
Figure 1. Simulating the dynamics of extreme physical environments (right) emerging from the SM of quarks, leptons, gauge
fields, and the Higgs boson (left) requires large-scale classical or quantum simulations (center). Quantum entanglement and
coherence utilized by quantum computers are expected to enable progress while providing new insights into the SM itself.

While some direct predictions of the SM are accessible by perturbative calculations, non-perturbative simulations are
required for most processes, which involve configuration-space, i.e., Hilbert space, sizes that easily exceed the number of atoms
in the universe. The quantum-mechanical probability of a given process is determined by Feynman’s path integral, summing
the amplitudes of all possible trajectories weighted by the complex exponential of their action, eiS . When iS is a negative
real number, these weights allow for systematic importance sampling central to lattice-field-theory programs on classical
computers—enabling first-principles simulations of e.g., mesons, their decays and scattering, the muon’s anomalous magnetic
moment, properties of nucleons and nuclei, and the phase diagram of dilute matter at high temperature, see Refs. [7–10] for
recent reviews. However, when iS becomes complex, as in finite-density systems and in real-time simulations, the sampling
techniques can fail due to large cancellations. While ideas are being pursued to tame many ‘sign problems’ [11–13], they are
believed to be NP-hard [14].

Unfortunately, sign problems arise frequently in nuclear and high-energy physics, challenging the pursuit of answers to
many forefront questions, as identified and elaborated in recent studies, e.g., Refs. [15–18]. For example, first-principles
predictions for phases and phase transitions of matter, e.g., those probed at the Large Hadron Collider (LHC) at CERN and
the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, and those relevant to the interior cores of
neutron stars and the evolution of supernovae, are currently out of reach. The non-equilibrium and thermalization dynamics of
matter produced during heavy-ion collisions and in the early universe also remain unresolved. In particle colliders, available
calculational strategies at high energies tend to break down at the lower energies relevant to fragmentation and the subsequent
cascades of hadrons. In astrophysical environments, neutrinos play a significant role in transporting energy during core-collapse
supernovae. Background matter and neutrino densities influence the evolution of flavor as the neutrinos radiate from the core.
Given the resulting mixed-state entanglement structure of the neutrino fields, accurate simulations of these coherent processes is
challenging. Experimental programs probing the fundamental nature of neutrinos include searches for CP-violation in the Deep
Underground Neutrino Experiment (DUNE) experiment, and for the violation of lepton number in 0⌫��-decay experiments
in nuclei. Simulations of nuclear-physics ingredients for these experimental programs present a significant challenge for
classical computation. Last, but not least, theories involving inflationary epoch of the universe, dark-matter models involving
composite ‘dark hadrons’, CP-violating scenarios occurring out of equilibrium in the early universe, or strongly-interacting
QFTs living on the boundary of a bulk containing quantum-gravity models, all require simulations of various quantum fields in-
and out-of-equilibrium, which are often intractable.

Amidst such challenges arose a key perspective: Information is physical, computation is the science of information
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SIMULATION STRATEGIES: FEW QUESTIONS

We may not be able to simultaneously satisfy all these conditions so we need to seek a 
balance.

Q1: What is the best breakdown of Hamiltonian term to  terms such that: 

i) each term can be simulated with the least resources, 
ii) the number of terms to be simulated is minimized, 
iii) the Trotter error is minimized, 
iv) as many symmetries as possible are retained?

Hi

Q2: How to simulate each  ? This amounts to: 

i) finding the unitary transformation that diagonalizes  in the computational basis, 
i.e., . 

ii) circuitizing the unitary transformation , 
iii) circuitizing the diagonal form . 

    If  is already diagonal, steps i) and ii) are not needed.

e−itHi

e−itHi

e−itHi = 𝒰ie−it𝒟i𝒰†
i

𝒰i
e−it𝒟i

e−itHi



Q3: What quantum resources should we minimize given those choices in the previous Qs? 

i) In the near-term scenario,  
the hardware systems are small so the less ancillary qubits the better, 
single-qubit gates are almost free but two-qubit gates (CNOT) are of low fidelity. 

ii) In the far-term scenario, 
we likely do not have qubit-resource constraints, 
compilation of all Clifford gates (including CNOT) is less costly but non-Clifford (T 
gates) have high fault-tolerant implementation cost. 

Q4: Given all these consideration, which Hamiltonian formulation and basis states of the 
theory are most suitable? We may need to consider formulations that: 

i) give the desired continuum physics faster with the least resources, 
ii) have the least encoding overhead, 
ii) have less complex terms, 
iii) respect more symmetries by construction. 

We are not considering state preparation and measurements here, but those often enter our 
considerations of what the most suitable formulation is given the observable of interest.



RESOURCE ANALYSIS

Given the accuracy  on the time evolution operator, how many ancilla qubits and costly 
gates are needed for simulating a Hamiltonian with given parameters for time  using the 

-order product formula?

ε
T

pth

For a LGT Hamiltonian, these are volume, 
lattice spacing, couplings, masses, and 
truncation scale of the bosonic fields. 

The errors that accumulate to add up to the total error  include: 

i) Trotter error, 
ii) function-evaluation approximation error, 
iii) gate-synthesis error, 
iv) measurement error, and 
v) theoretical errors (finite-volume, discretization, truncation, etc.).

ϵ

Vp(T ) − e−iTH ≤ ε

The -order product formula requires   Trotter steps. Near-optimal 

algorithms based on completely different digitization strategies achieve .

pth O ( T (p+1)/p

ϵ1/p )
O (T, log ( 1

ε ))



(IMPROVED) THEORY OF PRODUCT FORMULAS

First-order product formula

Second-order formula

A general bound also exist, see:
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FIG. 9. (a) The (absolute value) of the overlap between a time-evolved string state | stri and a fully-occupied mesonic state
| mesi, Pstring!mesons ⌘ | h mes|e�iHQLMtQLM | stri |, as a function of the (scaled dimensionless) time tQLM for a lattice with
Nstag = 4 fermion sites, corresponding to N = 7 ion sites. For the dashed and dotted curves, the Hamiltonian must be
replaced with the non-exact H 0

QLM and H
00
QLM Hamiltonians, respectively. (b) The same quantity plotted for Nstag = 6 fermion

sites, corresponding to N = 11 ion sites. The graphical representations of states, both in terms of the electron, positron,
and electric-field strings and in terms of the (quasi)spins of each corresponding ions are shown for the initial string state,
and for a fully-occupied mesonic state whose probability amplitude is maximum at the points denoted. (c) The expectation
value of the lattice sum of the (absolute value of) the Gauss’s law operator between a time-evolved string state, h

P
i
|Gi|i ⌘

h str|eiHQLMtQLM 1
2Nstag�3

PNstag�1
i=1 |Gi|e�iHQLMtQLM | stri forNstag = 4 fermion sites, corresponding toN = 7 ion sites. For the

dashed and dotted curves, the Hamiltonian must be replaced with the non-exact H 0
QLM and H

00
QLM Hamiltonians, respectively.

(d) The same quantity as in (c) for Nstag = 6 fermion sites, corresponding to N = 11 ion sites. The maximum breakdown of
the Gauss’s law corresponds to h

P
i
|Gi|i = 1.

teractions. Additionally, single-spin interactions on all
ions are included to modify the mass term with uniform
coe�cients that are 10 and 5 times weaker than the true

mass. Explicitly,

H 0(00)

QLM
= HQLM +

x

g0(00)

2Nstag�1X

j,k=1

j 6=k

⇥
�+

j
��

k
+ h.c.

⇤
+

µ

g0(00)

2Nstag�1X

j=1

�z

j
, (30)

x =
1

a2g2
, μ =

2m
g2a
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The goal of this exercise is to obtain, numerically, the energy spectrum of the Schwinger
model with open boundary conditions (OBC) for a given set of parameters, and to evalu-
ate both the continuous and the Trotterized evolution of the Schwinger model. Consider
the Schwinger Hamiltonian in the purely fermionic formulation:

H = x
N�2X

n=0

⇥
 

†(n) (n+ 1) + h.c.
⇤
+ µ

N�1X

n=0

(�1)n †(n) (n)+

N�2X

n=0

(
✏0 +

nX

m=0


� †(m) (m) +

1� (�1)m

2

�)2

. (1)

Part (a) Show that after a Jordan-Wigner transformation, one can map the fermionic
Hamiltonian to a qubit Hamiltonian of the form:

H = x
N�2X

n=0

�
�
+
n
�
�
n+1 + h.c.

�
+

µ

2

N�1X

n=0

(�1)n+1
�
z
n
+

N�2X

n=0

(
✏0 +

1

2

nX

m=0

[�z
m
� (�1)m]

)2

(2)

:=
N�2X

n=0

H
(XX)
n,n+1 +

N�2X

n=0

H
(YY)
n,n+1 +H

(ZZ) +H
(Z)

. (3)

Make sure to identify H
(XX)
n,n+1, H

(YY)
n,n+1, H

(ZZ), and H
(Z), where H

(XX/YY)
n,n+1 are terms pro-

portional to the product of two Pauli-X/Y matrices on qubits n and n+ 1, H(ZZ) are all
terms proportional to the product of two Pauli-Z matrices on two distinct qubits, while
H

(Z) are all terms proportional to a Pauli-Z matrix on a single qubit.

Part (b) Consider a system of N = 4 staggered sites. Construct the Hamiltonian matrix
associated with the Hamiltonian in Part (a). This means that you have to find all the
matrix elements in terms of x, µ, and ✏0. Now try to diagonalize the Hamiltonian to find
the energy eigenvalues for the following model parameters: ✏0 = 0, x = 0.6, and µ = 0.1.
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For this exercise, we continue to work with the qubit Hamiltonian:

H = x
N�2X

n=0

�
�
+
n
�
�
n+1 + h.c.

�
+

µ

2

N�1X

n=0

(�1)n+1
�
z
n
+

N�2X
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✏0 +

1

2

nX
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[�z
m
� (�1)m]

)2

(1)

:=
N�2X

n=0

H
(XX)
n,n+1 +

N�2X

n=0

H
(YY)
n,n+1 +H

(ZZ) +H
(Z)

, (2)

associated with the lattice Schwinger model with open boundary conditions (OBC). We
further consider Trotterized time evolution using the first-order Trotter-Suzuki formula
using the decomposition:

V (t) =
NT=t/�tY

i=1

 
e
�i�tH

(Z)
e
�i�tH

(ZZ)
N�2Y

n=0

e
�i�tH

(XX)
n,n+1

N�2Y

n=0

e
�i�tH

(Y Y )
n,n+1

!
. (3)

The initial state, | (0)i, of this evolution is the strong-coupling vacuum, and the time-
evolved state is | (t)i := V (t) | (0)i. The system size and parameters are as in the
previous exercise: N = 4, ✏0 = 0, x = 0.6, µ = 0.1, t = 5, �t = 0.5 (or NT = 10).

Part (a) Pictorially draw the quantum-circuit elements that evaluate each Trotter step
of the evolution. Make sure to identify the gates to the level they can be implemented
on a quantum hardware. Identify all the gate angles.

Part (b) Write a Qiskit code that implements your circuit in part (a). If you are not
yet comfortable with writing the code from scratch, use the IBMQ automated tool.

Part (c) Evaluate the Loschmidt echo

P(t) := |h (0)| (t)i|2 , (4)

and the staggered fermion density

⌫(t) :=
1

N

N�1X

n=0

h (t)|(�1)n+1
�
z
n
+ 1

2
| (t)i , (5)
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(Z), where H
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H

(Z) are all terms proportional to a Pauli-Z matrix on a single qubit.

Part (b) Consider a system of N = 4 staggered sites. Construct the Hamiltonian matrix
associated with the Hamiltonian in Part (a). This means that you have to find all the
matrix elements in terms of x, µ, and ✏0. Now try to diagonalize the Hamiltonian to find
the energy eigenvalues for the following model parameters: ✏0 = 0, x = 0.6, and µ = 0.1.
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LET’S START SIMPLE: THE FULLY FERMIONIC REPRESENTATION 
WITH FIRTS-ORDER PRODUCT FORMULA.

Two time orderings, one that respects the global charge conservation:

and one that breaks it!
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For this exercise, we continue to work with the qubit Hamiltonian:

H = x
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H
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n,n+1 +H

(ZZ) +H
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associated with the lattice Schwinger model with open boundary conditions (OBC). We
further consider Trotterized time evolution using the first-order Trotter-Suzuki formula
using the decomposition:

V (t) =
NT=t/�tY

i=1

 
e
�i�tH

(Z)
e
�i�tH

(ZZ)
N�2Y

n=0

e
�i�tH

(XX)
n,n+1

N�2Y

n=0

e
�i�tH

(Y Y )
n,n+1

!
. (3)

The initial state, | (0)i, of this evolution is the strong-coupling vacuum, and the time-
evolved state is | (t)i := V (t) | (0)i. The system size and parameters are as in the
previous exercise: N = 4, ✏0 = 0, x = 0.6, µ = 0.1, t = 5, �t = 0.5 (or NT = 10).

Part (a) Pictorially draw the quantum-circuit elements that evaluate each Trotter step
of the evolution. Make sure to identify the gates to the level they can be implemented
on a quantum hardware. Identify all the gate angles.

Part (b) Write a Qiskit code that implements your circuit in part (a). If you are not
yet comfortable with writing the code from scratch, use the IBMQ automated tool.

Part (c) Evaluate the Loschmidt echo

P(t) := |h (0)| (t)i|2 , (4)

and the staggered fermion density

⌫(t) :=
1

N

N�1X

n=0

h (t)|(�1)n+1
�
z
n
+ 1

2
| (t)i , (5)
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What is the global conserved charge in the Schwinger-model Hamiltonian? 
Why is one of the schemes in the previous slide conserves the global charge 
and the other does not?



Example of circuit structure for a six-site theory in each Trotter step:
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This Trotter block will be repeated  times.NT = t/δt

Fermion-gauge interactions
Fermion mass term

Electric-field energy

•  can be implemented either directly (like in trapped ions) or by two 

CNOTs and one single-qubit rotation since . 

•  and   can be implemented similarly by rotating to the eigenstates of . 

•  is already an elementary gate and can be applied directly.

Rzz
ij (θ) ≡ e−iθσ z

i σ z
j /2

e−iθσ z
i σ z

j /2 = CNOTij Rz
i (θ) CNOTij

e−iθσ x
i σ x

j /2 e−iθσy
i σy

j /2 σz

e−iθσ z
i /2
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N = 4, �t = 1

(a)

(b)

Figure 7. Experimental results for N = 4 and �t = 1. (a) The
upper plot shows fluctuation in the bare-vacuum population,
Pvac(t), while the lower plot shows particle-number density,
⌫(t). (b) The upper plot shows the local charge density Qn(t)
as measured in the experiment after post-selection, while the
lower plot shows its deviation from theory.

delity, rather than qubit number, is the main limitation of
our implementation. E↵orts to overcome such a technical
limitation are well underway [86]. To mitigate the time-
correlated errors, we have applied a symmetry-protection
scheme [29] but found negligible e↵ects in suppressing
the errors, pointing to dominant incoherent and uncorre-
lated noise in the experiment. Incoherent errors can be
mitigated by post-selection of the experimental measure-
ments using symmetry considerations. Better-motivated
and further-tailored schemes for incoherent error mitiga-
tion are desired in future simulations.

An avenue for improving the quality of the simulation
is reducing the gate depth, e.g., by performing gates in
parallel instead of sequentially. In our model, e�i�tĤ

x

,
consisting of only nearest-neighbor interactions, can be

N = 6, �t = 1

(a)

(b)

Figure 8. Experimental results for N = 6 and �t = 1. (a) The
upper plot shows fluctuation in the bare-vacuum population,
Pvac(t), while the lower plot shows particle-number density,
⌫(t). (b) The left plot shows the local charge density Qn(t)
as measured in the experiment after post-selection, while the
right plot shows its deviation from theory. At t = 4, we reach
the gate-depth limit of the hardware.

applied in a fixed circuit depth of 4 instead of 2N by per-
forming all the X2iX2i+1 terms, then all the X2i+1X2i+2

terms, in parallel. The all-to-all interactions in e
�i�tĤ

ZZ

can be reduced to depth of N instead of N
2 if gates

XiXi+n, for all i and fixed n, are performed in paral-
lel. With trapped ions, parallel operations can be done
either in multi-zone architectures [87, 88], or in linear
chains with advanced control schemes [89].

Alternatively, the gate depth can be reduced by
using M -body Mølmer-Sørensen gates MS(�,M) ⌘

e
�i�

PM
i=1

PM
j=i+1 �̂

X
i �̂

X
j [82–84]. This approach was im-

plemented in Ref. [71] to reduce the number of MS op-
erations in the simulation of the Schwinger model from
O(N2) to O(N). In general, a non-trivial optimization of
both frequency and amplitude modulation of the beams

Martinez et al, Nature 
534, 516 EP (2016).

9

N = 4, �t = 1

(a)

(b)

Figure 7. Experimental results for N = 4 and �t = 1. (a) The
upper plot shows fluctuation in the bare-vacuum population,
Pvac(t), while the lower plot shows particle-number density,
⌫(t). (b) The upper plot shows the local charge density Qn(t)
as measured in the experiment after post-selection, while the
lower plot shows its deviation from theory.

delity, rather than qubit number, is the main limitation of
our implementation. E↵orts to overcome such a technical
limitation are well underway [86]. To mitigate the time-
correlated errors, we have applied a symmetry-protection
scheme [29] but found negligible e↵ects in suppressing
the errors, pointing to dominant incoherent and uncorre-
lated noise in the experiment. Incoherent errors can be
mitigated by post-selection of the experimental measure-
ments using symmetry considerations. Better-motivated
and further-tailored schemes for incoherent error mitiga-
tion are desired in future simulations.

An avenue for improving the quality of the simulation
is reducing the gate depth, e.g., by performing gates in
parallel instead of sequentially. In our model, e�i�tĤ
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ZZ

can be reduced to depth of N instead of N
2 if gates

XiXi+n, for all i and fixed n, are performed in paral-
lel. With trapped ions, parallel operations can be done
either in multi-zone architectures [87, 88], or in linear
chains with advanced control schemes [89].

Alternatively, the gate depth can be reduced by
using M -body Mølmer-Sørensen gates MS(�,M) ⌘

e
�i�

PM
i=1

PM
j=i+1 �̂

X
i �̂

X
j [82–84]. This approach was im-

plemented in Ref. [71] to reduce the number of MS op-
erations in the simulation of the Schwinger model from
O(N2) to O(N). In general, a non-trivial optimization of
both frequency and amplitude modulation of the beams

9

N = 4, �t = 1

(a)

(b)

Figure 7. Experimental results for N = 4 and �t = 1. (a) The
upper plot shows fluctuation in the bare-vacuum population,
Pvac(t), while the lower plot shows particle-number density,
⌫(t). (b) The upper plot shows the local charge density Qn(t)
as measured in the experiment after post-selection, while the
lower plot shows its deviation from theory.

delity, rather than qubit number, is the main limitation of
our implementation. E↵orts to overcome such a technical
limitation are well underway [86]. To mitigate the time-
correlated errors, we have applied a symmetry-protection
scheme [29] but found negligible e↵ects in suppressing
the errors, pointing to dominant incoherent and uncorre-
lated noise in the experiment. Incoherent errors can be
mitigated by post-selection of the experimental measure-
ments using symmetry considerations. Better-motivated
and further-tailored schemes for incoherent error mitiga-
tion are desired in future simulations.

An avenue for improving the quality of the simulation
is reducing the gate depth, e.g., by performing gates in
parallel instead of sequentially. In our model, e�i�tĤ
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N = 2, �t = 0.5

(a)

(b)

Figure 5. Experimental results for N = 2 and �t = 0.5.
(a) The upper plot shows fluctuation in the bare-vacuum pop-
ulation, Pvac, while the lower plot shows particle-number den-
sity, ⌫, as a function of time, indicating the creation and an-
nihilation of the particle-antiparticle pairs. The dashed lines
are a guide to the eye. (b) The upper plot shows the local
charge density Qn as measured in the experiment after post-
selection, while the lower plot shows its deviation from theory
as a function of time.

try protection can improve our experimental implemen-
tation.

Figure 9 plots the result of an experiment using the
odd-even term ordering. As before, the initial state is the
bare vacuum. The unitaries e�i↵kŜz , with random angles
↵k given in Appendix A, are inserted between Trotter
steps k and k+1. While the population in states forbid-
den by the symmetry, denoted as Psym in the upper panel,
decreases with symmetry protection, this reduction is not
significant. Furthermore, while the deviation of the bare-
vacuum population from the Trotterized theory generally
decreases, post-selecting symmetry-preserving measure-
ments appears more e↵ective in mitigating the error in
this quantity than the symmetry protection as shown
in the lower panel of the figure. This indicates that

N = 4, �t = 0.5

(a)

(b)

Figure 6. Experimental results for N = 4 and �t = 0.5.
(a) The upper plot shows fluctuation in the bare-vacuum pop-
ulation, Pvac(t), while the lower plot shows particle-number
density, ⌫(t). (b) The upper plot shows the local charge den-
sity Qn(t) as measured in the experiment after post-selection,
while the lower plot shows its deviation from theory.

the experiment is dominated by noise that is not corre-
lated in time. Note that by construction, the symmetry-
protection scheme only mitigates time-correlated errors.

IV. DISCUSSION

We have digitally simulated the time evolution of the
lattice Schwinger model with up to six qubits. For a
four-qubit simulation, we observe four oscillations of the
particle density, and the simulated time is almost four
times longer than previously demonstrated using a Trot-
terized scheme [64, 71]. Given the long circuit depths
required for dynamical gauge-theory simulations, gate fi-

Two fermion sites
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charge density Qn as measured in the experiment after post-
selection, while the lower plot shows its deviation from theory
as a function of time.

try protection can improve our experimental implemen-
tation.

Figure 9 plots the result of an experiment using the
odd-even term ordering. As before, the initial state is the
bare vacuum. The unitaries e�i↵kŜz , with random angles
↵k given in Appendix A, are inserted between Trotter
steps k and k+1. While the population in states forbid-
den by the symmetry, denoted as Psym in the upper panel,
decreases with symmetry protection, this reduction is not
significant. Furthermore, while the deviation of the bare-
vacuum population from the Trotterized theory generally
decreases, post-selecting symmetry-preserving measure-
ments appears more e↵ective in mitigating the error in
this quantity than the symmetry protection as shown
in the lower panel of the figure. This indicates that

N = 4, �t = 0.5

(a)

(b)

Figure 6. Experimental results for N = 4 and �t = 0.5.
(a) The upper plot shows fluctuation in the bare-vacuum pop-
ulation, Pvac(t), while the lower plot shows particle-number
density, ⌫(t). (b) The upper plot shows the local charge den-
sity Qn(t) as measured in the experiment after post-selection,
while the lower plot shows its deviation from theory.

the experiment is dominated by noise that is not corre-
lated in time. Note that by construction, the symmetry-
protection scheme only mitigates time-correlated errors.

IV. DISCUSSION

We have digitally simulated the time evolution of the
lattice Schwinger model with up to six qubits. For a
four-qubit simulation, we observe four oscillations of the
particle density, and the simulated time is almost four
times longer than previously demonstrated using a Trot-
terized scheme [64, 71]. Given the long circuit depths
required for dynamical gauge-theory simulations, gate fi-

Four fermion sites

Six fermion sites

76 entangling 
gates!

90 entangling 
gates!

80 entangling 
gates!
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ii) Time evolution in the Schwinger model 

In purely fermionic formulation 
In fermion-boson formulation 

iii) Outlining the differences between Abelian and non-Abelian algorithms 
iv) How much does it cost to simulate time dynamics of QCD?



NOW WHAT ABOUT FERMIONIC-BOSONIC REPRESENTATION 
WITH THE SECOND-ORDER PRODUCT FORMULA?

One can split the terms in the Hamiltonian as:

the sum via a Monte-Carlo average [63], but millions of norm evaluations are often still needed to reduce the
variance of the estimate to tolerable levels. Such sampling further prevents the results from being used as an
upper bound without invoking probabilistic arguments and loose-tail probability bounds such as the Markov
inequality. Even once these bounds are evaluated, it should be noted that the prefactors in the analysis are
unlikely to be tight [24] which means that in order to understand the true performance of high-order Trotter
formulas for lattice discretizations of the Schwinger model, it may be necessary to attempt to extrapolate the
empirical performance from small-scale numerical simulations of the error.

These higher-order Trotter-Suzuki formulas also are seldom preferable for simulating quantum dynamics
for modest-sized quantum systems. Indeed, many studies have verified that low-order formulas (such as the
second-order Trotter formula) actually can cost fewer computational resources than their high-order brethren [23,
63, 73] for realistic simulations. Furthermore, the second-order formula can also outperform asymptotically-
superior simulation methods such as qubitization [23, 51] and linear-combinations of unitaries (LCU) simulation
methods [13, 22]. This improved performance is anticipated to be a consequence of the fact that the Trotter-
Suzuki errors depend on the commutators, rather than the magnitude of the Hamiltonian terms’ coe�cients as
per [13, 22, 51].

For the above reasons (as well as the fact that tight and easily-evaluatable error bounds exist for the second-
order formula), we choose to use the second-order Trotter formula in the following discussion and explicitly
evaluate the commutator bound for the error given in (30), which is the tightest known bound for the second-
order Trotter formula.

2.3 Comparison to Qubitization and Linear Combination of Unitaries Methods
One aspect in which the second-order Trotter formulas that we use perform well relative to popular methods,
such as qubitization [51], linear combinations of unitaries [13, 22, 51] or their classically-controlled analogue
QDRIFT [14, 20], is that the complexity of the Hamiltonian simulation scales better with the size of the electric
cuto�, �. The complexities of qubitization, LCU and QDRIFT all scale linearly with the sum of the Hamiltonian
terms’ coe�cients when expressed as a sum of unitary matrices. This leads to a scaling of the Trotter step
number with � of ÂO(�2). Instead, it is straightforward to note that the norm of the commutators [E2

r
, [E2

r
, HI ]]

scale as O(�2) and that all other terms scale at most as O(�2) (see Lemma 22 for more details). This leads to
a number of Trotter steps needed for the second-order Trotter-Suzuki formula that is in O(�) from (30). Thus,
accounting for the logarithmic-sized circuits that we will use to implement these terms, the total cost for the
simulation is in ÂO(�), which is (up to polylogarithmic factors) quadratically better than LCU or qubitization
methods and without the additional spatial overheads they require [23].

The fact that Trotter-Suzuki methods can be the preferred method for simulating discretizations of unbounded
Hamiltonians is also noted in [68] where commutator bounds are used to show that quartic oscillators can be
simulated more e�ciently with Trotter-series decompositions than would be expected from a standard imple-
mentation of qubitization or LCU methods. This is why we focus on Trotter methods for this study here. It is
left for subsequent work to examine the performance of post-Trotter methods discussed above.

2.4 Trotter-Suzuki Decomposition for the Schwinger Model
In order to form a Trotter-Suzuki formula, we decompose the Schwinger model Hamiltonian into a sum of
simulatable terms. Ideally, each term would also be e�ciently simulatable. Examples of such terms are Pauli
operators or operators diagonal in the computational basis (with e�ciently computable diagonal elements) [12,
57].

First we define Tr to be the interaction term coupling sites r and r + 1 and define Dr to be the (diagonalized)
mass plus electric energy associated to site r:

Tr := x

3
1
4(Ur + U†

r
)(XrXr+1 + YrYr+1) + i

4(Ur ≠ U†
r
)(XrYr+1 ≠ YrXr+1)

4
,

D(M)
r

:= ≠µ

2 (≠1)rZr and D(E)
r

:= E2
r
(1 ≠ ”r,N ), (34)

where we further define

H =
Nÿ

r=1
(Tr + Dr) , with Dr := D(M)

r
+ D(E)

r
. (35)

The Dr are each of a sum of two terms that commute so that

e≠iDrt = e≠iD
(M)
r

te≠iD
(E)
r

t. (36)
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the sum via a Monte-Carlo average [63], but millions of norm evaluations are often still needed to reduce the
variance of the estimate to tolerable levels. Such sampling further prevents the results from being used as an
upper bound without invoking probabilistic arguments and loose-tail probability bounds such as the Markov
inequality. Even once these bounds are evaluated, it should be noted that the prefactors in the analysis are
unlikely to be tight [24] which means that in order to understand the true performance of high-order Trotter
formulas for lattice discretizations of the Schwinger model, it may be necessary to attempt to extrapolate the
empirical performance from small-scale numerical simulations of the error.

These higher-order Trotter-Suzuki formulas also are seldom preferable for simulating quantum dynamics
for modest-sized quantum systems. Indeed, many studies have verified that low-order formulas (such as the
second-order Trotter formula) actually can cost fewer computational resources than their high-order brethren [23,
63, 73] for realistic simulations. Furthermore, the second-order formula can also outperform asymptotically-
superior simulation methods such as qubitization [23, 51] and linear-combinations of unitaries (LCU) simulation
methods [13, 22]. This improved performance is anticipated to be a consequence of the fact that the Trotter-
Suzuki errors depend on the commutators, rather than the magnitude of the Hamiltonian terms’ coe�cients as
per [13, 22, 51].

For the above reasons (as well as the fact that tight and easily-evaluatable error bounds exist for the second-
order formula), we choose to use the second-order Trotter formula in the following discussion and explicitly
evaluate the commutator bound for the error given in (30), which is the tightest known bound for the second-
order Trotter formula.

2.3 Comparison to Qubitization and Linear Combination of Unitaries Methods
One aspect in which the second-order Trotter formulas that we use perform well relative to popular methods,
such as qubitization [51], linear combinations of unitaries [13, 22, 51] or their classically-controlled analogue
QDRIFT [14, 20], is that the complexity of the Hamiltonian simulation scales better with the size of the electric
cuto�, �. The complexities of qubitization, LCU and QDRIFT all scale linearly with the sum of the Hamiltonian
terms’ coe�cients when expressed as a sum of unitary matrices. This leads to a scaling of the Trotter step
number with � of ÂO(�2). Instead, it is straightforward to note that the norm of the commutators [E2

r
, [E2

r
, HI ]]

scale as O(�2) and that all other terms scale at most as O(�2) (see Lemma 22 for more details). This leads to
a number of Trotter steps needed for the second-order Trotter-Suzuki formula that is in O(�) from (30). Thus,
accounting for the logarithmic-sized circuits that we will use to implement these terms, the total cost for the
simulation is in ÂO(�), which is (up to polylogarithmic factors) quadratically better than LCU or qubitization
methods and without the additional spatial overheads they require [23].

The fact that Trotter-Suzuki methods can be the preferred method for simulating discretizations of unbounded
Hamiltonians is also noted in [68] where commutator bounds are used to show that quartic oscillators can be
simulated more e�ciently with Trotter-series decompositions than would be expected from a standard imple-
mentation of qubitization or LCU methods. This is why we focus on Trotter methods for this study here. It is
left for subsequent work to examine the performance of post-Trotter methods discussed above.

2.4 Trotter-Suzuki Decomposition for the Schwinger Model
In order to form a Trotter-Suzuki formula, we decompose the Schwinger model Hamiltonian into a sum of
simulatable terms. Ideally, each term would also be e�ciently simulatable. Examples of such terms are Pauli
operators or operators diagonal in the computational basis (with e�ciently computable diagonal elements) [12,
57].

First we define Tr to be the interaction term coupling sites r and r + 1 and define Dr to be the (diagonalized)
mass plus electric energy associated to site r:

Tr := x

3
1
4(Ur + U†

r
)(XrXr+1 + YrYr+1) + i

4(Ur ≠ U†
r
)(XrYr+1 ≠ YrXr+1)

4
,

D(M)
r

:= ≠µ

2 (≠1)rZr and D(E)
r

:= E2
r
(1 ≠ ”r,N ), (34)

where we further define

H =
Nÿ

r=1
(Tr + Dr) , with Dr := D(M)

r
+ D(E)

r
. (35)

The Dr are each of a sum of two terms that commute so that

e≠iDrt = e≠iD
(M)
r

te≠iD
(E)
r

t. (36)
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the sum via a Monte-Carlo average [63], but millions of norm evaluations are often still needed to reduce the
variance of the estimate to tolerable levels. Such sampling further prevents the results from being used as an
upper bound without invoking probabilistic arguments and loose-tail probability bounds such as the Markov
inequality. Even once these bounds are evaluated, it should be noted that the prefactors in the analysis are
unlikely to be tight [24] which means that in order to understand the true performance of high-order Trotter
formulas for lattice discretizations of the Schwinger model, it may be necessary to attempt to extrapolate the
empirical performance from small-scale numerical simulations of the error.

These higher-order Trotter-Suzuki formulas also are seldom preferable for simulating quantum dynamics
for modest-sized quantum systems. Indeed, many studies have verified that low-order formulas (such as the
second-order Trotter formula) actually can cost fewer computational resources than their high-order brethren [23,
63, 73] for realistic simulations. Furthermore, the second-order formula can also outperform asymptotically-
superior simulation methods such as qubitization [23, 51] and linear-combinations of unitaries (LCU) simulation
methods [13, 22]. This improved performance is anticipated to be a consequence of the fact that the Trotter-
Suzuki errors depend on the commutators, rather than the magnitude of the Hamiltonian terms’ coe�cients as
per [13, 22, 51].

For the above reasons (as well as the fact that tight and easily-evaluatable error bounds exist for the second-
order formula), we choose to use the second-order Trotter formula in the following discussion and explicitly
evaluate the commutator bound for the error given in (30), which is the tightest known bound for the second-
order Trotter formula.

2.3 Comparison to Qubitization and Linear Combination of Unitaries Methods
One aspect in which the second-order Trotter formulas that we use perform well relative to popular methods,
such as qubitization [51], linear combinations of unitaries [13, 22, 51] or their classically-controlled analogue
QDRIFT [14, 20], is that the complexity of the Hamiltonian simulation scales better with the size of the electric
cuto�, �. The complexities of qubitization, LCU and QDRIFT all scale linearly with the sum of the Hamiltonian
terms’ coe�cients when expressed as a sum of unitary matrices. This leads to a scaling of the Trotter step
number with � of ÂO(�2). Instead, it is straightforward to note that the norm of the commutators [E2

r
, [E2

r
, HI ]]

scale as O(�2) and that all other terms scale at most as O(�2) (see Lemma 22 for more details). This leads to
a number of Trotter steps needed for the second-order Trotter-Suzuki formula that is in O(�) from (30). Thus,
accounting for the logarithmic-sized circuits that we will use to implement these terms, the total cost for the
simulation is in ÂO(�), which is (up to polylogarithmic factors) quadratically better than LCU or qubitization
methods and without the additional spatial overheads they require [23].

The fact that Trotter-Suzuki methods can be the preferred method for simulating discretizations of unbounded
Hamiltonians is also noted in [68] where commutator bounds are used to show that quartic oscillators can be
simulated more e�ciently with Trotter-series decompositions than would be expected from a standard imple-
mentation of qubitization or LCU methods. This is why we focus on Trotter methods for this study here. It is
left for subsequent work to examine the performance of post-Trotter methods discussed above.

2.4 Trotter-Suzuki Decomposition for the Schwinger Model
In order to form a Trotter-Suzuki formula, we decompose the Schwinger model Hamiltonian into a sum of
simulatable terms. Ideally, each term would also be e�ciently simulatable. Examples of such terms are Pauli
operators or operators diagonal in the computational basis (with e�ciently computable diagonal elements) [12,
57].

First we define Tr to be the interaction term coupling sites r and r + 1 and define Dr to be the (diagonalized)
mass plus electric energy associated to site r:

Tr := x
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4(Ur + U†
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)(XrXr+1 + YrYr+1) + i
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where we further define

H =
Nÿ

r=1
(Tr + Dr) , with Dr := D(M)
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+ D(E)
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. (35)

The Dr are each of a sum of two terms that commute so that
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the sum via a Monte-Carlo average [63], but millions of norm evaluations are often still needed to reduce the
variance of the estimate to tolerable levels. Such sampling further prevents the results from being used as an
upper bound without invoking probabilistic arguments and loose-tail probability bounds such as the Markov
inequality. Even once these bounds are evaluated, it should be noted that the prefactors in the analysis are
unlikely to be tight [24] which means that in order to understand the true performance of high-order Trotter
formulas for lattice discretizations of the Schwinger model, it may be necessary to attempt to extrapolate the
empirical performance from small-scale numerical simulations of the error.

These higher-order Trotter-Suzuki formulas also are seldom preferable for simulating quantum dynamics
for modest-sized quantum systems. Indeed, many studies have verified that low-order formulas (such as the
second-order Trotter formula) actually can cost fewer computational resources than their high-order brethren [23,
63, 73] for realistic simulations. Furthermore, the second-order formula can also outperform asymptotically-
superior simulation methods such as qubitization [23, 51] and linear-combinations of unitaries (LCU) simulation
methods [13, 22]. This improved performance is anticipated to be a consequence of the fact that the Trotter-
Suzuki errors depend on the commutators, rather than the magnitude of the Hamiltonian terms’ coe�cients as
per [13, 22, 51].

For the above reasons (as well as the fact that tight and easily-evaluatable error bounds exist for the second-
order formula), we choose to use the second-order Trotter formula in the following discussion and explicitly
evaluate the commutator bound for the error given in (30), which is the tightest known bound for the second-
order Trotter formula.

2.3 Comparison to Qubitization and Linear Combination of Unitaries Methods
One aspect in which the second-order Trotter formulas that we use perform well relative to popular methods,
such as qubitization [51], linear combinations of unitaries [13, 22, 51] or their classically-controlled analogue
QDRIFT [14, 20], is that the complexity of the Hamiltonian simulation scales better with the size of the electric
cuto�, �. The complexities of qubitization, LCU and QDRIFT all scale linearly with the sum of the Hamiltonian
terms’ coe�cients when expressed as a sum of unitary matrices. This leads to a scaling of the Trotter step
number with � of ÂO(�2). Instead, it is straightforward to note that the norm of the commutators [E2

r
, [E2

r
, HI ]]

scale as O(�2) and that all other terms scale at most as O(�2) (see Lemma 22 for more details). This leads to
a number of Trotter steps needed for the second-order Trotter-Suzuki formula that is in O(�) from (30). Thus,
accounting for the logarithmic-sized circuits that we will use to implement these terms, the total cost for the
simulation is in ÂO(�), which is (up to polylogarithmic factors) quadratically better than LCU or qubitization
methods and without the additional spatial overheads they require [23].

The fact that Trotter-Suzuki methods can be the preferred method for simulating discretizations of unbounded
Hamiltonians is also noted in [68] where commutator bounds are used to show that quartic oscillators can be
simulated more e�ciently with Trotter-series decompositions than would be expected from a standard imple-
mentation of qubitization or LCU methods. This is why we focus on Trotter methods for this study here. It is
left for subsequent work to examine the performance of post-Trotter methods discussed above.

2.4 Trotter-Suzuki Decomposition for the Schwinger Model
In order to form a Trotter-Suzuki formula, we decompose the Schwinger model Hamiltonian into a sum of
simulatable terms. Ideally, each term would also be e�ciently simulatable. Examples of such terms are Pauli
operators or operators diagonal in the computational basis (with e�ciently computable diagonal elements) [12,
57].

First we define Tr to be the interaction term coupling sites r and r + 1 and define Dr to be the (diagonalized)
mass plus electric energy associated to site r:

Tr := x
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the sum via a Monte-Carlo average [63], but millions of norm evaluations are often still needed to reduce the
variance of the estimate to tolerable levels. Such sampling further prevents the results from being used as an
upper bound without invoking probabilistic arguments and loose-tail probability bounds such as the Markov
inequality. Even once these bounds are evaluated, it should be noted that the prefactors in the analysis are
unlikely to be tight [24] which means that in order to understand the true performance of high-order Trotter
formulas for lattice discretizations of the Schwinger model, it may be necessary to attempt to extrapolate the
empirical performance from small-scale numerical simulations of the error.

These higher-order Trotter-Suzuki formulas also are seldom preferable for simulating quantum dynamics
for modest-sized quantum systems. Indeed, many studies have verified that low-order formulas (such as the
second-order Trotter formula) actually can cost fewer computational resources than their high-order brethren [23,
63, 73] for realistic simulations. Furthermore, the second-order formula can also outperform asymptotically-
superior simulation methods such as qubitization [23, 51] and linear-combinations of unitaries (LCU) simulation
methods [13, 22]. This improved performance is anticipated to be a consequence of the fact that the Trotter-
Suzuki errors depend on the commutators, rather than the magnitude of the Hamiltonian terms’ coe�cients as
per [13, 22, 51].

For the above reasons (as well as the fact that tight and easily-evaluatable error bounds exist for the second-
order formula), we choose to use the second-order Trotter formula in the following discussion and explicitly
evaluate the commutator bound for the error given in (30), which is the tightest known bound for the second-
order Trotter formula.

2.3 Comparison to Qubitization and Linear Combination of Unitaries Methods
One aspect in which the second-order Trotter formulas that we use perform well relative to popular methods,
such as qubitization [51], linear combinations of unitaries [13, 22, 51] or their classically-controlled analogue
QDRIFT [14, 20], is that the complexity of the Hamiltonian simulation scales better with the size of the electric
cuto�, �. The complexities of qubitization, LCU and QDRIFT all scale linearly with the sum of the Hamiltonian
terms’ coe�cients when expressed as a sum of unitary matrices. This leads to a scaling of the Trotter step
number with � of ÂO(�2). Instead, it is straightforward to note that the norm of the commutators [E2
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scale as O(�2) and that all other terms scale at most as O(�2) (see Lemma 22 for more details). This leads to
a number of Trotter steps needed for the second-order Trotter-Suzuki formula that is in O(�) from (30). Thus,
accounting for the logarithmic-sized circuits that we will use to implement these terms, the total cost for the
simulation is in ÂO(�), which is (up to polylogarithmic factors) quadratically better than LCU or qubitization
methods and without the additional spatial overheads they require [23].

The fact that Trotter-Suzuki methods can be the preferred method for simulating discretizations of unbounded
Hamiltonians is also noted in [68] where commutator bounds are used to show that quartic oscillators can be
simulated more e�ciently with Trotter-series decompositions than would be expected from a standard imple-
mentation of qubitization or LCU methods. This is why we focus on Trotter methods for this study here. It is
left for subsequent work to examine the performance of post-Trotter methods discussed above.

2.4 Trotter-Suzuki Decomposition for the Schwinger Model
In order to form a Trotter-Suzuki formula, we decompose the Schwinger model Hamiltonian into a sum of
simulatable terms. Ideally, each term would also be e�ciently simulatable. Examples of such terms are Pauli
operators or operators diagonal in the computational basis (with e�ciently computable diagonal elements) [12,
57].

First we define Tr to be the interaction term coupling sites r and r + 1 and define Dr to be the (diagonalized)
mass plus electric energy associated to site r:
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the sum via a Monte-Carlo average [63], but millions of norm evaluations are often still needed to reduce the
variance of the estimate to tolerable levels. Such sampling further prevents the results from being used as an
upper bound without invoking probabilistic arguments and loose-tail probability bounds such as the Markov
inequality. Even once these bounds are evaluated, it should be noted that the prefactors in the analysis are
unlikely to be tight [24] which means that in order to understand the true performance of high-order Trotter
formulas for lattice discretizations of the Schwinger model, it may be necessary to attempt to extrapolate the
empirical performance from small-scale numerical simulations of the error.

These higher-order Trotter-Suzuki formulas also are seldom preferable for simulating quantum dynamics
for modest-sized quantum systems. Indeed, many studies have verified that low-order formulas (such as the
second-order Trotter formula) actually can cost fewer computational resources than their high-order brethren [23,
63, 73] for realistic simulations. Furthermore, the second-order formula can also outperform asymptotically-
superior simulation methods such as qubitization [23, 51] and linear-combinations of unitaries (LCU) simulation
methods [13, 22]. This improved performance is anticipated to be a consequence of the fact that the Trotter-
Suzuki errors depend on the commutators, rather than the magnitude of the Hamiltonian terms’ coe�cients as
per [13, 22, 51].

For the above reasons (as well as the fact that tight and easily-evaluatable error bounds exist for the second-
order formula), we choose to use the second-order Trotter formula in the following discussion and explicitly
evaluate the commutator bound for the error given in (30), which is the tightest known bound for the second-
order Trotter formula.

2.3 Comparison to Qubitization and Linear Combination of Unitaries Methods
One aspect in which the second-order Trotter formulas that we use perform well relative to popular methods,
such as qubitization [51], linear combinations of unitaries [13, 22, 51] or their classically-controlled analogue
QDRIFT [14, 20], is that the complexity of the Hamiltonian simulation scales better with the size of the electric
cuto�, �. The complexities of qubitization, LCU and QDRIFT all scale linearly with the sum of the Hamiltonian
terms’ coe�cients when expressed as a sum of unitary matrices. This leads to a scaling of the Trotter step
number with � of ÂO(�2). Instead, it is straightforward to note that the norm of the commutators [E2
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scale as O(�2) and that all other terms scale at most as O(�2) (see Lemma 22 for more details). This leads to
a number of Trotter steps needed for the second-order Trotter-Suzuki formula that is in O(�) from (30). Thus,
accounting for the logarithmic-sized circuits that we will use to implement these terms, the total cost for the
simulation is in ÂO(�), which is (up to polylogarithmic factors) quadratically better than LCU or qubitization
methods and without the additional spatial overheads they require [23].

The fact that Trotter-Suzuki methods can be the preferred method for simulating discretizations of unbounded
Hamiltonians is also noted in [68] where commutator bounds are used to show that quartic oscillators can be
simulated more e�ciently with Trotter-series decompositions than would be expected from a standard imple-
mentation of qubitization or LCU methods. This is why we focus on Trotter methods for this study here. It is
left for subsequent work to examine the performance of post-Trotter methods discussed above.

2.4 Trotter-Suzuki Decomposition for the Schwinger Model
In order to form a Trotter-Suzuki formula, we decompose the Schwinger model Hamiltonian into a sum of
simulatable terms. Ideally, each term would also be e�ciently simulatable. Examples of such terms are Pauli
operators or operators diagonal in the computational basis (with e�ciently computable diagonal elements) [12,
57].

First we define Tr to be the interaction term coupling sites r and r + 1 and define Dr to be the (diagonalized)
mass plus electric energy associated to site r:

Tr := x
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and do the following ordering of the terms

|j0i Rz(20t) • • • • • •

|j1i Rz(21t) Rz(21t)
...

...
. . .

|j⌘�2i Rz(2⌘�2
t) Rz(2⌘�2

t) • •

|j⌘�1i Rz(2⌘�1
t) Rz(2⌘�1

t) Rz(22⌘�3
t)

(81)

Figure 5: Circuit for simulating e≠iE2t
in qubit limited setting. The circuit is shown acting on the product state ¢÷≠1

k=0 |jkÍ
to clearly mark which qubit each gate is intended to act upon although the circuit is valid for arbitrary inputs.

The right-hand side of (77) requires fewer CNOTs to implement than the left-hand side. Reducing the circuit
of Figure 5 to Figure 4 employs an application of (77) ÷ ≠ 2 times between the columns of z-rotations, along
with a minor CNOT simplification at the end of the circuit. Counting the CNOTs in Figure 4, we get

Q

a
÷≠1ÿ

j=1
j

R

b + ÷ ≠ 1 = ÷(÷ ≠ 1)
2 + ÷ ≠ 1 = (÷ + 2)(÷ ≠ 1)

2 . (79)

Similarly, the number of single-qubit rotations needed for the circuit is

÷(÷ ≠ 1)
2 + ÷ = ÷(÷ + 1)

2 (80)

Combining this information, the electric time evolution operator, e≠iE
2
t, can be implemented exactly (up to

a t-dependent global phase) by ÷(÷+1)
2 single-qubit Z rotations and (÷+2)(÷≠1)

2 CNOTs.

While being conducive to implementation on qubit-limited hardware, this implementation strategy is attrac-
tive as a decomposition into mutually-commuting operators—contributing no additional systematic errors to
the Trotterized time evolution operator. It is interesting to note that this set of all two-qubit Z operators has
also been found su�cient to implement time evolution of the scalar field mass term [39, 40, 45, 52, 67]. Similar
resource constrained results can be found using singular value transformations or phase arithmetic [32, 51, 76]
but these approaches require at least one additional qubit. For fault-tolerent implementation, a quadratically-
improved method utilizing arithmetic with ancillary qubits is presented in Section 4.2.

3.3 Cost to Implement Approximate Time Step in Noisy Entangling Gate Model
In the following statement, we summarize the cost of implementing a single time step V (t) (38). Note that we
may implement these exactly in the NEG computational model, where single-qubit operations are free.

Lemma 3 (Schwinger Time Step Cost in NEG Model). Consider any t œ R. The unitary operation V (t) as
defined in (38) may be implemented on a quantum computer in the Noisy Entangling Gate model using a number
of CNOTs that is at most

(N ≠ 1)(9÷2 ≠ 7÷ + 34).

Proof. Proof follows by considering the symmetric Trotter-Suzuki expansion of the time-evolution operator. In
particular, we have that e≠iHt = V (t) + O(t3), where V is defined as in (38) and restated here for convenience:

V (t) =
N≠1Ÿ

r=1

Q

a
Ÿ

kœ{M,E}

e≠iD
(k)
r

t/2
4Ÿ

j=1
e≠iT

(j)
r

t/2

R

b e≠iD
(M)
N

t

1Ÿ

r=N≠1

Q

a
1Ÿ

j=4
e≠iT

(j)
r

t/2
Ÿ

kœ{E,M}

e≠iD
(k)
r

t/2

R

b .

The proof now proceeds by a counting of the number of gates needed to implement V .
The mass terms, given in D(M)

r , are single-qubit operations and require no CNOTs to implement. They are
therefore free within the cost model considered here.

The hopping terms are implemented according to the discussion of Section 3.1 and their total cost is deter-
mined as follows: 18 explicit CNOTs appear in Figure 3 and the rest are embedded in the two shifters. Each
shifter can be implemented as in Figure 2, namely using two quantum Fourier transforms and single-qubit rota-
tions. A single quantum Fourier transform can be done using Kitaev’s approach [57] in

q
÷≠1
k=1(÷≠k) = ÷(÷≠1)/2
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Example

This example concerns finding a quantum circuit for implementing 

in the time-evolution of lattice Schwinger model in a near-term scenario that avoids introducing 
any ancilla qubits. Consider  and encode the electric-field Hilbert space on each link 
 into  qubits. Given this, find a circuit representation for  in terms of only 

single-qubit rotations around the z axis of Bloch sphere as well as two-qubit CNOT gates. Verify 
your answer by explicitly working out a small example.

Ei ∈ [−Λ, Λ]
i η ≡ ⌈log2(2Λ) + 1⌉ U(E)

i

U(E) =
N

∏
i−1

U(E)
i = e−it∑N

i=1 E2
i

It is easy to show that the electric-field operator at each link acting on the computational (binary) 
basis is:

E = − Λ 𝕀 +
1
2

(2η − 1)𝕀 −
η−1

∑
j=0

2j σz
j

Therefore, 

E2 = Λ2 𝕀 − Λ (2η − 1)𝕀 −
η−1

∑
j=0

2j σz
j +

1
4

(2η − 1)2𝕀 − 2(2η − 1)
η−1

∑
j=0

2j σz
j +

η−1

∑
j, j′ =0

2j+j′ σz
j σz

j′ 

Consequently, the operator  can be written as a product of  rotations and 
 rotations with rotation angles that can be read off from the expression above. 

Note that each  gate amounts to two CNOT gates and one  gate.

U(E) Nη Rz

Nη(η − 1)/2 Rzz

Rzz Rz
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The previous example requires  number of  gates, which are costly operations in the 
fault-tolerant regime as they need to be synthesized up to accuracy  using roughly  T 
gates. Can one reduce the  cost of electric-field evolution to ? The answer is yes, but at 
the cost of extra  ancillas that are, nonetheless, available in the fault-tolerant era. One such 
circuit can be constructed using the so-called phase-kickback routine. For each :

O(Nη2) Rz

ϵ log(1/ϵ)
Rz O(Nη)

O(η)
U(E)

i

Register that 
temporarily holds the 

 value at each linkE2
i

Phase gets 
implemented here 
based on the  valueE2

i

Logic gates 
uncomputing .E2

i

Logic gates 
computing .E2

i

Schwinger-boson mass propagator subroutine T gates Workspace Scratch space

Each E≠itH
SB(j)

M rotation Cz(‘) 0 0
Full e≠itH

SB

M (r) circuit 2 Cz(‘) 0 0

Schwinger-boson electric propagator subroutine T gates Workspace Scratch space
(Un)compute NL 4÷ ÷ 1
Copy 0 0 ÷ + 1
(÷ + 1)◊ (÷ + 1) mult. 8÷2 + 12÷ + 4 2÷ + 2 2÷ + 2
HSB(1)

E
rotations (÷ + 1)Cz(‘) 0 0

HSB(2)

E
rotations (2÷ + 2)Cz(‘) 0 0

Full e≠itH
SB

E (r) circuit 16÷2+32÷+8+(3÷+3)Cz(‘) 2÷ + 2 3÷ + 4

Table 4: Summary of the costs associated with the far-term simulation of the diagonal operators in the Schwinger-boson
Hamiltonian, as explained in the text.

÷+1

÷+1

2÷+2

|NL
Í

C
op

y

M
ul

t.

r
÷

k=0
exp(i t 2k≠2Zk)

M
ul

t.†

C
op

y† |NL
Í

|0Í |0Í

|0Í r
2÷+1

k=0
exp(i t 2k≠3Zk) |0Í

> <

> <

Figure 6: A quantum circuit to realize the phase kickback for HE(r). The same circuit is applicable to both the
Schwinger-boson and the LSH formulations, with the only di�erence being the evaluation of NL (the subcircuit that
evaluates NL is not shown). The > symbol denotes that the obtained value in the subcircuit is stored in the corresponding
qubit register, and the < symbol indicates that the corresponding register is cleared from the stored values as a result
of the action of the inverse subcircuit.

2. Compute (NL)2.
3. E�ect phase kickback via the registers containing NL and (NL)2.
4. Uncompute (NL)2 and NL.

In step (1), NL can be computed as

|nL

1
Í |nL

2
Í |0Í¢(1+÷)

‘æ |nL

1
Í |NL

Í |0Í¢÷ (62)

using an ÷-bit in-place adder. The adder, according to Lemma A.2, calls for ÷ workspace qubits and costs 4÷ T
gates. For (2), (NL)2 is computed as |NL

Í |0Í¢(5÷+5)
‘æ |NL

Í |NL
Í |0Í¢(4÷+4)

‘æ |NL
Í |NL

Í |(NL)2Í |0Í¢(2÷+2),
by first copying NL to an (÷ + 1)-bit register using CNOT gates, and then multiplying the two copies of NL.
According to Lemma A.3, the multiplier costs 8÷2 + 12÷ + 4 T gates and 2÷ + 2 bits of workspace. In step (3),
the NL(r) and (NL(r))2 terms of HE(r) are e�ectively simulated by applying single-qubit RZ gates across the
|NL

Í and |(NL)2Í registers (up to global phases that are dropped). Finally, in step (4), uncomputation involves
reversing the gates of steps (2) and (1) and the associated costs are the same. Steps (2)-(4) are shown in Fig. 6.
In total, the procedure outlined above involves 3÷+3 RZ gates, which can each be done to the desired precision
using the RUS method mentioned above [160]. The costs associated with all the subroutines are summarized
in Table 4. The final, quoted costs are obtained by adding up the workspace and scratch-space sizes.

Implementing hopping propagators

Lemma 3.6. Let ÷ = log
2
(� + 1) be the number of qubits per Schwinger boson mode, n > 0 be the number of

Newton’s method iterations, and m > 0 be a fixed binary arithmetic precision. Then �8

j=1
e≠itH

SB(j)

I (r) can be
implemented within an additive spectral-norm error of

8xt
5
2n

1Ô
2≠ 1

22
n

+ 22≠m

33
3
2

4n

≠ 1
46

(63)
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−1

−

Ei Ei

σz
k

The logical copy and multiplication routines are known circuits and overall cost  T gates. 
The ancilla qubits are reset in the end and can be used in the remainder of the circuit.

O(η2)



How do you implement arbitrary diagonal operator  in the computational 

basis? [Think about two examples: i)  and ii) !]

e−it𝒟

𝒟 |n⟩ = n |n⟩ 𝒟 |n⟩ =
n + 1
n − 1

|n⟩



Circuit and recourse analysis

Near term cost

|j⌘�1i
+1 �1...

|j0i H • • H H • • H S
† H • • H S S

† H • • H S

|ri • H • Rz(xt/4) • • Rz(xt/4) • H S
† H • Rz(�xt/4) • • Rz(�xt/4) • H • S

|r + 1i Rz(�xt/4) Rz(�xt/4) Rz(xt/4) Rz(xt/4)

Figure 3: A circuit to simulate the Schwinger model hopping terms,
r1

j=4 e≠iT (j)t/2
, in the order corresponding to

(50). The locality of the presented operator will be expanded to include ÷-distance CNOTs between qubits representing

fermionic degrees of freedom in quantum registers with one-dimensional connectivity. The gates labeled +1 and ≠1 are

the incrementer and decrementer circuits.

with S the “phase gate,” |0Í È0| + i |1Í È1|. To reduce clutter, these composite operators are denoted by

Gr := XrXr+1 + YrYr+1 and G̃r := XrYr+1 ≠ YrXr+1. (49)

To simulate a hopping term in the Trotter step V (t), we will employ the approximation

e≠i
xt

8 ((A+Ã)¢G+(B+B̃)¢G̃) ¥ e≠itT
(4)

/2e≠itT
(3)

/2e≠itT
(2)

/2e≠itT
(1)

/2, (50)

where

T (1) := x(A ¢ G)/4, (51)
T (2) := x(Ã ¢ G)/4, (52)
T (3) := x(B̃ ¢ G̃)/4, (53)
T (4) := x(B ¢ G̃)/4. (54)

A circuit representation of the right-hand side of (50) is given in Figure 3. This routine can be understood
in a simple way by first noting the similarity of the four T (i) operators:

T (2)
r

= S†
E,r

T (1)
r

SE,r (55)

T (3)
r

= S†
E,r

(Sb

0,r
Sf

r
)
1

≠T (1)
r

2
(Sb

0,r
Sf

r
)†SE,r (56)

T (4)
r

= (Sb

0,r
Sf

r
)
1

≠T (1)
2

(Sb

0,r
Sf

r
)† (57)

Consequently, the whole circuit is essentially just four applications of e≠itT
(1)

/2 along with appropriately inserted
basis transformations and rotation angle negations. The specific ordering of the T (i) chosen yields cancellations
that reduce the number of internal basis transformations that must be individually executed. A few single-
and two-qubit gates are also spared by additional cancellations. The remainder of this section addresses the
implementation of eûitT

(1)
/2.

To e�ect an application of e≠itT
(1)

/2, one can first transform to a basis in which X ¢ G is diagonal. (Recall
A is just X0 – a bit flip on the last bit of the bosonic register.) G is diagonalized by the so-called Bell states,

|—abÍ = |0 bÍ + (≠1)a |1 b̄ÍÔ
2

(58)

G |—abÍ = 2b(≠1)a |—abÍ (59)

with b̄ indicating the binary negation of b, while X is diagonalized by |±Í = (|0Í ± |1Í)/
Ô

2. From this, we have
that

e≠ ixt

8 X¢G |±Í |—00Í = |±Í |—00Í (60)

e≠ ixt

8 X¢G |±Í |—01Í = eû ixt

4 |±Í |—01Í (61)

e≠ ixt

8 X¢G |±Í |—10Í = |±Í |—10Í (62)

e≠ ixt

8 X¢G |±Í |—11Í = e± ixt

4 |±Í |—11Í . (63)

Thus, in the Bell basis, we implement rotations conditioned on a and b.
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Part of electric field 
interactions acting on 
gauge DOF registers

Sample gauge-fermion 
interaction block

|j0i Rz(20t) • • • • •

|j1i Rz(21t) Rz(21t) • • • •

|j2i Rz(22t) Rz(22t) Rz(23t) •
...

...
. . . . . .

|j⌘�2i Rz(2⌘�2t) Rz(2⌘�2t) Rz(2⌘�1t) • •

|j⌘�1i Rz(2⌘�1t) Rz(2⌘�1t) Rz(2⌘t) Rz(22⌘�3t)
(68)

Figure 4: Simplified circuit for simulating e≠iE2
r

t
in qubit limited setting. The circuit is shown acting on the product

state ¢÷≠1
k=0 |jkÍ to clearly mark which qubit each gate is intended to act upon although the circuit is valid for arbitrary

inputs.

The first two time slices of the circuit serve to change to the X ¢ G eigenbasis. The subsequent parallel Rz

rotations flanked by CNOTs implement the controlled rotations in the computational basis, taking

|zÍ |00Í æ |zÍ |00Í , (64)

|zÍ |01Í æ e(≠1)z̄ ixt

4 |zÍ |01Í , (65)
|zÍ |10Í æ |zÍ |10Í , (66)

|zÍ |11Í æ e(≠1)z ixt

4 |zÍ |11Í ; (67)

this is equivalent to acting with e≠ ixt

4 Z¢Z . After undoing the basis transformation, we will have e�ected
e≠ ixt

8 A¢G. Three similar operations are executed in the remainder of the circuit; an incrementer SE (denoted
by “+1”), the phase gates, and the overall minus sign on the rotations in the latter half of the circuit all stem
directly from the relations given in (55,56,57).

The above discussion is summarized below as a lemma for convenience.

Lemma 1. For any (evolution time) t œ R the operation

e≠itT
(4)

/2e≠itT
(3)

/2e≠itT
(2)

/2e≠itT
(1)

/2

can be performed using at most 8 + 2÷ single-qubit rotations, 4 ÷-qubit quantum Fourier transform circuits, 18
CNOT gates and no ancillary qubits.

3.2 Implementing (Diagonalized) Mass and Electric Energy Terms (D)
Lemma 2. The circuit provided in Figure 4 implements e≠iE

2
t on ÷ qubits exactly, up to an (e�ciently com-

putable) global phase, using (÷+2)(÷≠1)
2 CNOT operations and ÷(÷+1)

2 single-qubit rotations.

Proof. The time evolution associated with the electric energy can be exactly implemented utilizing the structure
of the operator. As defined in (14), E2 = diag[�2, (� ≠ 1)2, · · · , 1, 0, 1, · · · , (� ≠ 1)2], where � is the electric
field cuto�. Note that the diagonal elements are not distributed symmetrically—the first diagonal entry is �2

while the last entry is (� ≠ 1)2. This lack of symmetry is required to incorporate the gauge configuration with
zero electric field. However, symmetry can be leveraged by using the following operator identity:

E2 =
3

E + 1
2I

42
≠

3
E + I

2

4
+ I

4 (69)

The operator E+ 1
2 I = 1

2 diag[≠2�+1, · · · , ≠1, 1, · · · , 2�≠1] is skew persymmetric—containing positive-negative
pairs along the diagonal. We then have from (69) and since [Er, E2

r
] = 0 that

e≠iE
2
t = e≠i(E+ 1

2 I)2
tei(E+ 1

2 I)te≠it/4. (70)

Since unitaries are equivalent in quantum mechanics up to a global phase, we can ignore the last phase in the
computation (even if we didn’t want to ignore it, it can be e�ciently computed as t is a known quantity).
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COMPARISON BETWEEN THE TWO FORMULATIONS FOR THE SECOND-ORDER FORMULA

*Defined at the required number of Trotter steps for simulation time t, system 
size N , and at fixed x and µ, given a fixed error tolerance.∼ Λ

Purely fermionic (non-local) Fermionic-bosonic (local)

Qubit cost

Gate 
complexity*
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N

Number of sites N

Nonetheless, empirically it seems like the 
non-local formulation performs as well as 
the bound on the local formulation!

t = N
Nguyen, Tran, Zhu, Green, Huerta 
Alderete, ZD, Linke, PRX 
Quantum 3 (2022) 2, 020324.

COMPARISON BETWEEN THE TWO FORMULATIONS FOR THE SECOND-ORDER FORMULA

*Defined at the required number of Trotter steps for simulation time t, system 
size N , and at fixed x and µ, given a fixed error tolerance.∼ Λ



Explain the qubit and gate scalings of the second-order Trotter simulation of 
the lattice Schwinger model in both formulations, as given in the previous slide.



OUTLINE OF PART II: 
DIGITAL QUANTUM COMPUTING TIME EVOLUTION IN LGTs

i) A general algorithmic strategy 
ii) Time evolution in the Schwinger model 

In purely fermionic formulation 
In fermion-boson formulation 

iii) Outlining the differences between Abelian and non-Abelian algorithms 
iv) How much does it cost to simulate time dynamics of QCD?



Abelian vs. non-Abelian

Since we do not have the option of removing the gauge links generally, let us focus on the 
fermionic-bosonic formulations in the electric-field basis. So what are the major differences 
between simulating digitally Abelian and non-Abelian LGTs? Let is compare U(1) and SU(N) LGTs. 

i) There are more degrees of freedom involved for SU(N) LGTs. For example, at each site, 
there are N-component fermions, and at each link there are multiple bosonic variables.  

ii) As a result, there are more terms that need to be simulated, hence more complexity and 
generally more Trotter error. 

iii) The diagnozalization procedure for hopping and magnetic terms generally follow the 
same rules but is more gate-intensive for SU(N).  

iv) The diagonal operators in an Abelian theory like U(1) are trivial while for SU(N), they 
require evaluating phases that are non-trivial functions of bosonic occupation-number 
operators. These require expensive function-evaluation routines (in the  basis).E
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Algorithms for simulating quantum field theories 
started from pioneering work of Jordan, Lee, Preskill.

Algorithmic progress for U(1), SU(2), and SU(3) quantum field theories include:



Starting from the Standard Model

 T gatesO(1053)
Kan, Nam (2021)

CERN courier

Time evolving under QCD 
in a  lattice in 
the irrep basis with 

 and  at 
fixed parameters with 
error  (  qubits).

10 × 10 × 10

Λ = 10 a = 10−2

10−3 1010

Second-order product formula 
Non-local fermion encoding



Starting from the Standard Model
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ZD, Stryker (2025)
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CERN courier

Second-order product formula (better term decomposition) 
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Time evolving under QCD 
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 and  at 
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Λ = 10 a = 10−2

10−3 1010
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Figure 1. Simulating the dynamics of extreme physical environments (right) emerging from the SM of quarks, leptons, gauge
fields, and the Higgs boson (left) requires large-scale classical or quantum simulations (center). Quantum entanglement and
coherence utilized by quantum computers are expected to enable progress while providing new insights into the SM itself.

While some direct predictions of the SM are accessible by perturbative calculations, non-perturbative simulations are
required for most processes, which involve configuration-space, i.e., Hilbert space, sizes that easily exceed the number of atoms
in the universe. The quantum-mechanical probability of a given process is determined by Feynman’s path integral, summing
the amplitudes of all possible trajectories weighted by the complex exponential of their action, eiS . When iS is a negative
real number, these weights allow for systematic importance sampling central to lattice-field-theory programs on classical
computers—enabling first-principles simulations of e.g., mesons, their decays and scattering, the muon’s anomalous magnetic
moment, properties of nucleons and nuclei, and the phase diagram of dilute matter at high temperature, see Refs. [7–10] for
recent reviews. However, when iS becomes complex, as in finite-density systems and in real-time simulations, the sampling
techniques can fail due to large cancellations. While ideas are being pursued to tame many ‘sign problems’ [11–13], they are
believed to be NP-hard [14].

Unfortunately, sign problems arise frequently in nuclear and high-energy physics, challenging the pursuit of answers to
many forefront questions, as identified and elaborated in recent studies, e.g., Refs. [15–18]. For example, first-principles
predictions for phases and phase transitions of matter, e.g., those probed at the Large Hadron Collider (LHC) at CERN and
the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, and those relevant to the interior cores of
neutron stars and the evolution of supernovae, are currently out of reach. The non-equilibrium and thermalization dynamics of
matter produced during heavy-ion collisions and in the early universe also remain unresolved. In particle colliders, available
calculational strategies at high energies tend to break down at the lower energies relevant to fragmentation and the subsequent
cascades of hadrons. In astrophysical environments, neutrinos play a significant role in transporting energy during core-collapse
supernovae. Background matter and neutrino densities influence the evolution of flavor as the neutrinos radiate from the core.
Given the resulting mixed-state entanglement structure of the neutrino fields, accurate simulations of these coherent processes is
challenging. Experimental programs probing the fundamental nature of neutrinos include searches for CP-violation in the Deep
Underground Neutrino Experiment (DUNE) experiment, and for the violation of lepton number in 0⌫��-decay experiments
in nuclei. Simulations of nuclear-physics ingredients for these experimental programs present a significant challenge for
classical computation. Last, but not least, theories involving inflationary epoch of the universe, dark-matter models involving
composite ‘dark hadrons’, CP-violating scenarios occurring out of equilibrium in the early universe, or strongly-interacting
QFTs living on the boundary of a bulk containing quantum-gravity models, all require simulations of various quantum fields in-
and out-of-equilibrium, which are often intractable.

Amidst such challenges arose a key perspective: Information is physical, computation is the science of information
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