyond the scope of this exercise. I only mention it because it is just cool.



The exponentiation can then be realized via the Lie Product formula,

eMB = lim (eA/"eB/")n . (9)
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Using these two pieces of information, construct a quantum circuit schematically, using the components
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where H, and H, are defined in their own bases. The following questions will explicitly construct the circuit for
H, and H,; QFT is built into Qiskit.

10. Convince yourself that all eight diagonal matrices, 0; ® 0; ® oy, with ¢, 7,k = 0,3 commute with each other. This
implies that they can be independently exponentiated. Construct the quantum circuit for each o; ® 0; ® oy,
(again restricted to ,7,k = 0,3). Limit yourself to the single qubit gate rotations {Rz, Ry, Rz} and CNOT.
Note that

Rz(6) = eis7 (11)
and that Qiskit has an implementation for Rz, Ry, Rz, so we are free to use them for circuit construction.
11. Combine the results above to create the circuit for H, and H,

12. We are going to simulate what happens when the system starts off in a state that is not an eigenstate. In
particular, the state that we start off in is

0) + 1)
vy = 2T (12)
where here, the kets correspond to the eigenstate labels of the harmonic oscillator, not qubits in your system.

What is the time-dependence of the probability density of this system if it starts off in this state?

13. Repeat this exercise on a quantum simulator, ie your laptop. You can write the initial state as a vector and
H,,H, and QFT as a matrix. Matrix multiplication should be all that you need. Use the optimal value for
Tmax you found above.

14. Lastly, repeat this for a quantum computer. Please note, this is actually quite a challenging question
and my goal in asking it is not for you to actually find a solution, but for you to realize just how
differently quantum computers work and how what might seem simple to do is actually quite
challenging.

If you do want to attempt this, note that you are going to have to figure out how to initialize the quantum device
with this initial state. This is somewhat non-trivial, but Qiskit documentation plus results from previous sections
will be quite helpful. You are also going to have to figure out how to access the probability density on a quantum
computer. This is actually quite non-trivial and one approach that i see involves a completely separate algorithm
to try to access intermediate information needed for that calculation. There also may be another approach but I
have not yet fully worked out the details. I would be happy to chat about this more if anyone is curious.

III. DENSITY MATRICES

Let us take a closer look at the Werner state and its density matrix. The purpose of doing so it to better understand
pure versus mixed states, unentangled versus entangled states and separable versus not separable. As a reminder of
definitions:

e Pure: ensemble contains only one state, ie
p =)Wl (13)
It can be shown that the density matrices of pure states have p = p.p and therefore

Trp=Trp.p=1 (14)



e Mixed: ensemble contains multiple states ie
p=> pilhi) (Wil . (15)

For these ensembles,

Trp=1 Trp® < 1 (16)

e Entangled: If the full system is the system AB, then the reduced density matrix for subsystem A and subsystem
B,

pa=Trpp
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J
have the property that
Trp% < 1 Trp% < 1 (18)

e Unentangled: The reduced density matrices have the property that

Trp% = Trp% =1 (19)

e Separable: If the state is a pure state, it can be written as

[9) =19)a @ 1¢)p - (20)

If the state is a mixed state, it can be written as

) = 16104 @ |61) 5 - (21)

e Non-separable: The state cannot be written as a tensor products

The Werner state is an ensemble in which there is a probability p that a given element in the ensemble is the Bell
state

|00) + |11)
Vna =5 (22)
and a probability 1 — p that a given element of the ensemble is a randomly aligned state.
1. Derive the density matrix p and prove that its trace is 1 and that it has positive eigenvalues.
2. Calculate Trp?. Is there a range of p where the ensemble is a pure state? What about a mixed state?
3. Show that this density matrix can be written in terms of
p([++)2)s p(1==02) p(H=)y)s p(I=4) ), p(100)), p([01)), p(110)), p([11)) (23)
where
p(le) = [¢) (W] - (24)

Notice that all of these are tensor states and so if the density matrix of a Werner state can be written in terms
of these tensor states, it is separable. Is this version of the density matrix always a valid density matrix? If not,
what does this imply about the Werner state.



4. As an alternative to the brute force decomposition above, use the Peres—Horodecki criterion to determine whether
the state is separable. For subsystems, each of dimension two, the condition is necessary and sufficient. The
criterian states that if the density matrix p is seperable, the eigenvalues of the partial transpose density matrix
are all non-negative. The partial transpose of the density matrix is defined to be

P = wihli) (Gl @ k) (25)
ijkl
where the original density matrix was defined to be
p=> v li) eIk (26)
ijkl
For what range of p is this criterion satisfies? For which range is it not?

5. Summarize your results

IV. STABILIZER STATES
The definition of (linear) quantum magic is

2
C
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where P is the tensor-product of the Pauli matrices (and the identity matrix) acting on all possible qubits.
A stabilizer state of n qubits is any state such that, out of the total of 4™ c¢p coefficients, 2" of them are +1 and the
rest are zero.

1. Prove that

ZXP =1 (28)
P

2. Convince yourself that these states are stabilizer states:
|0) £1]1) |0y £ |1)
vV2ZoV2

10}, 11),

Are there any other stabilizer states for one qubit?

3. What is the lower bound on quantum magic for one qubit? What is the upper bound on quantum magic for one
qubit? Repeat the exercise for two qubits (I highly recommend using Python or Mathematica to do the two
qubit case)

V. NO CLONING THEOREM

The No-Cloning Theorem places fundamental restrictions on what one can and cannot do with states prepared on
quantum devices. The goal of this problem is to answer the question whether it is possible to copy an arbitrary state.

The setup of the problem is a quantum machine with two slots, labeled A and B. The data slot A starts off in some
arbitrary, but pure, state |¢)). This state is to be copied into the target slot B. Assume that the target slot starts off in
some standard pure state |s).

1. What is the initial state of the copying machine, assuming Slot A and Slot B have no correlation between them.

2. Assume that some Unitary time evolution is able to copy the state from Slot A to Slot B. What is the final state
of the copying machine?

3. Suppose that this copying procedure works for two particular pure states that slot A can generate, |1)) and |¢).
If this copying procedure is possible, what does this imply about the states |¢) and |¢)?

4. What does this result tell us about the ability to perfectly clone unknown quantum states using unitary evolutions.
Are there any ways around this result that might still be useful for quantum computation?



VI. HOLEVO’S BOUND

Holevo’s bound provides an incredibly useful upper bound on how much information is accessible when using
quantum mechanics to store, transmit and access that information.

We will not prove the bound here, but merely quote it. The theorem goes as follows: Suppose that Alice prepares a
state px where X = 0,...,n with probabilites py, ..., px. Bob performs measurements described by POVM? elements
{E}, ={Ey,... Ey} on that state, with measurement outcome Y. The Holevo bound is that for any such measurement
Bob may do,

H(X:Y)<S(p) =Y paSlpz)  P= pupa (30)

This problem will apply this bound to the question of how much information Alice can convey to Bob using a single
qubit.

1. Alice prepares a single qubit in one of two quantum states. She decides which state, depending on a coin toss:

Heads : |0)
Tails : cos#]0) +siné |1) (31)

What is the density matrix for this state?

2. What are the eigenvalues of this density operator?

3. What is the Holevo bound for this system, assuming 6 is a free, real parameter.

4. What is the maximal amount of information that Alice can transmit to Bob. What is the minimum amount?
5. Use this bound to argue the maximum number of information that n, qubits can transmit. Is this a surprising

result?

VII. BIT FLIP CODE, PHASE FLIP CODE AND SHOR’S ALGORITHM

1. In lecture, we used CNOT gates to entangle the qubits with the ancilla. However, the stabilizer of the system
are Z1Z2 and Z1Z3. Rewrite this circuit using only CZ gates (ie Control-Z gates). A useful operation is that a
CNOT (also called a CX) gate is actually a projection gate,

]I+O'3 ]I*O'g

CNOT : l+——®0 (32)

2. Explicitly construct the circuit for error-correcting the phase-flip gate, including identifying the stabilizers for
this system. For any two circuit gate, only use Control gates utilize the stabilizers (similar how above, the bit
flip only uses CZ as its two-qubit gates). You will still need to use Toffoli gates in the recovery process.

3. For Shor’s code, construct the eight stabilizer states. Can you argue that you should have expected eight of
them? Can you now construct the circuit for the syndrome diagnosis? What about the recovery process?

3 POVM are positive operator-valued measures. They are defined by having values that are positive semi-definite operators on a Hilbert
space. POVMs are a generalization of projection-valued measures elements
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VIII. HINTS

e Problem One

1. Recall the Bell State construction. While the CNOT gate is called an entangling gate, what is the role of
the H gate in the circuit?

e Problem Two

1. As written, is the position basis, |z) continuous or discrete? What is the size of the Hilbert space that a
quantum computer with n, qubits?

2. Assume that your sampling of x is uniform and goes up to some eigenvalue & ,y.

3. One possible choice is related to defining the momentum in terms of a finite-difference operator. Another
choice is related to the undiscretized and undigitzed momentum operator. Recall also the commutation
relation between & and p and what this implies about the relationship between the position and momentum
basis.

4. For the rest of this problem, it is hard to give hints (unfortunately). However, the solutions can be found in
this paper: Digitization of Scalar Fields for Quantum Computing

e Problem Three

1. For randomly aligned state, assume that the measurement always occurs in the 2 basis and so the experiment
can only measure [0),|1).

e Problem Four
1. We are only considering pure states when calculating quantum magic (at least here), so p = p2.
e Problem Five
1. Comparing various inner products will provide a fruitful path forward
e Problem Six
1. How do the eigenvalues of the density matrix relate to the von Neumann entropy?
e Problem Seven

1. Using the stabilizer formalism, the state of the total system is

1)1 10) 4 (33)

where [t)) is the state that is to be encoded into the logical qubit and assuming that the ancilla qubit starts
in the zero state. If a single qubit noise channel acts on this state, the total state of the system is

E) 1 10) 4 (34)
The question is how to design a unitary such that
E)|0)4 = PrEY)0) 4 + P-E[¢) [0) 4 (35)

where Py are projectors of some sort. The question is how that unitary is (and what those projectors are)
based on the stabilizer states of the system.


https://arxiv.org/pdf/1808.10378
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